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Preface

Modeling and simulation of dynamic processes are very important subjects in control
systems design. Most processes that are encountered in practical controller design are
very well described in the engineering literature, and it is important that the control
engineer is able to take advantage of this information. It is a problem that several books
must be used to get the relevant modeling information of a particular process, and it may
take a long time to go through all the necessary material. The idea of this book is to
supply the control engineer with a sufficient modeling background to design controllers
for a wide range of processes. In addition, the book provides a good starting point for
going into the specialist literature of different engineering disciplines. In this connection
the references indicate where to start. The book also contains more material than what
will normally be covered in the lectures of a typical course, so that students may return
to the book at a later stage and find additional information about a particular subject.
This will be more efficient than to extract the required information from a series of other
books. In this sense the book will be of great value for practicing control engineers.
The development of new products and systems is often done in a team of experts

with different backgrounds. It is hoped that this book will help control engineers to
communicate with other experts in this type of team. To achieve this we have been careful
to use standard terminology and notation from the different engineering disciplines in
question. Here we deliberately break the tradition evident in many books in the control
literature where the emphasis is on having a unified formulation specific to automatic
control.
The selection of the material is based on the experience of the authors in teaching

and research at the Norwegian University of Science and Technology. In addition to this,
material has been selected on the basis of extensive industrial activity through research
programs between university and industry, and product development in industry. In this
activity there has been close cooperation with experts from other disciplines, and this
has given useful experience on how to approach different topics, and on how to interact
with other specialists.
The style of modeling used in this book is inspired from the field of robotics where

modeling is presented in a precise style based on equations. In addition, quite detailed
results and optimized algorithms are included in standard textbook in robotics. As a
result of this, the development in our book relies on many equations, but it is our expe-
rience that this is well appreciated by most students, as they do no have to waste time
on trying to understand long written descriptions on subjects that are easily understood
in terms of a series of equations. Moreover, we have experienced that the material pre-
sented in this book is suited both for newcomers and for students with prior courses in
the topics of the book. In particular we have seen that students with virtually no back-
ground in dynamics have been able to master rigid body dynamics after going through
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the dynamics chapters of this book. At the same time, students who have taken courses
in dynamics also find the material in this book to be useful.
Parts of this book have been taught as a one-semester course at the Norwegian Uni-

versity of Science and Technology. The students are in the third year of their study
in electrical engineering with specialization in automatic control, and have taken a ba-
sic course in automatic control theory. Standard undergraduate courses in engineering
mathematics give a sufficient background in mathematics.
The results presented in this book have been developed and accumulated over a

period of 15 years. The first author would like to thank all of his doctoral students over
this period for their contributions. Also our colleagues and friends abroad have been
important in this work. Thanks are due to Rolf Johansson, Henk Nijmeijer, Rogelio
Lozano and Atul Kelkar for discussions on this book. In the writing of the book and
in the selection of the material we have benefited from the availability of the lecture
notes by Steinar Sælid, Rolf Henriksen and Torleif Iversen that have been used in earlier
versions of the course.
We would like to thank doctoral candidate Erlend Kristiansen for his work on simula-

tions, figures and proofreading. We would also like to thank Thor I. Fossen who has been
writing a book in parallel, and we have enjoyed all the discussions on writing in general
and modeling in particular. Thanks are also due to our colleagues Kristin Y. Pettersen,
Tor Arne Johansen and Asgeir Sørensen. We would also like to thank our colleagues at
the Department of Engineering Cybernetics for contributing to the stimulating working
environment that allowed us to write this book. Also the support from the Norwegian
Research Council has been important, as this has made it possible to have a large group of
PhD students and Post Docs at the Department. In particular, the Strategic University
Program in Marine Control Systems has given us very good working conditions.

Olav Egeland
Jan Tommy Gravdahl
December 2002
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Chapter 1

Model representation

1.1 Introduction

In this chapter we will present model formulations for use in controller analysis and
design. The usual type of models in control problems are based on ordinary differential
equations with time as the free variable. The two main representations of such models are
state-space descriptions, where the model is given as a system of first-order differential
equations, and transfer function models using the Laplace transformation. In this setting
the signal-flow representation of models is used where each model has a defined set of
input variables and a set of output variables. Control theory offers a wide variety of
tools and techniques for controller analysis and design based on state-space models and
transfer function models.
The signal-flow description has been very successful in control applications. However,

in energy-based control analysis and in the development of simulation systems, there is an
alternative formulation which is based on an energy-flow description. This formulation
is of great use in the development of large simulation systems as it opens up for object-
oriented modeling. This is an approach where a model is developed for each physical
subsystem, and where the model of the total system is obtained by interconnecting the
models of the subsystems using energy-flow variables.
Throughout the book models are developed from physics. This includes physical

principles like Newton’s laws and balance equations, which are typically based on the
conservation of mass, momentum, energy, and electrical charge. In addition, results
are derived using the purely mathematical field of kinematics, which is the geometric
description of motion. Finally, empirically established constitutive equations are needed
to describe material properties like the relation between the force and deformation of a
spring, the relation between velocity gradients and viscous tension of a fluid, and the
relation between charge and voltage of a capacitive element.
In contrast to this, models may be obtained as black-box model where transfer func-

tions or state space models between inputs and outputs are established from identification
experiments . This approach will not be discussed in this book.
This chapter starts with a presentation of state-space models and transfer function

models in the signal-flow description, which is the usual formulation in automatic con-
trol. Then the energy-flow description is presented. Material on second order me-
chanical systems and systems described by partial differential equations is also dis-
cussed. Background material on control is found in (Kuo 1995), (Chen 1999) and

3
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(Dorf and Bishop 2000), while additional material on linear systems theory is covered by
(Rugh 1996) and (Antsaklis and Michel 1997).

1.2 State space methods

1.2.1 State space models

A state space model

ẋ1 = f1(x1, . . . , xn, u1, . . . up, t) (1.1)
... (1.2)

ẋn = fn(x1, . . . , xn, u1, . . . up, t) (1.3)

which in vector form is written
ẋ = f (x,u, t) (1.4)

is a set of first order differential equations describing the dynamics of the state vector
x = (x1, . . . , xn)T under the action of the control or input vector is u = (u1, . . . , up)

T .
The measurement or output vector y is is often included in the model formulation, and
the state-space model is written

ẋ = f (x,u, t) (1.5)

y = h (x, t) (1.6)

An important class of systems for controller design is linear time-invariant systems
which are written in the form

ẋ = Ax + Bu
y = Cx + Du

(1.7)

A block diagram is shown in Figure 1.1.

x yu

A

B C

D

Figure 1.1: Linear time-invariant state space model

Example 1 Systems that can be written in the form

ẋ = f (x) + G (x)u (1.8)

are said to be affine in the control u, which means that when x is given, then the right side
of (1.8) is a constant plus a term that is linear in u. This type of system is important in
nonlinear control theory where methods are available for this type of model (Isidori 1989),
(Nijmeijer and der Schaft 1990).



1.2. STATE SPACE METHODS 5

1.2.2 Second order models of mechanical systems

Mechanical systems are often described as second order systems in the form

M (q) q̈ + f (q, q̇) = u (1.9)

where q is the vector of generalized coordinates and u is the generalized input force.
The matrix M (q) may be called the mass matrix. Intuitively, this can be regarded as
a generalization of Newton’s law which states that mass times acceleration is equal to
force. This second order model may be written in state space form by defining x1 = q,
x2 = q̇ which gives µ

ẋ1
ẋ2

¶
=

µ
x2

M−1 (x1) [−f (x1,x2) + u]

¶
(1.10)

Some mechanical systems have models of a special structure due to the physical
properties of the systems. In particular, this is true for vibration problems and for
robotics. The model of a robot manipulators is written (Spong and Vidyasagar 1989),
(Sciavicco and Siciliano 2000)

M (q) q̈ + C (q, q̇) q̇ + g (q) = τ (1.11)

where M (q) is the symmetric and positive definite mass matrix, C (q, q̇) is the Coriolis
matrix, g (q) is the generalized force of gravity, q =(q1, . . . , q6) is the vector of generalized
coordinates, and τ =(τ1, . . . , τ6) is the vector of generalized actuator forces. The model
is usually left in the second order formulation, as the usual control techniques used for
manipulators rely on this formulation.

1.2.3 Linearization of state space models

Many methods and control techniques are available for linear systems. In particular,
control methods based on frequency response require a linear model. Therefore, if the
modeling of a system results in a nonlinear system

ẋ = f(x,u, t)
y = h (x,u, t)

(1.12)

it may be useful to linearize the system. Linearization is done around a solution of the
system. A solution of the system is a function (x0(t),u0(t)) that satisfies the system
equation

ẋ0 = f [x0(t),u0(t), t] (1.13)

We define the perturbations ∆x, ∆u and ∆y from the solution by

x(t) = x0(t) +∆x(t) (1.14)

u(t) = u0(t) +∆u(t) (1.15)

y(t) = h [x0(t),u0(t), t] +∆y(t) (1.16)

Standard Taylor series linearization around the solution (x0(t),u0(t)) gives

ẋ = f [x0(t),u0(t), t] +
∂f

∂x

¯̄̄̄
x0(t),u0(t)

∆x +
∂f

∂u

¯̄̄̄
x0(t),u0(t)

∆u (1.17)

y = h [x0(t),u0(t), t] +
∂h

∂x

¯̄̄̄
x0(t),u0(t)

∆x +
∂h

∂u

¯̄̄̄
x0(t),u0(t)

∆u (1.18)
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where the matrices appearing from the differentiations have elements given by

∂f

∂x
=

½
∂fi
∂xj

¾
,

∂f

∂u
=

½
∂fi
∂uj

¾
,

∂h

∂x
=

½
∂hi
∂xj

¾
,

∂h

∂u
=

½
∂hi
∂uj

¾
(1.19)

Insertion of (1.13) into (1.17), and insertion of (1.16) into (1.18) gives the following
linearized system:

∆ẋ =
∂f

∂x

¯̄̄̄
x0(t),u0(t)

∆x +
∂f

∂u

¯̄̄̄
x0(t),u0(t)

∆u (1.20)

∆y =
∂h

∂x

¯̄̄̄
x0(t),u0(t)

∆x +
∂h

∂u

¯̄̄̄
x0(t),u0(t)

∆u (1.21)

It is noted that this model is of the same form as (1.7). The matrices A,B, C and
D are seen to be given by

A(t) =
∂f

∂x

¯̄̄̄
x0(t),u0(t)

, B(t) =
∂f

∂u

¯̄̄̄
x0(t),u0(t)

(1.22)

C(t) =
∂h

∂x

¯̄̄̄
x0(t),u0(t)

, D(t) =
∂h

∂u

¯̄̄̄
x0(t),u0(t)

(1.23)

Example 2 A simplified model for the design of a cruise control system for a car is
obtained from Newton’s law. Suppose that the forces acting on the car are the air resis-
tance, which is proportional to the square of the velocity, and the motor force, which is
assumed to be proportional to the throttle input. Then the model is

mv̇ = −1

2
CDρAv

2 +Ktu (1.24)

where v is the velocity and m is the mass of the car, CD is the drag coefficient, ρ is
the density of air, A is the projected area of the car when seen from the front, Kt is the
throttle constant, and u is the throttle input. The control input u0 corresponding to a
constant speed v0 is found by inserting mv̇0 = 0 in the model, which gives

u0 =
1

2Kt
CDρAv

2
0 (1.25)

We define the perturbations ∆v = v − v0 and ∆u = u− u0 and find the linearized model

m∆v̇ = −CDρAv0∆v +Kt∆u (1.26)

Example 3 A standard laboratory demonstration of feedback control is the magnetic
levitation experiment where an electromagnet is used to control the vertical position of a
steel ball. The equation of motion for the ball is derived in Section 3.7.9 to be

mz̈ = −C i2

z2
+mg (1.27)

where m is the mass, z is the vertical position of the ball in the downwards direction, C is
a constant, i is the control input, which is the current of the electromagnet, and g is the
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acceleration of gravity. Let zd be the constant desired position of the ball. The solution
(zd, id) is found by inserting mz̈d = 0 in the model, which gives the constant current

id =

r
mg

C
zd (1.28)

which will give a lifting force that can hold the ball stationary at position zd. We define
the perturbations ∆z = z − zd and ∆i = i− id and get the linearized model

m∆z̈ = 2C
i2d
z3d
∆z − 2C

id
z2d
∆i (1.29)

1.2.4 Linearization of second order systems

A second order system

q̈ = f (q, q̇,u) (1.30)

may be linearized by reformulating it as a state-space model (1.4) with x = (qT , q̇T )
T .

However, we may also linearize the system in the second order formulation, which may
be advantageous for some systems. Then the system is linearized around a solution
(q0(t), q̇0(t),u0(t)) which satisfies

q̈0 = f (q0, q̇0,u0) . (1.31)

Taylor series expansion of the model around the solution gives

q̈0 +∆q̈ = f (q0, q̇0,u0) +
∂f

∂q
∆q +

∂f

∂q̇
∆q̇ +

∂f

∂u
∆u (1.32)

and combination with (1.31) gives the linearized model

∆q̈ =
∂f

∂q
∆q +

∂f

∂q̇
∆q̇ +

∂f

∂u
∆u (1.33)

Example 4 Consider a pendulum with a point mass m on a massless beam of length
L as shown in Figure 1.2. The angle of rotation θ is set to zero when the pendulum is
hanging downwards. The equation of motion for the pendulum is

mL2θ̈ +mLg sin θ = 0 (1.34)

which can be written

θ̈ = − g

L
sin θ (1.35)

Linearization around the solution (θ, θ̇) = (0, 0) gives the linear model

θ̈ = − g

L
θ (1.36)
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gL



m

Figure 1.2: Pendulum

1.2.5 Stability with zero input

The concept of stability is of fundamental importance in control theory, and it is highly
relevant in connection with modelling as we can highlight the stability properties of a
system by selecting an appropriate model formulation. We will therefore present results
on the stability of a state-space model that are important in connection with modeling.
We will focus on the stability of a system with zero input around an equilibrium state xe.
A state xe is an equilibrium state if the system is at rest in this equilibrium state. With
this we mean that if the system state starts in x = xe, then the state vector will remain
in xe. The equilibrium is said to be stable if it has the property that the state will stay
close to the equilibrium whenever the state starts near the equilibrium. If an equilibrium
of a system is not stable, then it is said to be unstable. If an equilibrium is stable and
the state converges to the equilibrium, then the equilibrium is said to be asymptotically
stable.

Example 5 Consider the state space model

d

dt

µ
θ

θ̇

¶
=

µ
θ̇

− g
L sin θ

¶
(1.37)

of a pendulum. The states of the pendulum are selected to be θ and θ̇ so that the state
vector is

x =

µ
θ

θ̇

¶
(1.38)

We see that ẋ = 0 whenever θ̇ = 0 and sin θ = 0, which is the case for θ = 0 and θ = π.
This means that the system has equilibrium states at

xe1=

µ
0
0

¶
and xe2=

µ
π
0

¶
(1.39)

Here x = xe1 is the equilibrium where the pendulum is hanging downwards, and x = xe2
is the equilibrium where the pendulum is raised upwards with the mass on the top. We
know from experience that if the pendulum starts from a state close to the downwards
configuration xe1, and with a speed close to zero, then the pendulum will stay close to
the downwards configuration. Therefore, the system is stable around the equilibrium
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xe1. Our experience with the equilibrium xe2 is that for any small deviation from the
equilibrium state the pendulum will fall down and move far away from the equilibrium
state. Therefore, the system is unstable around the equilibrium xe2.

1.2.6 Stability of linear systems

Consider the linear time-invariant system

ẋ = Ax + Bu (1.40)

y = Cx + Du (1.41)

where u is input, y is output, and x ∈ Rn is the state vector. The solution of the state
equation are known from basic textbooks in automatic control to be

x (t) = eA(t−t0)x (t0) +

Z t

t0

eA(t−τ)Bu (τ) dτ (1.42)

The eigenvalues of the n×n matrix A are denoted λi, i = 1, . . . , n. It is assumed that A
has m ≤ n simple eigenvalues λi, i = 1, . . . ,m, and that the remaining n−m eigenvalues
λm+1 = . . . = λn are coincident. Then, if the input is zero, that is u = 0, the solution of
the state equation is

x(t) =

Ã
mX
i=1

Kie
λit +

n−m−1X
i=0

Km+it
ieλnt

!
x (0) (1.43)

where Ki, i = 1, . . . , n are constant matrices depending on A and B. We see that when
the input is zero, then the system is

• Stable whenever all simple eigenvalues have real parts that are not positive, and
all multiple eigenvalues have real parts that are negative, that is, if

Re [λi] ≤ 0, λi simple eigenvalue
Re [λi] < 0, λi multiple eigenvalue

(1.44)

• Asymptotically stable if all eigenvalues are negative, that is, if

Re [λi] , < 0 i = 1, . . . , n (1.45)

1.2.7 Stability analysis using a linearized model

The stability of a nonlinear system around an equilibrium can be studied by analyzing the
linearization of the system around the equilibrium. Then (Slotine 1991), (Khalil 1996)

• If the linearized system is asymptotically stable, then the nonlinear system is also
asymptotically stable.

• If the linearized system is stable, but with at least one pole at the imaginary axis,
then the nonlinear system may be stable or unstable.

• If the linearized system is unstable, then the nonlinear system is unstable.
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Example 6 We will demonstrate this for a pendulum. The nonlinear system is

θ̈ + 2ζω0θ̇ + ω20 sin θ = 0 (1.46)

where ω20 = g/L and 2ζω0θ̇ is a viscous damping term where 0 ≤ ζ. First, linearization
around (θ, θ̇) = (0, 0) gives

θ̈ + 2ζω0θ̇ + ω20θ = 0 (1.47)

If ζ > 0 then the linearized system is asymptotically stable. This implies that the non-
linear system is asymptotically stable around (θ, θ̇) = (0, 0) for ζ > 0. If ζ = 0, then
the eigenvalues of the systems are at the imaginary axis, and we cannot conclude on
the stability of the nonlinear system by analyzing the linear system. Next, consider the
equilibrium point (θ, θ̇) = (π, 0). The linearized system is

θ̈ + 2ζω0θ̇ − ω20θ = 0 (1.48)

which has one pole in the right half plane. The linearized system is therefore unstable, and
we may conclude that the nonlinear system is unstable around the equilibrium (θ, θ̇) =
(π, 0).

1.3 Transfer function models

1.3.1 Introduction

Linear time-invariant systems may be represented by transfer functions based on the use
of the Laplace transform. This makes it possible to use important analysis and design
methods in the Laplace description, and it serves as a good starting point for using
frequency response techniques. The Laplace transformation is easier to use than the
Fourier transformation, and it is a more general and powerful tool in controller design
and analysis. Moreover, if the Fourier transformation exists, it is obtained as a special
case of the Laplace transformation by using s = jω for the complex variable s.

1.3.2 The transfer function of a state-space model

In this section we will derive the transfer function corresponding to a linear time-invariant
state-space model, and present some useful results. A linear time-invariant system

ẋ (t) = Ax (t) + Bu (t) (1.49)

y (t) = Cx (t) +Du (t) (1.50)

where x = (x1, . . . , xn)T can be described by a transfer function using the Laplace
transformation. We use the notation

x (s) = L{x (t)}, u (s) = L{u (t)} and y (s) = L{y (t)} (1.51)

The Laplace transform of the time derivative of the state x is given by

L{ẋ (t)} = sL{x (t)}− x (t = 0) (1.52)

In the development of transfer function models the initial conditions x (t = 0) are always
set to zero. This can be done as the system is linear and superposition applies. Therefore
we set ẋ (t = 0) = 0 and get

L{ẋ (t)} = sx (s) (1.53)
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Then the Laplace transformed state-space model is found to be

sx (s) = Ax (s) + Bu (s) (1.54)

y (s) = Cx (s) + Du (s) (1.55)

We eliminate x (s) using the first equation and insert the expression into the second
equation. This gives

y (s) =
h
C (sI−A)−1B+D

i
u (s) (1.56)

We define the transfer function H (s) from u (s) to y (s) as

H (s) =
h
C (sI−A)−1B+D

i
(1.57)

and write
y

u
(s) = H (s) . (1.58)

A block diagram is shown in Figure 1.3.

us ys
Hs

Figure 1.3: Transfer function representaion of system

1.3.3 Rational transfer functions

A transfer function is said to be rational if it can be written in the form

H(s) = K
P (s)

Q(s)
(1.59)

where the scalar K is called the gain, P (s) is a polynomial in the complex variable s of
degree m, and Q (s) is a polynomial in s of degree n. A rational transfer function can be
factored in the form

H (s) = K
(s + z1) (s + z2) . . . (s + zm)

(s+ p1) (s + p2) . . . (s + pn)
(1.60)

The transfer function is said to have m zeros at s = −zi and n poles at s = −pi. The
poles and the zeros may be real, or they can appear as complex conjugated pairs. We see
that the transfer function is defined and continuous for all s except for the poles, which
are the singularities of a rational transfer function. The transfer function is said to be
proper if there are at least as many poles as zeros, that is, if n ≥ m, and it is said to
be strictly proper if there are more poles than zeros, that is, if n > m. If m > n, then
the transfer function is said to have m− n poles at infinity. In n > m, then the transfer
function is said to have n−m zeros at infinity.
It is noted that the transfer function of an n-dimensional state space model is a

proper rational transfer function with n poles under the assumption that all states are
controllable and observable.

Example 7 The transfer function H1(s) = s is not proper, and has one pole at infinity,
while the transfer function H2(s) = 1/s is a strictly proper transfer function with one
zero at infinity.
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1.3.4 Impulse response and step response

The Dirac delta function δ (t), which is referred to as a unit impulse function, has the
Laplace transform L{δ (t)} = 1. Thus, the response of the system when the input is a
unit impulse is

y (s) = H (s) · 1 = H (s) (1.61)

which corresponds to the time function

y (t) = h(t) := L−1{H (s)} (1.62)

Therefore, h (t) is referred to as the impulse response of the system.
We define the unit step function

us (t) =

½
0, t < 0
1, 0 ≤ t

(1.63)

which has the Laplace transform

us (s) = L{us (t)} =
1

s
(1.64)

The step response of the system, which is the response y (t) resulting from an initial value
y (t = 0) = 0 and the input u (t) = us (t), is

y (s) = H (s)
1

s
(1.65)

u x y1
T

-

us ys
1

1Ts

Figure 1.4: A time constant

Example 8 The dynamic system

ẋ =
1

T
(−x + u) (1.66)

y = x (1.67)

is referred to as a time constant. A block diagram is shown in Figure 1.4. The Laplace
transformation gives the transfer function

y

u
(s) = H (s) =

1

1 + Ts
(1.68)
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The impulse response of the system is

h (t) = L−1 {H (s)} = e−
t
T (1.69)

while the step response of the system is

y (t) = L−1
½
H (s)

s

¾
= 1− e−

t
T (1.70)

Example 9 By setting all initial values di

dtix (t) = 0, i = 1, . . . , n we find that

L
½
dn

dtn
x (t)

¾
= snX (s) (1.71)

u x x y

2 0

 0
2

-

1
s 220 0

2

us ys

Figure 1.5: Second order oscillatory system

Example 10 The model

ẍ (t) = −2ζω0ẋ (t)− ω20x (t) + u (t) (1.72)

y (t) = x (t) (1.73)

given as a block diagram in Figure 1.5 is Laplace transformed to

s2x (s) = −2ζω0sX (s)− ω20x (s) + u (s) (1.74)

which is solved for x (s) to give

x (s) =
1

s2 + 2ζω0s + ω20
u (s) (1.75)

The transfer function is

y

u
(s) = H (s) =

1

s2 + 2ζω0s + ω20
(1.76)
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Ls
Gs

Ks Hs
-

yd s es us ys

Figure 1.6: Plant H (s) with a series compensation controller K (s) in feedback compen-
sation controller G (s)

1.3.5 Loop transfer function

We consider a plant H (s) with a series compensation controller K (s) and feedback
compensation controller G (s) as shown in Figure 1.6. The plant is given by

y (s) = H (s)u (s) (1.77)

and the controller is given by

u (s) = K (s) e (s) , e (s) = yd (s)−G (s) y (s) (1.78)

where yd is the input signal to the closed-loop system. Define the loop transfer function
by

L (s) = K (s)H (s)G (s) . (1.79)

From
e (s) = yd (s)−G (s) y (s) = yd (s)−G (s)H (s)K (s) e (s) (1.80)

it is seen that the transfer function from the input signal yd (s) to the error signal e (s)
is given by

S (s) :=
e

yd
(s) =

1

1 + L (s)
(1.81)

where S (s) is called the sensitivity function of the closed loop system.
The closed-loop transfer function T (s) is defined as the transfer function from the

closed-loop input yd (s) to the output y (s). From the expression

y (s) = K (s)H (s) e (s) = K (s)H (s) [yd (s)−G (s) y (s)] (1.82)

it is possible to solve for y (s) as a function of yd (s), and the closed-loop transfer function
T (s) is found to be

T (s) :=
y

yd
(s) =

K (s)H (s)

1 + L (s)
(1.83)

The closed-loop transfer function can be written

T (s) =
1

G (s)

L (s)

1 + L (s)
≈
½ 1

G(s) |L (s)| À 1

K (s)H (s) |L (s)| ¿ 1

This means that if the loop-transfer function is large, that is, if |L (s)| À 1, then T (s) =
1/G (s).
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Example 11 If unity feedback is used, that is, if G (s) = 1, then

T (s) =
L (s)

1 + L (s)
= 1− S (s)

and T (s) is called the complementary sensitivity function.

1.3.6 Example: Actuator with dynamic compensation

Ka 1
s Hs

Tis
1Tis

-

u 0 s ua s us ys

Figure 1.7: System with dynamic feedback control of the actuator.

In many control systems there is a servomotor that acts as an actuator for the main
plant. In this case it can be useful to control the servomotor with an inner actuator loop
with dynamic feedback to achieve a suitable transfer function in the outer loop. Suppose
that the main plant is described by the transfer function model

y (s) = H (s)u (s) (1.84)

while the control input is obtained using a velocity controlled servomotor. The model
for the actuator is assumed to be given by

u (s) =
1

s
ua (s) (1.85)

where ua (s) is the velocity command to the actuator. The actuator is here modeled by
an integration which is the transfer function of a motor with a velocity loop where ua is
the desired velocity input. The feedback for the actuator loop is given by

ua (s) = Ka [u0 (s)−Ga (s)u (s)] (1.86)

where the dynamic feedback is the high-pass filter

Ga (s) =
Tis

1 + Tis
(1.87)

as shown in Figure 1.7. Then the loop transfer function of the actuator loop is

La (s) =
KaTi

1 + Tis
(1.88)

and we find that the closed loop transfer function of the actuator loop is given by

u

u0
(s) = Kp

1 + Tis

Tis

1

1 + T1s
(1.89)
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where

Kp =
KaTi

1 +KaTi
, T1 =

Ti
1 +KaTi

(1.90)

This is illustrated in Figure 1.8. If Kp and Ti are selected so that break frequency 1/T1
is much higher than the crossover frequency of the outer loop, then the actuator loop
will introduce integral action in the outer loop according to

y

u0
(s) ≈ Kp

1 + Tis

Tis
H (s) (1.91)

Kp 1Ti s
Ti s

1
1T1 s

Hs
u 0 s us ys

Figure 1.8: System with the closed loop dynamics of the actuator with controller.

1.3.7 Stability of transfer functions

Consider the system
y(s) = H(s)u(s) (1.92)

where H(s) = C(sI−A)−1B+D is the transfer function of the system. This system is
bounded-input-bonded-output stable, which is termed BIBO stable, if and only if all the
poles λi of H (s) have real parts that are less than zero, that is, Reλi < 0, i = 1, . . . , n.
This is shown as follows: The impulse response corresponding to the transfer function

H (s) is denoted h (t). Assume that the input is bounded according to

|u (t)| ≤ U for all t (1.93)

where U > 0 is a constant. The output is given by

y (t) =

Z ∞
0

h (τ)u (t− τ) dτ (1.94)

Taking the absolute values on both sides, we find that

|y (t)| =

¯̄̄̄Z ∞
0

h (τ)u (t− τ) dτ

¯̄̄̄
≤

Z ∞
0

|h (τ)| |u (t− τ)| dτ

≤ U

Z ∞
0

|h (τ)| dτ (1.95)

Suppose that all the poles are to the left of −α. Then there is a constant k ≥ 0 so
that

|h (t)| ≤ ke−αt (1.96)

and, using the fact that for α > 0 we have
R∞
0

e−αtdt = α−1, it follows thatZ ∞
0

|h (τ)| dτ ≤ k

α
, if α > 0 (1.97)
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We find that

|y (t)| ≤ k2
α
U when α > 0 (1.98)

which shows that when Re [λi] < 0, then y (t) is bounded whenever u (t) is bounded.
Suppose that all poles have real parts less than zero, except one pole in s = 0. Then

the control input u (t) = 1 will for large t give y (t) ∝ t → ∞. Next, suppose that all
poles have real parts less than zero, except a complex conjugated pole pair in s = ±jω0.
Then the control input u (t) = cosω0t will give a response which for large t satisfies
y (t) ∝ t cosω0t→∞ where ∝ denotes proportional to. If there are poles with real part
larger than zero, than y (t) will be unbounded for a unit step input. This shows that an
unbounded output may occur for bounded input when there are poles on the imaginary
axis or to the right of the imaginary axis.

1.3.8 Stability of closed loop systems

The stability of a closed loop system can be analyzed by studying the sensitivity function
S (s). The closed loop system will be stable if the poles of S (s) have real parts that are
negative. This can be checked using one of the standard sufficient conditions on the
loop transfer function L (s), which are available from automatic control theory. Note,
however, that the conditions on L (s) are typically derived under certain assumptions on
the properties of L (s). The fundamental requirement for stability is that the poles of
S (s) do not have positive real part, and that multiple poles must have real parts that
are less than zero.

Example 12 Large tankers may be unstable, and the transfer function H (s) from the
rudder angle δ to the course angle ψ will then include a pole in the right half plane. An
example of this is the following model of a tanker (Blanke 1981), (Fossen 1994)

H(s) =
ψ

δ
(s) = K

1 + Tas

s(1 + T1s)(T2s− 1)
(1.99)

where K = 0.022, Ta = 38 s, T1 = 16 s and T2 = 192 s. The integration represented by
the factor s in the denominator is due to the integration from angular velocity around
the vertical axis to the course angle ψ. The transfer function has a pole at s = 1/T2. An
autopilot with a PD controller

δ(s) = Kp
1 + T1s

1 + 0.1T1s
(ψ0 − ψ) (1.100)

gives the characteristic equation

s(1 + 0.1T1s)(T2s− 1) +KKp(1 + Tas) = 0 (1.101)

for the closed loop system. The closed loop poles are therefore at s = −0.5609 and
s = −0.0295± j0.0303. This is found using the MATLAB command
roots(conv([1.6 1 0],[192 -1]) + 20*0.022*[0 0 38 1])

1.3.9 Partial differential equations

Systems described by partial differential equations will typically lead to irrational trans-
fer functions . Irrational transfer functions can be approximated by a rational transfer
function with infinitely high order, and because of this such systems may be referred to



18 CHAPTER 1. MODEL REPRESENTATION

as infinite dimensional systems. An irrational transfer function is said to be analytic in
a region if it is defined and continuous in that region. The points where an irrational
transfer function ceases to be analytic are called the singularities of the transfer function.
We recall that for a rational transfer function the singularities are called poles.
We will demonstrate the appearance of irrational transfer functions for systems de-

scribed by partial differential equations by studying the partial differential equation

c
∂v (x, t)

∂x
= −∂v (x, t)

∂t
, v (0, t) = v1 (t) (1.102)

This is the first order wave equation which describes the propagation of a wave-front
with velocity c. The variable v(x, t) has the Laplace transform v (x, s) = L{v (x, t)}, and
the time derivative has the transform

L
½
∂v (x, t)

∂t

¾
= sL{v (x, t)} = sv (x, s) (1.103)

From this it follows that the partial differential equation has the Laplace transform

c
∂v (x, s)

∂x
= −sv (x, s) , v (0, s) = v1 (s) (1.104)

This is an ordinary differential equation of the first order in s, which has the solution

v (x, s) = v (0, s) exp(−x
c
s) (1.105)

The transfer function from v1(s) to v2 (s) := v (L, s) at x = L is then found to be the
irrational transfer function

v2
v1

(s) = e−Ts (1.106)

where T = L/c is the propagation time. We see that the solution at x = L is equal to
the solution at x = 0 with a time delay T .

Example 13 The time delay in (1.106) can be approximated by a rational Padé approx-
imation P k

k (−Ts) of order k where (Golub and van Loan 1989, p. 557)

P k
k (s) =

Qkk (s)

Qkk (−s) (1.107)

Qkk (s) = 1 +
kX
i=1

k! (2k − i)!

(k − i)! (2k)!

si

i!
(1.108)

A third order Padé approximation is found to be given by

e−Ts ≈ P 33 (−Ts) =
1− Ts

2 + (Ts)2

10 − (Ts)3

120

1 + Ts
2 + (Ts)2

10 + (Ts)3

120

(1.109)

By letting k go to infinity we can represent the time delay by a rational transfer function
of infinite dimension.

Example 14 Transmission line dynamics are described by the second order wave equa-
tion. A hydraulic transmission line where the outlet is open has the irrational transfer
function

tanh s =
sinh s

cosh s
(1.110)
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from the input flow to the input pressure. The transfer functions has zeros when the
numerator is zero, which is the case when

sinh s =
1

2

¡
es − e−s

¢
= 0 ⇒ e−2s = 1 = ej2kπ (1.111)

This occurs for
s = jkπ (1.112)

where k = 0,±1,±2, . . .. In the same way we find that the singularities appear for

cosh s = 0 ⇒ s = ±j
µ
k +

1

2

¶
π (1.113)

It can be shown that the numerator and the denominator can be represented by infinite
dimensional polynomials in the complex variable s, and this gives the following infinite
dimensional representation of the transfer function

tanh s =
s
³
1 +

¡
s
π

¢2´³
1 +

¡
s
2π

¢2´³
1 +

¡
s
3π

¢2´
. . .³

1 +
¡
2s
3π

¢2´³
1 +

¡
2s
5π

¢2´³
1 +

¡
2s
7π

¢2´
. . .

(1.114)

We see that there are infinitely many zeros and singularities along the imaginary axis.
Moreover, we see that the zeros and singularities alternate along the imaginary axes.
This implies that the phase of tanh jω is between -90◦ and +90◦.

1.4 Network description

1.4.1 Introduction

The automatic control literature relies to large extent on the use of models that are
based on a signal-flow formulation. This means that different blocks of the model are
connected with signals that considered to flow in the direction of the signal arrow. We
might say that signal-flow description has unilateral interconnections. The reliance on
the signal-flow description is obviously due to the many control techniques based on a
signal-flow description of the physical plant in the form of state-space models and transfer
functions. Because of this, it is clear that modeling techniques for use in controller design
and analysis should provide methods for developing signal-flow models. However, there
are good reasons for deviating from a strict reliance on signal flow in the development
of mathematical models of physical systems. We will mention some arguments for this,
and then discuss what the consequences are.
Many physical systems that are important in control applications are conveniently

represented in an energy-flow description. In this case different blocks of the model are
connected so that energy flows in both directions, and we say that the formulation relies
on bilateral interconnections. The signals flowing between the blocks will then typically be
voltage and current in electrical systems, force and velocity in translational mechanical
systems, torque and angular velocity in rotational mechanical systems, pressure and
volumetric flow in isothermal flow problems, and enthalpy and mass flow in thermal flow
problems. Note that in this case it is not clearly defined in which direction a signal
propagates. The main advantage of an energy-flow formulation is that it well suited for
energy-based controller design using Lyapunov techniques and passivity. Moreover, it
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Translation Rotation Thermal flow Hydrostatic flow Electrical

Effort e F (N) τ (Nm) h (J/kg) p (N/m2) u (V)
Flow f v (m/s) ω (1/s) w (kg/s) q (m3/s) i (A)
Power P Fv (W) τω (W) wh (W) pq (W) vi (W)

Table 1.1: Efforts and flows for physical systems.

leads naturally to object-oriented modeling, which is of great use in simulation. Energy-
flow models can be assigned signal flow directions so that the model can be described
in state-space, or with transfer functions. This means that the use of an energy-flow
description in the modeling phase goes well together with the use of signal-flow methods
in the controller design and analysis phase.

Object-oriented modeling is an approach where a model is developed for each physical
subsystem, and where the model of the total system is obtained by interconnecting the
models of the subsystems. To make this interconnection possible, it is necessary that
a suitable interface is defined between the subsystem models. As mentioned above,
such an interface has been established in the form of energy-flow variables. The main
advantage of this approach is that a library of models can be developed for different
physical subsystems, and models for a total system can then be established by simply
interconnecting these library models. Moreover, additional subsystems can easily be
attached to the systems, and subsystems can be upgraded or changed by simply changing
the relevant library module. This leads to re-use of models and straightforward updating
of subsystem models. This approach is very useful in the development of simulation
systems.

This chapter will present methods for this modeling technique. In particular we will
focus on the network description that to a large extent originates from electrical circuit
theory. We will also comment on the bond-graph formulation, which was developed for
energy-flow modeling of systems consisting of subsystems like electrical circuits, electri-
cal motors, hydraulic motors and mechanical parts. We will show that object-oriented
modeling leads to models that are well suited for use in control techniques based on state
space and transfer functions.

1.4.2 Background

The network description has been very successful in the analysis and design of electrical
circuits (Anderson and Vongpanitlerd 1973), (Nilsson 1983). The underlying properties
of an electrical circuit that make the network description efficient are seen also in other
types of physical systems like mechanical translation, mechanical rotation, thermal flow
and hydrostatic flow. To make the discussion general it is advantageous to define flow
variables f and effort variables e for these systems. The flow f corresponds to the
current i in an electrical network, while the effort variable e corresponds to the voltage
u in and electrical network. The efforts and flows for typical physical systems is shown
in Table 1.1.
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1.4.3 Multiport

A multiport, which is also called an n-port, is a system with n ports. To port has an
effort ek and a flow fk so that the net power flowing into the n-port is given by

P =
nX

k=1

ekfk (1.115)

At each port of the n-port it is possible to connect a port of another m-port system
as long as the effort and flow variables are compatible, that is, an electrical port can be
connected with an electrical port, a translational port can be connected to a translational
port and so on.

1.4.4 Example: DC motor with flexible load

Transfer function models give a representation of a control system which is modular
with respect to the signal flow. It gives a clear model structure with well defined inputs
and outputs of the physical system and the controller. Therefore, when the signal-
flow description is used, it is convenient to connect the plant output to a controller,
and to connect the output of the controller as the input to the plant. Moreover, it is
straightforward to change controller type and controller structure in this setting.
However, signal flow models may be cumbersome to modify when the physical system

is modified. To illustrate this we may consider a DC motor with inertia Jm with no load.
We let the output be the motor velocity ωm, while the input is the motor torque T . The
transfer function is found from the equation of motion

Jmω̇m(t) = T (t) (1.116)

which gives the transfer function model

ωm
T

(s) =
1

Jms
(1.117)

Suppose that there is a need to modify the model to account for a load with inertia J1
that is driven through a transmission with a spring and a damper. Then the elasticity
of the transmission has to be included in the transfer function. The transfer function
changes to

ωm
T

(s) =
1

Js

1 + 2ζa
s
ωa

+
³

s
ωa

´2
1 + 2ζ1

s
ω1

+
³

s
ω1

´2 (1.118)

where the parameters are given by

Je =
JmJ1
J

and J = Jm + J1 (1.119)

ω1 =

r
K

Je
, ζ1 =

D

2

1√
JeK

, ωa =

r
Jm
J

ω1 and ζa =

r
Jm
J

ζ1 (1.120)

The derivation of this transfer function requires some work, but it is possible to do by
hand. A critical observation is that the model parameters are functions of both the motor
parameters and the load parameters.
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If one more elastic transmission and an inertia J2 is added, then the transfer function
becomes

ωm
T

(s) =
1

(Jm + J1 + J2) s

µ
1 + 2ζ2a

s
ω2a

+
³

s
ω2a

´2¶
µ

1 + 2ζ21
s
ω21

+
³

s
ω21

´2¶
µ

1 + 2ζ2b
s
ω2b

+
³

s
ω2b

´2¶
µ

1 + 2ζ22
s
ω22

+
³

s
ω22

´2¶ (1.121)

At this level the modeling becomes quite complicated, and the inclusion of even more
degrees of freedom will lead to very extensive modeling efforts. We conclude that the
inclusion of new physical objects in the model may be quite complicated to account for
in the transfer function setting, and that the complexity increases dramatically when the
order of the system increases. In particular, we note that in the present formulation we
do not have a transfer function library of motors and elastic transmissions that can easily
be combined.
In contrast to this the network approach to modeling makes it possible to assemble

the model from the models of the physical objects of the system. In that case the modules
are connected through the ports. The motor model is

Jmω̇m = Tm − TL (1.122)

If the motor is running alone, then TL is set to zero. The inertia J1 and the flexible
transmission is described by

J1ω̇1 = TL − T1 (1.123)
d

dt
(θm − θ1) = (ωm − ω1) (1.124)

TL = D1 (ωm − ω1) +K1 (θm − θ1) (1.125)

The motor model (1.122) and the load model (1.123—1.125) are then connected through
the port variables TL and ωm, while T1 is set to zero. Moreover, a second flexibility
described by

J2ω̇2 = T1 − T2 (1.126)
d

dt
(θ1 − θ2) = (ω1 − ω2) (1.127)

T1 = D2 (ω1 − ω2) +K2 (θ1 − θ2) (1.128)

can be connected to the model with the port variables T1 and ωm with T2 = 0. We see
that this leads to what may be called a object-oriented approach where each physical
object has a model, and where a model of an interconnection of physical objects is
obtained by simply interconnecting the models of the objects through port variables.
This approach scales well in the sense that the complexity of the modeling does not
increase with the order of the model. The key to this is the careful selection of the
interconnection variables. Note that once the model has been established, a state-space
model is available, and a signal-flow model can be obtained by selecting input and output.
This makes it possible to apply controller design based on signal flow representation.

1.4.5 Example: Voltage controlled DC motor

To illustrate the combination of electrical and mechanical ports in the network setting
we discuss the model structure of a voltage controlled DC electrical motor with an in-
ertial load that is driven over an elastic shaft. The port interconnections are shown in
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TL , 1 T1 , 1DC
motor

Elastic
shaft Load

ua ,i a

Figure 1.9: DC motor with elastic shaft and inertial load

Figure 1.9. The DC motor with constant field is connected to the electric supply by the
terminals of the armature circuit and the motor shaft. The motor may be described as
a two-port where one port is electrical and one port is mechanical. The electrical port
is the armature port where the effort variable is the armature voltage ua and the flow
variable is the armature current ia. The mechanical port is the motor shaft where the
effort is the load torque TL and the flow is the angular velocity ω1. The dynamic model
of the motor is given in state-space form as

La
dia
dt

= −Raia −KEωm + ua (1.129)

Jmω̇m = KT ia − TL (1.130)

θ̇m = ωm (1.131)

Suppose that the motor shaft is connected to a mechanical two-port describing a spring
and a damper. The port on the motor side has port variables TL and ωm, and the port
on the load side has variables T1 and ω1. The model is

d

dt
(θm − θ1) = ωm − ω1 (1.132)

TL = K(θm − θ1) +B(ωm − ω1) (1.133)

T1 = TL (1.134)

Finally, the spring and the damper is connected to an inertial load described as a one-port
with port variables T1 and ω1. The model is

Jmω̇1 = TL (1.135)

θ̇1 = ω1 (1.136)

1.4.6 Example: Diesel engine with turbocharger

A model of a diesel engine with turbocharger can be described as a system of three
multiports, namely, the compressor, the turbine, and the diesel engine. The port inter-
connections are shown in Figure 1.10. The turbine and the compressor have a common
shaft, and it is convenient to include the inertia of the shaft in the turbine model.
The compressor has one port for the air intake, one port for the air outlet, and one for

the turbocharger shaft. The port variables for the air intake is the specific enthalpy hci
of the air, which is the effort, and the mass flow wci, which is the flow. The port variables
of the air outlet is the specific enthalpy hco and the mass flow wco. The port variables
for the turbocharger shaft is the compressor torque Tc and the angular velocity ωtc. The
turbine has an air intake port with port variables hti and wti, and air outlet port with
port variables hto and wto, and the turbine shaft has a port with variables Tc and the
angular velocity ωtc. The diesel engine has an air intake port connected to the air outlet
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Diesel
engine

Compressor Turbine

hci, wci

hco , wco hti, wti

Tc,  tc

hto , wto

Tm , mjQ

Figure 1.10: Diesel engine with turbocharger in network description

port of the compressor with port variables hco and the mass flow wco. The engine has an
exhaust outlet port connected to the air intake port of the turbine with port variables
hti and wti. In addition, the motor drives the motor shaft which can be described as a
port with variables being the motor torque Tm and the motor shaft speed ωm. We note
that the power delivered from the engine is Pm = Tmωm. Finally, the engine has a fuel
injector where the power added is the heat rate jQ of the fuel. However, this is not a
port in the usual sense as there is no bilateral energy flow.

1.4.7 Assigning computational inputs and outputs

In the network description using multiports the signal flow directions are not specified.
This agrees with our intuition that energy flows both ways, and that the multiports
interact through the port interconnections. However, in simulation systems where the
multiport models are used in computations, it must be specified which of the port vari-
ables that is the input to the computation and which of the port variables that is the
output from the computation. This means that a signal flow structure is assigned to the
model. This must be done so that:

1. Differential equations can be evaluated by integration and not differentiation.

2. Computational inputs and computational outputs must be compatible when port
interconnections are made so that signal flow directions agree.

Example 15 Signal directions can be assigned according to Figure 1.11 for the DC motor
with load shown in Figure 1.9 so that integrations are used in the computations. This is
done by using ua and TL as inputs to the DC motor so that dia/dt, ω̇m and θ̇m can be
evaluated from (1.129—1.131). For the spring ωm and ω1 are used as inputs so that TL
and T1 can be computed from (1.132—1.134), and for the load the input is T1 so that ω̇1
and θ̇1 can be computed from (1.135—1.136).
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T1
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Figure 1.11: DC motor and load in network descriptions with signal directions assigned

Example 16 Signal directions are indicated in Figure 1.12 for the diesel engine with
turbocharger as shown in Figure 1.10. Given the turbocharger speed ωtc and the specific
enthalpies hci and hco the compressor will produce a mass flow wc to the engine, and
a compressor torque Tc on the shaft. Given the compressor torque Tc and the specific
enthalpies hti and hto, the turbine dynamics will give the turbocharger speed ωtc and the
exhaust mass flow wt. The gas contained in the diesel engine will have as inputs the
mass flow wc into the engine, the mass flow wt out of the engine, the motor shaft speed
ωm, and the heat flow jQ. The resulting outputs are the specific enthalpies hco and hti,
and the motor torque Tm.

Diesel
engine

Compressor Turbine

j Q m Tm

wc hco wt h ti

Tc

 tc

h ci wc wth to

Figure 1.12: Turbocharged diesel engine with signal directions assigned for the port
variables

Example 17 Karnopp’s friction model extends the basic Coulomb friction model for
dry friction to be valid also for zero velocity (Karnopp 1985). Karnopp’s model can be
explained by considering a mass m with velocity v that is pushed on a flat surface with
an actuator force Fa. The friction force on the mass is Ff so that the equation of motion
is

mv̇ = Fa − Ff (1.137)

The Karnopp model can be formulated as a two-port where the input port has effort Fa
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and flow v, while the output port has effort Fa − Ff and flow v, and where

Ff =

½
Fa v = 0 and |Fa| ≤ Fc

Fcsgn(v) else
(1.138)

Note that the computational input of the model at the input port is Fa under the condition
v = 0 and |Fa| ≤ Fc, and that the computational input changes to v when the condition
does no longer hold. Further discussion on this model is found in Chapter 5.

1.4.8 Bond graphs

In the basic definition of network models there is no assignment of the direction of signal
flow. However, to use network models in simulation the signal flow directions must be
specified. This gives a network with specified signal flow structure. By adding a special
graph representation of the network and the of signal flow, a formalism called bond graphs
is obtained (Karnopp, Margolis and Rosenberg 2000). Bond graph theory provides us
with interesting tools for connecting network modules when the signal flow structure is
important, as is the case if the model is to be used for simulations. Note that bond-graph
models combines well with state-space formulations of networks, where the bond graph
techniques can be used to assign signal-flow directions. The terminology used in bond
graphs is easily related to the network terminology. In particular, a bond is the same as
a port, and computational causality is related to the selection of inputs and outputs to a
computation.
In the bond graph setting the interconnection between multiports are given by bonds.

Each bond transmits an effort signal e and a flow signal f . The effort and flow are
selected so that the product ef has dimension power. We note that the effort and flow
for a bond corresponds to the port variables in the network description. A bond is
assigned a direction, which is the direction of positive power flow. From the outset we
are free to choose the direction of the effort signal for a bond, although in interconnections
of bonds there are certain rules that must be obeyed. The topic of bond graphs will not
be further discussed in this book, but the methods that are used in this book are closely
related to the concept of bond graphs.

1.5 Linear network theory

1.5.1 Driving point impedance

An electrical multiport is an electrical circuit which can be connected to the outside via
n ports. Each port has one positive and one negative electrical terminal. The voltage
over the terminals of port k is uk, while the current into the positive terminal and out
of the negative terminal is ik. This means that the power flowing into the circuit from
port k is Pk = ukik. The port of one electrical multiport can be connected to a port of
another electrical multiport by connecting the terminals of the two ports.
A linear time-invariant electrical one-port with voltage u and current i can be de-

scribed by its driving-point impedance Z(s) which is the impedance of the port so that

u (s) = Z (s) i (s) (1.139)

In the same way the driving-point admittance Y (s) = Z(s)−1 satisfies

i (s) = Y (s)u (s) (1.140)
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Figure 1.13: Passive eletrical one-ports

To become more familiar with the notion of the on the driving point impedance of
passive electrical one-ports we present the driving-point impedance of the one-ports in
Figure 1.13. Circuit 1 is a capacitor, circuit 2 is a parallel interconnection of a resistor
and a capacitor, circuit 3 is a RLC series connection, and circuit 4 is a resistor in series
with a parallel RLC interconnection. The driving point impedances are

Z1 (s) =
1

Cs
(1.141)

Z2 (s) =
R

1 +RCs
(1.142)

Z3 (s) =
1 +RCs+ LCs2

Cs
(1.143)

Z4 (s) = R1
1 +

³
L
R1

+ L
R

´
s + LCs2

1 + L
Rs + LCs2

(1.144)

We see that Z1(s) and Z2(s) are strictly proper, Z3(s) is not proper, and Z4(s) is proper.
It is straightforward to verify that the poles of the impedances appear in the left half
plane, or as simple poles on the imaginary axis, and that the phase of the impedances is
between -90◦ and +90◦.

We define the driving point impedance Z(s) and the driving point admittance Y (s) of a
general one-port with effort e and flow f according to

e (s) = Z (s) f (s) , f (s) = Y (s) e (s) (1.145)
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1.5.2 Linear two-ports

A linear two-port can be described with a transfer function matrix. The convention is
then that the flows are positive when they are directed into the two-port. The transfer
function matrices give the relation between two input variables and two output variables.
Different transfer function matrices result depending on which variables that are selected
as inputs and outputs variables. In the impedance description the flows are inputs and
the efforts are outputs, and the transfer function model of the two-port is writtenµ

e1(s)

e2(s)

¶
=

µ
z11(s) z12(s)

z21(s) z22(s)

¶µ
f1(s)

f2(s)

¶
(1.146)

In the admittance form the efforts are inputs and the flows are outputs, and the model
is written µ

f1(s)

f2(s)

¶
=

µ
y11(s) y12(s)

y21(s) y22(s)

¶µ
e1(s)

e2(s)

¶
(1.147)

A cascade formulation can be used where the variables of port two are inputs and the
variables of port one are outputs, or vice versa, which leads to the two model represen-
tations µ

e1(s)

f1(s)

¶
=

µ
a11(s) a12(s)

a21(s) a22(s)

¶µ
e2(s)

−f2(s)
¶

(1.148)

and µ
e2(s)

f2(s)

¶
=

µ
b11(s) b12(s)

b21(s) b22(s)

¶µ
e1(s)

−f1(s)
¶

(1.149)

The hybrid formulation is based on having the effort of one port and the flow of the other
port as inputs, and then having the remaining flow and the remaining effort as outputs.
This gives the two alternative model formulationsµ

e1(s)

f2(s)

¶
=

µ
h11(s) h12(s)

h21(s) h22(s)

¶µ
e2(s)

f1(s)

¶
(1.150)

and µ
f1(s)

e2(s)

¶
=

µ
g11(s) g12(s)

g21(s) g22(s)

¶µ
f2(s)

e1(s)

¶
(1.151)

In (Nilsson 1983) this is discussed in further detail, and formulas for transforming the
parameters of one formulation to the parameters of anther formulation are given.

1.5.3 Impedance of two-port with termination

Consider the case where a linear two-port is terminated with the impedance ZL(s) at
port 2. This means that port two is connected to a one-port

eL(s) = ZL (s) fL(s) (1.152)

with impedance ZL(s). The interconnection is ensured with the conditions

e2 = eL, f2 = −fL (1.153)

From the impedance formulation (1.146) of the two-port it is seen that the termination
gives µ

e1(s)

−ZL (s) f2

¶
=

µ
z11(s) z12(s)

z21(s) z22(s)

¶µ
f1(s)

f2(s)

¶
(1.154)
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This set of equations can be solved to find the driving-point impedance description

e1(s) = Z1(s)f1(s) (1.155)

of the resulting one-port. From the second row of (1.154) it is found that

f2 = − z21
z22 + ZL

f1 (1.156)

Insertion in the first row of (1.154) gives

e1 =

µ
z11 − z12z21

z22 + ZL

¶
f1 (1.157)

Therefore, the terminated one-port has driving-point impedance

Z1 = z11 − z12z21
z22 + ZL

(1.158)

1.5.4 Example: Passive mechanical two-port

v1 D1

K1

m1

v2

F1 F2

Figure 1.14: Mechanical two-port

The mechanical system in Figure 1.14 can be described as a two-port. A mass m1 is
connected to a parallel interconnection of a spring with stiffness K1 and a damper with
coefficient D1. Port 1 is connected to the spring and the damper, and has flow equal to
the velocity v1 and effort equal to the force F1. Port 2 is connected to the mass, and has
flow v2 and effort F2. The equation of motion for the mass is given by Newton’s law to
be

m1ẍ2 = F1 − F2 (1.159)

where the force from the spring and the damper is

F1 = K1(x1 − x2) +D1(v1 − v2) (1.160)

Laplace transformation gives

m1sv2(s) = F1(s)− F2(s) (1.161)

and

F1(s) =
K1 +D1s

s
[v1(s)− v2(s)] (1.162)
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as sx1(s) = v1(s) and sx2(s) = v2(s). By solving for F2(s) and v2(s) we get the cascade
description µ

F2(s)

v2(s)

¶
=

Ã
m1s

2+D1s+K1

D1s+K1
−m1s

− s
D1s+K1

1

!µ
F1(s)

v1(s)

¶
(1.163)

Alternatively, we may develop the impedance descriptionµ
F1(s)

F2(s)

¶
=

Ã
K1+D1s

s
K1+D1s

s
K1+D1s

s
m1s

2+D1s+K1

s

!µ
v1(s)

−v2(s)
¶

(1.164)

or the hybrid descriptionµ
v1(s)

F2(s)

¶
=

Ã
s

K1+D1s
−1

1 m1s

!µ
F1(s)

−v2(s)
¶

(1.165)

We note that the mechanical two-port has an electrical analog as shown in Figure 1.15.

+

-

+

-

m1s
i 1 i 2

D1
K1
s

u 1 u 2

Figure 1.15: Electrical analog of mechanical two-port. The voltages u1 and u2 are the
analogs of the forces F1 and F2, while the currents i1 and i2 are the analogs of the
velocities v1 and v2.

F1
F2

K1 K 2

D1 D2v1 v2

m1

Figure 1.16: Termination of mechanical two-port with mechanical one-port with spring
and damper.

Suppose that the two-port of the previous section is terminated at port 2 by a me-
chanical one-port consisting of a parallel interconnection of a spring with stiffness K2

and a damper with coefficient D2 connected to a fixed point. The resulting mechanical
one-port is shown in Figure 1.16. The impedance of the termination is

ZL(s) =
K2 +D2s

s
= K2

1 + D2

K2
s

s
(1.166)

so that
F2(s) = ZL(s)v2(s) (1.167)
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This gives the impedance

F1
v1

(s) = Z1 = z11 − z12z21
z22 + ZL

(1.168)

After some calculation we find that

F1
v1

(s) =
K1 +D1s

s

K2

K1 +K2

(1 + D2

K2
s + m1

K2
s2)

(1 + D1+D2

K1+K2
s + m1

K1+K2
s2)

(1.169)

1.5.5 Mechanical analog of PD controller

We will now present mechanical analogs for PD controllers for position control when the
control input is the applied force. Note that this is a PI controller from velocity.

u

x x0

Kp

D

Figure 1.17: Mechanical analog of PD controller.

We consider a mass m with position x and velocity v = ẋ. The equation of motion is
mẍ = u where the applied force u is the control input. The desired position is xd, and
the desired velocity is vd = ẋd. A PD controller u = K(1 + Tds)(xd − x) is used. The
control law can be written

u = K(xd − x) + D(vd − v) (1.170)

whereD = KTd. The mechanical analog is found from the observation that the controller
force is the same force as the force that would appear if the mass m at position x was
connected to a point of position xd with a parallel interconnection of a spring with
stiffness K and a damper with coefficient D, as shown in Figure 1.17.

u

x x0

Kp

D

Figure 1.18: Mechanical analog of PD controller without velocity reference.

An alternative control law which is used when vd is not available is

u = Kp(x0 − x)−Dv (1.171)
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m
K1

K2

D2xd x1

Figure 1.19: Mechanical analog mass controlled with lead-lag controller.

This is the force that would result if the mass m was connected by a spring of stiffness
K to a point xd and by a damper to a fixed point as shown in Figure 1.18.
If the velocity is not measured it is possible to use a PD controller with limited

derivative action. Then the control is

u(s) = Kp
1 + Tds

1 + αTds
[x0(s)− x(s)] (1.172)

where 0 ≤ α ≤ 1. This control law gives the same force as a mechanical analog where
the mass m is connected to a point with position xd by a spring of stiffness K1 in series
with a parallel interconnection of a spring of stiffness K2 and a damper with coefficient
D2 as shown in Figure 1.19.
This is shown by letting x1 be the position of the interconnection point between the

spring K1 and the parallel interconnection. Then the spring force is u = K1(x1−x), and
Laplace transformation gives x1(s) = x(s) + u(s)/K1. As there is no mass in the point
x1, this force must be equal to the force from the parallel interconnection, so that

u(s) = K2[xd(s)− x1(s)] +D2[vd(s)− v1(s)] = (K2 +Ds)[xd(s)− x1(s)] (1.173)

Insertion of x1(s) gives

u(s) = (K2 +D2s)[x0(s)− x(s)− 1

K1
u(s)] (1.174)

We solve for u(s) and get

u(s) = K1
K2 +D2s

K1 +K2 +D2s
[x0(s)− x(s)]

=
K1K2

K1 +K2

1 + D2

K2
s

1 + K2

K1+K2

D2

K2
s
[x0(s)− x(s)] (1.175)

We see that this is a PD controller with limited derivative action where

Kp =
K1K2

K1 +K2
(1.176)

Td =
D2

K2
(1.177)

α =
K2

K1 +K2
∈ [0, 1) (1.178)
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+

- -

+
u 1

Cs dx Gdx u  du

i Rdx Lsdx i  di

Figure 1.20: Length element of electric transmission line.

1.6 Example: Transmission line model

1.6.1 Introduction

The dynamics of transmission lines are important in several applications including elec-
trical lines for signal transmission, water pipes for hydroelectric power plants, gas and
oil pipelines, and systems with hydraulic drives. It is by no means obvious that these
systems have dynamic properties in common, however, it turns out that a comprehensive
theory of transmission line dynamics can be developed to describe important dynamic
properties for all these systems in spite of their diverse nature. We will first derive
the partial differential equations describing a transmission line, and we will then study
techniques of analysis.

1.6.2 Introductory example

In the following we will present the model for a general transmission line of length L
which is described as a two-port where one port is at the the input side with effort e1
and flow f1, and the other port at the output side with effort e2 and the flow f2. The
model will be presented in the form of a partial differential equation with boundary
conditions depending on the port variables. Then this model will be used to derive
transfer functions. Also wave variables and impedance matching be discussed. Then, in
a later chapter the results will be specialized for hydraulic transmission lines will, where
the effort variable is the pressure and the flow variable is the volumetric flow.
To make the ideas of the following presentation clear we start with the equations of

an electrical transmission line as an introductory example. To derive the model of an
electric transmission line we consider a length element dx of the line which is described
with the length coordinate x. The length element is modelled as by a series impedance
consisting of a resistor Rdx and an inductor Mdx, and a parallel admittance consisting
of an admittance Gdx and a capacitor Cdx. The voltage and current laws give

u(x + dx, t)− u(x, t) = −Rdxi(x, t)−Mdx
∂i

∂t
(x, t) (1.179)

i(x + dx, t)− i(x, t) = −Gdxu(x + dx, t)− Cdx
∂u

∂t
(x + dx, t) (1.180)

Dividing by dx we get

∂u

∂x
(x, t) = −Ri(x, t)−M

∂i

∂t
(x, t) (1.181)

∂i

∂x
(x, t) = −Gu(x, t)− C

∂u

∂t
(x, t) (1.182)
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Laplace transformation of (1.181) and (1.182) gives the transmission line equations

∂u

∂x
(x, s) = −(R +Ms)i(x, s) (1.183)

∂i

∂x
(x, s) = − (G+ Cs)u(x, s) (1.184)

Note that these equations have the form

∂u

∂x
(x, s) = −Z(s)i(x, s) (1.185)

∂i

∂x
(x, s) = −Y (s)u(x, s) (1.186)

where Z(s) = R + Ms is the series impedance, and Y (s) = G + Cs is the parallel
admittance.

1.6.3 Effort and flow model

A general transmission line is characterized in terms of the line length L, the series
impedance Z(s), the parallel admittance Y (s), and the two first-order differential equa-
tions

∂e

∂x
(x, s) = −Z(s)f(x, s) (1.187)

∂f

∂x
(x, s) = −Y (s)e(x, s) (1.188)

in the Laplace domain, where e is the effort variable and f is the flow variable.

From this characterization we arrive at the following second order differential equation
for the effort

L2
∂2e

∂x2
(x, s) = Γ2(s)e(x, s) (1.189)

where we have introduced the propagation operator Γ(s) defined by

Γ(s) = L
p
Z(s)Y (s) (1.190)

and the additional requirement that Re[Γ(s)] ≥ 0. The solution of this differential
equation is

e(x, s) = C1 cosh
³
Γ
x

L

´
+ C2 sinh

³
Γ
x

L

´
(1.191)

where C1 and C2 are given by the boundary conditions. From (1.191) we see that the
flow is given by

f(x, s) = − 1

Zc(s)

³
C1 sinh

³
Γ
x

L

´
+ C2 cosh

³
Γ
x

L

´´
(1.192)

where the characteristic impedance Zc(s) is defined by

Zc(s) =

s
Z(s)

Y (s)
(1.193)
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1.6.4 Transfer functions

A transmission line of length L can be regarded as a two-port with the input port at
x = 0 and the output port at x = L. At the input port the effort is e(0, t) and the flow is
f(0, t), while at the output port the effort is e(L, t) and the flow is f(L, t).The transfer
functions between the port variables can be derived from (1.191, 1.192). We denote the
Laplace transformed port variables e(0, s) = e1(s), f(0, s) = f1(s), e(L, s) = e2(s) and
f(L, s) = f2(s). From (1.191, 1.192) it is seen that we may then write the solutions in
the form µ

e1(s)

Zcf1(s)

¶
=

µ
1 0

0 −1

¶µ
C1(s)

C2(s)

¶
(1.194)

µ
e2(s)

Zcf2(s)

¶
=

µ
coshΓ sinhΓ

− sinhΓ − coshΓ

¶µ
C1(s)

C2(s)

¶
(1.195)

From these two equations we can eliminate the constants C1 C2 and find the cascade
form of the transfer functions.

The cascade form of the transfer functions is given byµ
e2(s)

f2(s)

¶
=

Ã
coshΓ −Zc sinhΓ

− sinhΓZc
coshΓ

!µ
e1(s)

f1(s)

¶
(1.196)

µ
e1(s)

f1(s)

¶
=

Ã
coshΓ Zc sinhΓ
sinhΓ
Zc

coshΓ

!µ
e2(s)

f2(s)

¶
(1.197)

The cascade form can be used for analysis purposes like the derivation transfer func-
tions when the line is terminated with a load impedance. However, the cascade form
is an ill-posed boundary value problem, and numerical models derived from the cascade
form may be ill-conditioned (Mäkinen, Piché and Ellman 2000).
By straightforward manipulation of the equations (1.194, 1.195) we can find the trans-

fer functions between different combinations of port variables. First we consider the im-
mittance forms which are the impedance form and the admittance form. These forms
are found from µ

e1(s)

e2(s)

¶
| {z }

e

=

µ
1 0

coshΓ sinhΓ

¶
| {z }

G(s)

µ
C1(s)

C2(s)

¶
| {z }

c

(1.198)

Zc

µ
f1(s)

−f2(s)
¶

| {z }
f

=

µ
0 −1

sinhΓ coshΓ

¶
| {z }

H(s)

µ
C1(s)

C2(s)

¶
| {z }

c

(1.199)

Elimination of the vector c gives the expressions

e = ZcG(s)H(s)−1f , f =
1

Zc
H(s)G(s)−1e (1.200)
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This gives the impedance formµ
e1(s)

e2(s)

¶
= Zc

µ
coshΓ
sinhΓ

1
sinhΓ

1
sinhΓ

coshΓ
sinhΓ

¶µ
f1(s)

−f2(s)
¶

(1.201)

and the admittance formµ
f1(s)

−f2(s)
¶

=
1

Zc

µ
coshΓ
sinhΓ − 1

sinhΓ

− 1
sinhΓ

coshΓ
sinhΓ

¶µ
e1(s)

e2(s)

¶
(1.202)

The hybrid form of the transfer functions are found fromµ
e1(s)

−f2(s)
¶

| {z }
u

=

Ã
1 0

sinhΓ
Zc

coshΓ
Zc

!
| {z }

E(s)

µ
C1(s)

C2(s)

¶
| {z }

c

(1.203)

µ
f1(s)

e2(s)

¶
| {z }

y

=

Ã
0 − 1

Zc

coshΓ sinhΓ

!
| {z }

F(s)

µ
C1(s)

C2(s)

¶
| {z }

c

(1.204)

Proceeding as in the impedance and admittance case we eliminate the c vector and get

y = F(s)E(s)−1u, u = E(s)F(s)−1y (1.205)

The hybrid forms areµ
f1(s)

e2(s)

¶
=

Ã
1
Zc

tanhΓ − 1
coshΓ

1
coshΓ Zc tanhΓ

!µ
e1(s)

−f2(s)
¶

(1.206)

µ
e1(s)

−f2(s)
¶

=

Ã
Zc tanhΓ 1

coshΓ

− 1
coshΓ

1
Zc

tanhΓ

!µ
f1(s)

e2(s)

¶
(1.207)

1.6.5 Transfer function for terminated transmission line

Suppose that a termination in the form of an impedance ZL(s) is used at port 2, which
means that the effort at port 2 is given by

e2 = ZLf2 (1.208)

Insertion of the termination equation (1.208) in the transmission form (1.197) givesµ
e1(s)

f1(s)

¶
=

Ã
coshΓ Zc sinhΓ
sinhΓ
Zc

coshΓ

!Ã
1
1
ZL

!
e2(s) (1.209)

and we find the transfer functions
e2
e1

(s) =
1

Zc
ZL

sinhΓ+ coshΓ
(1.210)

e2(s)

f1(s)
= Zc

1
Zc
ZL

coshΓ+ sinhΓ
(1.211)
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which can be combined to give

f1
e1

(s) =
1

Zc

Zc
ZL

coshΓ+ sinhΓ
Zc
ZL

sinhΓ+ coshΓ
(1.212)

1.6.6 Wave variables

The system (1.187, 1.188) can be written

∂

∂x

µ
e(x, s)

f(x, s)

¶
=

µ
0 −Z(s)

−Y (s) 0

¶
| {z }

A

µ
e(x, s)

f(x, s)

¶
(1.213)

This system can be made diagonal by finding the eigenvalues and the eigenvectors of
the matrix A. The eigenvalues of A are found to be ±Γ(s)/L, and the system is made
diagonal with the following change of variables:

e(x, s) =
1

2
(a(x, s) + b(x, s)) (1.214)

f(x, s) =
1

2Zc(s)
(a(x, s)− b(x, s)) (1.215)

which correspond to

a(x, s) = e(x, s) + Zc(s)f(x, s) (1.216)

b(x, s) = e(x, s)− Zc(s)f(x, s) (1.217)

This leads to

∂a

∂x
(x, s) = −Γ(s)

L
a(x, s) (1.218)

∂b

∂x
(x, s) =

Γ(s)

L
b(x, s) (1.219)

The variables a and b are called the wave variables of the transmission line. The wave
variables have the solutions

a(x, s) = a(0, s) exp
h
−Γ(s) x

L

i
(1.220)

b(x, s) = b(L, s) exp

·
−Γ(s)(L− x)

L

¸
(1.221)

We define the wave variables at the end-points of the line to be a1(s) = a(0, s), a2 =
a(L, s), b2(s) = b(L, s) and b2(s) = b(L, s). Then we get

a2(s)

a1(s)
= exp [−Γ(s)] (1.222)

b1(s)

b2(s)
= exp [−Γ(s)] (1.223)
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gL(s)

exp(-Ts)

exp(−Ts)

a(0,s)

b(0,s)

a(l,s)

b(l,s)

Figure 1.21: Scattering representation of lossless transmission line with load gL(s) cor-
responding to load impedance zL(s) at x = c.

1.6.7 Lossless transmission line

The transmission line is said to be lossless if the impedance Z(s) is purely inductive and
the admittance Y (s) is purely capacitive. This means that there are real and positive
constants M and C so that Z(s) = Ms and Y (s) = Cs. In this case the characteristic
impedance is real and given by Zc = Z0 :=

p
M/C while the propagation operator Γ(s)

becomes
Γ(s) = L

√
MCs = Ts (1.224)

where

c :=
1√
MC

(1.225)

is the wave propagation velocity and T = L/c is the propagation time. This gives the
transfer functions

a2(s)

a1(s)
= exp (−Ts) (1.226)

b1(s)

b2(s)
= exp (−Ts) (1.227)

which are pure time delays of T = L/c. It is seen that the a(x, t) propagates in the
positive direction with velocity c, while b(x, t) propagates in the negative direction with
velocity −c. Because of this the variables a and b can be seen as wave variables.

b1(s)

a1(s)
= exp (−2Ts)GL(s) (1.228)

1.6.8 Line termination

Consider a transmission line with a load impedance ZL connected at x = L. Then

e(L, s) = ZL(s)f(L, s) (1.229)

and
b2(s)

a2(s)
=

ZL(s)− Zc
ZL(s) + Zc

=: GL(s) (1.230)
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u 1 u 2

z0

zL

Figure 1.22: Electrical tranmission line with load impedance ZL(s) at x = c.

The boundary conditions in terms of the wave variables a and b are

a(0, s) = a1(s) (1.231)

b(L, s) = GL(s)a(L, s) (1.232)

The transfer function from a1(s) to b1(s) is given by

b1(s)

a1(s)
=

b1(s)

b2(s)

b2(s)

a2(s)

a2(s)

a1(s)
= exp (−2Γ(s))GL(s) (1.233)

Example 18 Consider a short circuit as the load, so that zL = 0. Then gL = −1, and

b1(s)

a1(s)
= − exp (−2Γ(s)) (1.234)

which in the lossless case is a pure time delay of 2T together with a change of sign. The
effort transfer function is obviously

e(L, s)

e(0, s)
= 0 (1.235)

Example 19 Consider an open circuit as the load. In this case i(L, s) = 0, zL = ∞,
and gL = 1. The transfer function becomes

b1(s)

a1(s)
= exp (−2Γ(s)) (1.236)

which in the lossless case is a pure time delay of 2T . The effort transfer function is

e(L, s)

e(0, s)
=

2

[exp (Γ(s)) + exp (−Γ(s))] =
1

cosh(Γ(s))
(1.237)

Example 20 Impedance matching is achieved with zL = Zc. Then gL = 0, and

b1(s)

a1(s)
= 0 (1.238)

which means that no wave is reflected. The voltage transfer function is

e(L, s)

e(0, s)
= exp (−Γ(s)) (1.239)

which in the lossless case is a pure time delay.
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Example 21 An electrical transmission line is lossless if R = 0 and G = 0. Then the
series impedance is Z(s) = Ms is the series impedance, and the parallel admittance is
Y (s) = Cs. In this case the characteristic impedance is real and given by Zc =

p
M/C

while the function Γ(s) becomes

Γ(s) = L
√
MCs = sT (1.240)

Here we have used the wave propagation time T = L/c, and the wave propagation velocity

c :=
1√
MC

(1.241)

For a standard coaxial cable the wave velocity is 75 % of the speed of light, which gives
c = 2.25× 108 m/s.



Chapter 2

Model analysis tools

2.1 Frequency response methods

2.1.1 The frequency response of a system

The frequency response of a system can be studied by investigating the properties of
the transfer function on the imaginary axis, that is, for s = jω. The starting point for
frequency response analysis is the transfer function description

y (s) = H (s)u (s) (2.1)

Suppose that H (s) is strictly proper and rational, and that all the poles of H (s) have
real parts less than zero. Then we find the frequency response function H (jω) from the
transfer function by inserting s = jω, which is shown in the following:
The impulse response function corresponding to the transfer function H (s) is h (t) =

L−1{H (s)}. Physical system are causal , which means that they do not give any response
to an impulse before the impulse is applied. Therefore, for a causal system the impulse
response function h (t) is zero for t < 0. Suppose thatH (s) is strictly proper and rational,
and that all the poles of H (s) have real parts less than zero. Then the impulse response
h (t) will decay exponentially, which implies that

R∞
0
|h (t)| dt exists. The frequency

response

H (jω) := F{h (t)} =

Z ∞
−∞

h (t) e−jωtdt =

Z ∞
0

h (t) e−jωtdt (2.2)

will exist as ¯̄̄̄Z ∞
0

h (t) e−jωtdt
¯̄̄̄
≤
Z ∞
0

|h (t)| ¯̄e−jωt ¯̄ dt ≤ Z ∞
0

|h (t)| dt (2.3)

Moreover, we see that the Fourier transform is given by

H (jω) = H (s)|s=jω (2.4)

where H (s) is the Laplace transform of h (t) defined by

H (s) := L{h (t)} =

Z ∞
0

h (t) e−stdt (2.5)

It turns out to be a great advantage to work with the Laplace transform, which contains
the Fourier transform as a special case.

41
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Example 22 The frequency response of a time constant H (s) = (1 + Ts)−1 is

H (jω) =
1

1 + jωT
(2.6)

with magnitude and phase given by

|H (jω)| = 1q
1 + (ωT )

2
and ∠H (jω) = − arctanωT. (2.7)

2.1.2 Second order oscillatory system

d

k

m F

x

Figure 2.1: Mass-spring-damper system

A mass-spring-damper system (Figure 2.1) has the equation of motion

mẍ + dẋ + kx = F (2.8)

where x is the position of the mass m, d is the viscous friction coefficient and k is the
spring constant. The input is the force F . The model can be normalized in to the form

ẍ + 2ζω0ẋ + ω20x =
1

m
F (2.9)

where the undamped natural frequency is

ω0 =

r
k

m
(2.10)

and the relative damping is

ζ =
1

2ω0

d

m
=

d

2
√
km

(2.11)

The transfer function is found by inserting

L{ẍ (t)} = s2L{x (t)}, L{ẋ (t)} = sL{x (t)} (2.12)

which leads to

H (s) =
x

F
(s) =

1

m

1

s2 + 2ζω0s+ ω20

=
1

k

1

1 + 2ζ s
ω0

+
³

s
ω0

´2 (2.13)
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We assume that ζ < 1 which implies that the poles of the transfer function are complex
conjugated and given by

λ =

µ
−ζ ± j

q
1− ζ2

¶
ω0 (2.14)

The frequency response is

H (jω) =
1

k

1

1−
³

ω
ω0

´2
+ j2ζ ω

ω0

(2.15)

In particular we find that

H (jω0) =
1

k

1

j2ζ
= −j 1

2ζk
(2.16)

This shows that the phase of the frequency response at ω = ω0 is ∠H (jω0) = −90◦ ,
and moreover, that the magnitude is

|H (jω0)| = 1

2ζk
(2.17)

which is inversely proportional to the relative damping ζ.

2.1.3 Performance of a closed loop system

0 dB

Gain for
required
accuracy

Damping of
noise, and

robustness to
unmodelled
dynamics

Closed loop
control

Open loop
control

Slope of -1
around

crossover

|Lj  |



Figure 2.2: Performance requirements on the loop transfer function in a Bode diagram.

Frequency response techniques are well suited to specify the performance of a control
system. This involves specifications on the loop transfer function L (jω) in a Bode
diagram. We recall that the magnitude of the sensitivity function S (jω) will satisfy the
approximations

|S (jω)| =
¯̄̄̄

1

1 + L (jω)

¯̄̄̄
=

(
|L (jω)|−1 , |L (jω)| À 1

1, 1 À |L (jω)| (2.18)
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and that for unity feedback the magnitude of the closed-loop transfer function T (jω)
can be approximated by

|T (jω)| =
¯̄̄̄

L (jω)

1 + L (jω)

¯̄̄̄
=

½
1 |L (jω)| À 1

|L (jω)| 1 À |L (jω)| (2.19)

Typically, we would like the sensitivity |S (jω)| to be small for low frequencies to
reduce the effect of disturbances on the system in the low-frequency region. In addition,
we would like |T (jω)| to be small for high frequencies to reduce the influence of measure-
ment noise and the influence of unmodeled dynamics. This implies that |L (jω)| should
be large for low frequencies, and small for high frequencies. In addition, there has to be
a significant interval around the crossover frequency ωc, defined by |L (jωc)| = 1, where
the phase should be around ∠L (jω) ≈ −90◦ to ensure a sufficient phase margin. These
requirements on the loop transfer function L (jω) are indicated in Figure 2.2.

2.1.4 Stability margins

If the loop transfer function L (s) is rational and has no poles with real part larger than
zero, then the Bode-Nyquist criterion states that the system is stable if

|L (jω180)| < 1 and ∠L (jωc) > −180◦. (2.20)

This can be expressed as conditions on the gain margin ∆K and the phase margin φ as

∆K :=
1

|L (jω180)| > 1 (= 0 dB) (2.21)

φ := 180◦ +∠L (jωc) > 0◦ (2.22)

where ωc is the crossover frequency defined by |L (jωc)| = 1, and ω180 is defined by
∠L (jω180) = −180◦. It is possible to specify the performance of a control system around
the crossover frequency in terms of the stability margins. This is often done by specifying
a phase margin φ = 45◦ and a gain margin ∆K = 6 dB.

Example 23 We note that for any system

∆K = 6 dB⇒ L (jω180) = −1

2
⇒ S (jω180) = 2 and T (jω180) = −1 (2.23)

We also note that for any system we have

φ = 45◦ ⇒ L (jωc) = −1

2

√
2(1 + j)

⇒ |S (jωc)| = |T (jωc)| = 1.3 (2.24)

This may be acceptable if the desired value yd and the disturbances are of low frequency.
However, in high performance motion control like in robotics, the desired value yd will
have a significant frequency content close to the crossover frequency, and bearing in mind
that

|y (jω)| = |T (jω)| |yd (jω)| (2.25)

we see that we will have an amplification of the desired value by a factor of 1.3 close to
the crossover frequency ωc. In robotics this could cause serious problems.

The lesson to be learned from this is that performance specifications on the gain mar-
gins are not directly related to the closed loop performance. Thus, for high performance
systems it may be useful to study the functions S (jω) and T (jω) directly.
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2.2 Elimination of fast dynamics

2.2.1 Example: The electrical time constant in a DC motor

Consider the following model of a DC motor:

Tm
dωm
dt

=
Ra

K
ia (2.26)

Ta
dia
dt

= −ia − K

Ra
ωm +

1

Ra
ua (2.27)

where ωm is the motor speed, ia is the armature current, ua is the armature voltage, Ta
is the electrical time constant, and Tm is the mechanical time constant defined by

Ta =
La
Ra

, Tm =
JRa

K2
(2.28)

The transfer function H(s) from ua to ωm is found from the Laplace-transformed model

Tmsωm(s) =
Ra

K
ia(s) (2.29)

(1 + Tas) ia(s) = − K

Ra
ωm(s) +

1

Ra
ua(s) (2.30)

to be

H(s) =
ωm
ua

(s) =
1

K

1

1 + Tms + TaTms
(2.31)

Suppose that Ta ¿ Tm so that Tm ≈ Tm+Ta. Then the transfer function can be written

H(s) =
1

K

1

(1 + Tms)(1 + Tas)
(2.32)

Suppose that Ta is small, so that the break frequency 1/Ta is much higher than the
frequency range where the model will be used. The the transfer function can be approx-
imated with

H(s) =
1

K

1

(1 + Tms)
(2.33)

which is obtained using the approximation

1 + Tas ≈ 1 (2.34)

We will now discuss how the state-space model (2.26, 2.27) should be modified to re-
flect this approximation. This is best seen from (2.30) where the approximation (2.34)
amounts to writing

ia(s) = − K

Ra
ωm(s) +

1

Ra
ua(s) (2.35)

This give the approximated state-space model

Tm
dωm
dt

=
Ra

K
ia (2.36)

0 = −ia − K

Ra
ωm +

1

Ra
ua (2.37)
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We can use the second equation to eliminate i using

ia = − K

Ra
ωm +

1

Ra
ua (2.38)

and the first equation becomes

Tm
dωm
dt

= −ωm +
1

K
ua (2.39)

which is consistent with the simplified transfer function given by (2.33).

2.2.2 Nonlinear system

In the nonlinear case it is not possible to use frequency arguments to eliminate high
frequency dynamics. In that case the corresponding model formulation is

ẋ = f(x, z, t, �) (2.40)

�ż = g(x, z, t, �) (2.41)

If � is small so that �ż ¿ g(x, z, t, �), then it may be possible to approximate the system
by inserting � = 0. This gives

ẋ = f(x, z, t, 0) (2.42)

0 = g(x, z, t, 0) (2.43)

which is a differential-algebraic system.
The differential-algebraic system may be written as a ordinary differential equation

if
z = z(x, t) (2.44)

is a solution to 0 = g(x, z, t, 0). In this case the system can be represented by the model

ẋ = f(x, z(x), t, 0) (2.45)

This topic is discussed in great detail in (Khalil 1996)

2.3 Energy-based methods

2.3.1 Introduction

So far controller design based on state-space methods and frequency response has been
discussed. These methods form the basis of any fundamental course on automatic control,
and there is a wide range of methods, algorithms and software packages. An important
formulation that complements state-space and frequency response methods is based on
the use of balance laws, and in particular on the use of energy functions. To give the
reader an indication on why this can be useful, we briefly consider the following examples:
If we are studying robot control around a constant desired position, then the kinetic
energy of the robot will increase if the robot is unstable, and the kinetic energy will be
reduced if the robot is asymptotically stable. If we are applying active vibration control
on a mechanical structure, then the vibration energy increases if the controlled system
is unstable, while the energy decreases if the system is asymptotically stable.
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On background of this it seems reasonable that the stability properties of a system
may be related to the time derivative of some energy function of the system. In this
section we will present results that are motivated from energy considerations for me-
chanical, electrical, and hydrostatic systems, and systems with and thermal flow. These
model formulations are very useful in controller design and in analysis of control systems.

2.3.2 The energy function

We define an energy function V (x, t) ≥ 0 for the system

ẋ = f(x,u, t). (2.46)

The function V (x, t) may be the total energy of the system, or it may be some other
function, usually related to energy. When the system evolves the time derivative of the
energy function V (x, t) is

V̇ =
∂V

∂t
+

∂V

∂x
f(x,u, t). (2.47)

which follows from the standard rules of time differentiation of a function of two variables.
We say that V̇ is the time derivative along the solutions of the system. Information about
the time derivative of the energy of a system may give valuable insight into properties
of the dynamics of the system. In particular, if V̇ ≤ 0, then the energy is monotonically
decreasing, which may be important in connection with stability considerations. The
analysis of energy functions and their time derivatives along the solutions of the system
forms the basis for Lyapunov’s stability theory (Slotine 1991), (Khalil 1996). This is an
important tool in nonlinear control theory.

Example 24 Consider the system

ẋ1 = x2 (2.48)

ẋ2 = −ω20x1 − 2ζω0x2 (2.49)

and the energy function

V =
1

2
ω20x

2
1 +

1

2
x22 (2.50)

The time derivative of V along the solutions of the system is

V̇ = ω20x1x2 + x2
¡−ω20x1 − 2ζω0x2

¢
(2.51)

which gives
V̇ = −2ζω0x

2
2 ≤ 0 (2.52)

Note that the energy of the system decreases proportionally with the relative damping ζ
whenever x2 6= 0.

2.3.3 Second-order systems

If a system is given as a second order system

ẍ = f(x, ẋ, t) (2.53)
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then the time derivative of an energy function V (x, ẋ, t) along the solutions of the system
is

V̇ =
∂V

∂t
+

∂V

∂x
ẋ +

∂V

∂ẋ
f(x, ẋ, t) (2.54)

For the system in the Example 24 we could arrive at a second-order description by writing
x1 = x and x2 = ẋ. The dynamics could then be presented as the second order system

ẍ = −ω20x− 2ζω0ẋ (2.55)

and we find the time derivative of V = 1
2ω

2
0x
2+ 1

2 ẋ
2 along the solutions of the system to

be
V̇ = ω20xẋ + ẋẍ = ω20xẋ + ẋ

¡−ω20x− 2ζω0ẋ
¢

= −2ζω0ẋ
2 (2.56)

This result is the same as the result in (2.52).

2.3.4 Example: Mass-spring-damper

Energy function

A mass m with position x is connected to a fixed point by a spring with spring constant k
and a damper with damping constant d as shown in Figure 2.1. The equation of motion
is

mẍ + dẋ+ kx = 0 (2.57)

The potential energy of this system is U = 1
2kx

2, while the kinetic energy is T = 1
2mẋ2.

The total energy is

V = T + U =
1

2
mẋ2 +

1

2
kx2 (2.58)

The time derivative of the energy function is

V̇ = mẋẍ + kxẋ (2.59)

The time derivative for solutions of the system is found by inserting the equation of
motion (2.57). This gives

V̇ = ẋ (−dẋ− kx) + kxẋ

= −dẋ2 (2.60)

Two observations are important at this point. First, V̇ < 0, which means that the energy
is not increasing, and second, the energy decreases because of power dissipated in the
damper.
From the expression of the energy we see that

x(t) ≤
r

2

k
V , ẋ ≤

r
2

m
V (2.61)

This means that if the energy V decreases to zero, then also the position x and the
velocity ẋ will decrease to zero. Moreover, because V decreases, V (t) will be less than
the initial value V0. Therefore

x (t) ≤
r

2

k
V0, ẋ (t) ≤

r
2

m
V0 (2.62)

This means that if the initial energy is small, then also the position and velocity will
remain small.
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Friction

Now, consider the mass-spring-damper system with a friction force, so that

mẍ + dẋ + kx = −Ff (2.63)

Then the time derivative of the energy function is

V̇ = −Ff ẋ− dẋ2 (2.64)

which has two terms, the power Ff ẋ dissipated by the system by the friction and the
power dẋ2 dissipated in the damper. In its very physical nature, friction work transfers
kinetic energy to heat energy. This means that the friction work will decrease the total
energy of the system, and it follows that

Ff ẋ ≥ 0 (2.65)

and, accordingly,
V̇ ≤ −dẋ2 (2.66)

External force

Suppose that the mass-spring-damper system is actuated with an input force F . Then
the equation of motion is

mẍ + dẋ + kx = F (2.67)

The time derivative of the energy function is found to be

V̇ = Fẋ− dẋ2 (2.68)

Here the term Fẋ is the power that is supplied to the system due to the force F . We see
that if Fẋ < 0, then the energy V will be decreasing.

Example 25 If F is supplied from a controller, we see that negative velocity feedback

F = −Kdẋ (2.69)

will give
V̇ = − (Kd + d) ẋ2 (2.70)

It is seen that the feedback gain Kd appears as a damping coefficient.

2.3.5 Lyapunov methods

In Lyapunov design for the plant
ẋ = f (x,u) (2.71)

the main idea is to select a suitable energy function V (x), called a Lyapunov function
candidate, which is positive definite in the state vector x in the sense that V (x) = 0 for
x = 0, and V (x) > 0 for x 6= 0. A typical Lyapunov function candidate is

V (x) =
1

2
xTPx (2.72)
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where P is a positive definite and symmetric matrix. Then

λmin (P)

2
xTx ≤V (x) ≤ λmax (P)

2
xTx (2.73)

where λmin (P) > 0 is the smallest eigenvalue of P, and λmax (P) is the largest eigenvalue
of P. A control u is sought to ensure that the function V (x) decreases to zero, which
implies that the state vector converges to zero. There is no general method for selecting
the Lyapunov function candidate V (x), but for many applications it is possible to select
V (x) from some type of energy function.

Example 26 We investigate the problem of controlling the position of a mass m with
position x. The mass is actuated by a force u, and the desired position is xd = 0. The
kinetic energy of the mass is T = 1

2mẋ2. We may reason as follows: Suppose that
a spring with spring constant kp was fixed to the mass, and, in addition, that a viscous
damper with damping constant kd was fixed to the mass. Then the system would obviously
be stable. The potential energy of this spring would be 1

2kpx
2. Now, if a spring and a

damper will stabilize the mass, why not let the force input u set up the same force as the
spring and the damper? We accordingly select the control to be the PD controller

u = −kpx− kdẋ (2.74)

and get the closed loop dynamics

mẍ + kdẋ + kpx = 0. (2.75)

This means that the controller defines a virtual spring and a virtual damper. We define
the Lyapunov function candidate to be the sum of the kinetic energy of the mass and the
potential energy of the virtual spring:

V =
1

2
mẋ2 +

1

2
kpx

2 (2.76)

The time derivative of V along the solutions of the system (2.75) is

V̇ = ẋmẍ + kpxẋ

= −ẋ (kdẋ + kpx) + kpxẋ

= −kdẋ2 (2.77)

We see that whenever ẋ 6= 0, then V will decrease, and it can be shown that V will tend
to zero. Then, because m and kp are positive constants, this implies that x and ẋ will
tend to zero.

2.3.6 Contraction

We have introduced energy functions to study the stability of nonlinear system around an
equilibrium point by calculating the time derivative of the energy function for solutions
of the system. A slightly different view is taken in contraction analysis (Hartman 1982,
p. 537), (Lohmiller and Slotine 1998) where the convergence of different solutions to each
other is studied. We will look at two different solutions x1 (t) and x2 (t) for the system

ẋ = f(x)
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where the initial conditions are x1 (t0) = x10 and x2 (t0) = x20. We consider the energy
function

V =
1

2
(x1 − x2)

T (x1 − x2)

which can be seen as a measure of how far the two solutions are from each other. The
time derivative of V along the solutions of the system is

V̇ = (x1 − x2)
T [f(x1)− f(x2)]

Define the Jacobian matrix

J(x) =
∂f(x)

∂x

and consider the line αx1 (t) + (1− α)x2 (t), 0 ≤ α ≤ 1 between x1 (t) and x2 (t). On
this line we have

d

dα
f [αx1 + (1− α)x2] = J [αx1 + (1− α)x2] (x1 − x2)

and we may write

f(x1)− f(x2) =

Z 1

0

J [αx1 + (1− α)x2] dα(x1 − x2)

Because of this, the time derivative of V can be expressed as

V̇ = −(x1 − x2)
TQ(x1 − x2) (2.78)

where

Q = −1

2

Z 1

0

©
J [αx1 + (1− α)x2] + JT [αx1 + (1− α)x2]

ª
dα (2.79)

We see that whenever
Re
£
λi
¡
J + JT

¢¤
< 0 (2.80)

then Q is positive definite, and it follows that V̇ ≤ 0. This means that the two solutions
x1 (t) and x2 (t) will converge to each other as time goes to infinity. As the two solutions
were selected freely, this implies that any two solutions will converge to each other as
time goes to infinity.

2.3.7 Energy flow in a turbocharged diesel engine

Diesel engines are usually equipped with turbochargers (Heywood 1988), (Kiencke and
Nielsen 2000) as shown in Figure 2.3. A turbocharger has a turbine that is driven by the
exhaust, and, on the same shaft, a compressor that increases the pressure of the inlet air
to the motor. The purpose of this arrangement is to increase the pressure and thereby
increase the density of the air into the cylinder. The benefit of this is that by increasing
the mass of fresh air into the cylinder, it is possible to increase the amount of injected
diesel fuel while still having sufficient oxygen to achieve satisfactory combustion of the
fuel. This increases the energy that can be processed in a fixed cylinder volume.
A diesel engine with a turbocharger is a complicated and nonlinear system, still,

the energy flow is easy to model and important for understanding the dynamics of the
system. The required modeling tools for this is presented in Chapter 12. Energy is
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Diesel
cylinder

Wastegate

exhaustair intake

Wc Wt

hc h tC T
Jtc , tc

Figure 2.3: Diesel engine with turbocharger

exchanged partly as thermal energy with power P = wh where w is mass flow and h
is specific enthalpy, and partly as rotation power P = τω where τ is torque and ω is
angular velocity. The speed ωtc of the turbocharger shaft depends on how much energy
that is absorbed by the turbine compared to how much energy that is used to compress
the air in the compressor. In other words, the time derivative of the kinetic energy of the
turbocharger shaft is equal to the thermal power which is converted to kinetic energy in
the turbine, minus the thermal power that is required in the compressor. This is written

d

dt

·
1

2
Jtcω

2
tc

¸
= wt∆ht − wc∆hc (2.81)

where Jtc is the moment of inertia of the combined shaft of the turbine and the compres-
sor, wt is the mass flow through the turbine, ∆ht is the reduction in specific enthalpy
over the turbine, wc is the mass flow through the compressor, and ∆hc is the increase in
specific enthalpy over the compressor.
If the energy carried by the exhaust becomes to high, then the turbocompressor may

over-speed. This problem can be avoided by opening a wastegate valve for dumping power
from the system. The effect of this is to reduce wt. Alternatively, inlet guidevanes on
the turbine can be used to control the amount of energy that is absorbed by the turbine.
The effect of this is to reduce the change of specific enthalpy ∆ht in the turbine. During
acceleration it may be desirable to speed up the turbocharger to achieve sufficiently high
pressure of the injected air. This can be done by closing the wastegate, or by adjusting
the inlet guide vanes for a higher ∆ht. The use of inlet guide vanes gives a faster response
than the use of a wastegate, and has become the preferred solution in car engines.

2.4 Passivity

2.4.1 Introduction

The concept of passivity is very useful in control systems analysis and design. Passivity
theory provides a set of analysis tools that can be used for a wide range of physical systems
with commonly used controllers like the PID controller, and, in addition, for nonlinear
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controllers based on adaptive techniques and backstepping. The main observation in
passivity theory is: If a system can be described as a parallel or feedback interconnection
of passive subsystems, then the total system will be passive, and it will not generate
energy.
One practical application of the theory of passivity is within stability analysis based

on energy-flow considerations for interconnections of physical subsystems. In this setting,
stability can be related to a decreasing total energy of the system. Now, suppose that
each physical subsystem is passive in the sense that it can store and dissipate energy,
but it cannot produce energy. Then it can be concluded that the total energy of the
system will decrease, which under certain assumptions implies that the system is stable.
The theory of passivity also provides a generalization of the pure energy-based analysis of
interconnected physical subsystems to the analysis of interconnections of general dynamic
subsystems, where the storage and dissipation of other functions than energy are studied.
Methods based on passivity can be used for linear time-invariant systems where useful

properties of certain transfer functions can be established from simple energy consider-
ations. This leads to very efficient tools for stability analysis. Moreover, passivity is
very useful for nonlinear systems as an extension of Lyapunov analysis in the sense that
Lyapunov results for an interconnection of subsystems can be inferred from the passivity
properties of the individual subsystems.

2.4.2 Definition

The following definition of passivity will be used:

Definition 1 Consider a system with input u and output y. Suppose that that there is
a constant E0 ≥ 0 so that for all control time histories u and all T ≥ 0 the integral of
y (t)u (t) satisfies Z T

0

y (t)u (t) dt ≥ −E0 (2.82)

Then the system is said to be passive.

Some remarks can be made to this definition.

1. The definition is based on an input-output description where the input is u and
the output is y. There is no reference to the state of the system.

2. Note that it is the system with a specified input u and a specified output y that is
passive. Passivity cannot be defined without defining input and output.

3. The definition is valid for both linear and nonlinear systems, and for time-varying
and time-invariant systems.

4. If the system is passive with input u and output y, then it will also be passive with
input y and output u.

2.4.3 Examples

Time constant

A time constant given by
ẏ = −ay + u (2.83)
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is passive if a ≥ 0. This is seen by inserting u = ẏ + ay into the integral of yu, which
gives Z T

0

yudt =

Z T

0

y(ẏ + ay)dt

=

Z y(T )

y(0)

ydy + a

Z T

0

y2dt

=
1

2
y2(T )− 1

2
y2(0) + a

Z T

0

y2dt (2.84)

The first and last term on the right side are positive. It follows thatZ T

0

yudt ≥ −1

2
y2(0) (2.85)

and the system has been shown to be passive with E0 := (1/2)y2(0).

Mass, spring and damper

A mass m with position x is connected with a spring and a damper to a fixed point. The
equation of motion is

mẍ +Bẋ +Kx = F (2.86)

where F is the control force acting on the mass. Then the system with input F and
output ẋ is passive. This is seen fromZ T

0

Fẋdt =

Z T

0

(mẍ +Bẋ+Kx) ẋdt

=

Z T

0

mv̇vdt +

Z T

0

Bv2dt +

Z T

0

Kxẋdt

=
1

2
m
£
v2(T )− v2(0)

¤
+B

Z T

0

v2dt +
1

2
K
£
x2(T )− x2(0)

¤
(2.87)

≥ −E0 +B

Z T

0

v2dt (2.88)

where
E0 =

1

2
mv2(0) +

1

2
Kx2(0) (2.89)

is the initial energy in the form of kinetic and potential energy. It follows thatZ T

0

Fẋdt ≥ −E0 (2.90)

which shows that the system is passive when F is input and ẋ is output. Note that the
product Fẋ between the input and the output is the power supplied to the mass because
of the control input F . Moreover, note that the constant E0 in the passivity inequality
(2.90) is the initial energy in the system. It seems intuitively right to describe this type
of system as passive as the systems has only passive components in the form of a mass,
a spring and a damper. In particular, there is no active element in the system that can
produce energy.
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Electrical circuit

Consider an electrical circuit with input voltage u, which is the control input, and current
i, which is the system output. The circuit is a serial interconnection of a resistor R, a
capacitor C and an inductance L. The voltage law gives

u = Ri +
1

C
q + L

di

dt
(2.91)

where q is the capacitor charge which satisfies q̇ = i. Then passivity from u to i is shown
by the calculationZ T

0

uidt = R

Z T

0

i2dt +
1

C

Z t

0

q̇qdt + L

Z t

0

i
di

dt
dt

= R

Z T

0

i2dt +
1

2C

£
q2(T )− q2(0)

¤
+

L

2

£
i2(T )− i2(0)

¤
≥ −E0 +R

Z T

0

i2dt (2.92)

where

E0 =
1

2C
q2(0) +

L

2
i2(0) (2.93)

is the initially stored energy in the circuit. Note that the product ui between the input
and the output is the power supplied to the circuit from the control input u. It is also
interesting to note that if the current had been take to be the control variable, and the
voltage had been the measurement, then the system would still be passive.

2.4.4 Energy considerations

We may think of passivity as a property related to balance equations, and in particular
to energy conservation, which we will use to illustrate the meaning of the concept of
passivity. Consider a system with input u and output y. Suppose that the product
u (t) y (t) has the physical dimension of power, and

R T
0
u (t) y (t) dt is the energy that is

supplied to the system due to the control action u. A critical observation is:

• If R T
0
u (t) y (t) dt ≥ 0 for all control histories u and for all T ≥ 0, then energy is

absorbed by the system, and the system cannot supply any energy to the outside.
In this case the system is passive according to Definition 1.

• If there exists some E0 > 0 so that the integral
R T
0
u (t) y (t) dt ≥ −E0 for all con-

trol histories u and for all T ≥ 0, then the system may supply a limited quantity of
energy to the outside. The energy will typically be energy due to the initial con-
ditions of energy storage elements, which in mechanical systems may be potential
energy in springs and kinetic energy of masses, while in electrical systems it will be
energy stored in capacitors and inductances. According to Definition 1 the system
is passive, which makes sense as the system can only store energy received from
the outside, but it cannot produce energy.

• If it is possible to find a control history u so that the integral
R T
0
u (t) y (t) dt may

tend to −∞ for some T ≥ 0, then this means that the system may supply an
unlimited amount of energy to the outside. This is only possible if there is an
inexhaustible source of energy inside the system. This agrees with the fact that
the system is not passive according to Definition 1.
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2.4.5 Positive real transfer functions

It turns out that a system is passive if and only if the transfer function from input
to output is positive real . This result, which is very useful, will be developed in the
following. First the concept of positive real transfer functions will be defined, and a
special conditions for rational transfer functions is presented. Then the connection to
passivity will be demonstrated. We start by defining positive real transfer functions.

Definition 2 The rational or irrational function H(s) is positive real if
1. H(s) is analytic for all Re [s] > 0.
2. H(s) is real for all positive and real s.
3. Re [H(s)] ≥ 0 for all Re [s] > 0.

It is emphasized that at this stage in the presentation there is no obvious physical
interpretation of this definition. Note that the definition is based on the properties for
the transfer function H(s) for Re [s] > 0, which is to the right of the imaginary axis.

2.4.6 Positive real rational transfer functions

In the case of rational transfer functions it is convenient to investigate the properties
of the transfer function on the imaginary axis by working with H(jω). This makes it
easier to check if a transfer function is positive real, and it leads to a more intuitive
understanding of the positive real property. Now, suppose that the transfer function
H(s) is rational. In this case Statement 1 of Definition 2 implies that there are no poles
to the right of the imaginary axis. Concerning Statement 3, the result can be formulated
on the imaginary axis by observing that the transfer function will be continuous at all
s except at the poles. This means that as long as jω is not a pole of H(s) the transfer
function, then

H(jω) = lim
σ→0
σ>0

H(σ + jω) (2.94)

This implies that Re[H(jω)] ≥ 0 as long as jω is not a pole of H(s). These arguments
provide a partial explanation of the following important result:

The rational function H(s) is positive real if and only if
1. All the poles of H(s) have real parts less than or equal to zero.
2. ReH (jω) ≥ 0 for all ω so that jω is not a pole of H(s).
3. If jω0 is pole in H(s), then it is a simple pole, and

Ress=jω0 [H(s)] = lim
s→jω0

(s− jω0)H(s) (2.95)

is real and positive. If H(s) has a pole at infinity, then it is a simple pole, and

R∞ = lim
ω→∞

H(jω)

jω
(2.96)

exists, and is real and positive.

The derivation of this result is found in (Anderson and Vongpanitlerd 1973) and
(Lozano, Brogliato, Egeland and Maschke 2000).
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Example 27 A time constant has transfer function

H (s) =
1

1 + Ts
(2.97)

The frequency response is

H (jω) =
1

1 + jωT
=

1− jωT

1 + (ωT )
2 (2.98)

and we see that
ReH (jω) =

1

1 + (ωT )
2 > 0 (2.99)

In addition, the only pole has a negative real part, and it follows that the transfer function
of a time constant is positive real.

Example 28 Consider the transfer function

H(s) =
s+ c

(s + a)(s+ b)
(2.100)

where a, b and c are constants greater than zero. Both poles of the transfer function have
negative real parts. Then

H(jω) =
jω + c

(jω + a)(jω + b)
=

(c + jω)(a− jω)(b− jω)

(a2 + ω2)(b2 + ω2)

=
abc + ω2(a + b− c) + j[ω(ab− ac− bc)− ω3]

(a2 + ω2)(b2 + ω2)
(2.101)

We find that if c ≤ a + b, then Re[h2(jω)] > 0 for all ω, and the transfer function
is positive real. If c > a + b, then h2(s) is not positive real as Re[h2(jω)] < 0 for
ω >

p
abc/(c− a− b).

Example 29 The transfer function H(s) = Ls where L > 0 has the frequency response
H(jω) = jωL, so that Re[H(jω)] = 0. The transfer function has only one pole, which is
at infinity. As

R∞ = lim
ω→∞

jωL

jω
= L (2.102)

is real and positive, it follows that the transfer function is positive real.

Example 30 Consider the transfer function

H (s) =
s

s2 + ω20
, ω0 > 0 (2.103)

All the poles are simple poles on the imaginary axis in s = ±jω0. The frequency response
is

H (jω) =
jω

ω20 − ω2
(2.104)

so that Re[H (jω)] = 0. The residuals at the poles on the imaginary axis are

Ress=±jω0H(s) = Ress=±jω0
s

(s + jω0) (s− jω0)
=

1

2
(2.105)

The residuals are real and positive. The transfer function is therefore positive real.
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Example 31 Consider the transfer function

H (s) =
s2 + a2

s (s2 + ω20)
, a > 0, ω0 > 0 (2.106)

All the poles are simple poles on the imaginary axis in s = 0 and s = ±jω0. The
frequency response is

H (jω) = −j a2 − ω2

ω (ω20 − ω2)
(2.107)

so that Re[H (jω)] = 0. The residuals at the poles on the imaginary axis are

Ress=0H(s) =
a2

ω20
, Ress=±jω0H(s) =

ω20 − a2

2ω20
(2.108)

The residuals are real and positive and the transfer function is positive real if and only
if a < ω0.

Example 32 Consider a proper and rational transfer function

H(s) =
(s + z1) (s+ z2) . . .

s (s+ p1) (s + p2) . . .
(2.109)

where Re[pi] > 0 and Re[zi] > 0. Then, H(s) is positive real if and only if Re[H(jω)] ≥ 0
for all ω 6= 0. This follows from

Ress=0H(s) =
z1z2 . . .

p1p2 . . .
> 0 (2.110)

and from the observation that the H(s) has one pole in the origin while the remaining
poles have negative real parts.

2.4.7 Positive realness of irrational transfer functions

Introduction

Irrational transfer functions are obtained for systems described by partial differential
equations. Consider a linear system y(s) = H(s)u(s) with a irrational transfer function
H(s). As for rational transfer functions the system with input u and output y is passive if
and only if the transfer functionH (s) is positive real (Anderson and Vongpanitlerd 1973).
For irrational transfer functions we have to study the properties of the transfer function
in the right half plane.

Example: Transmission line

To actuate a valve on the seafloor a hydraulic transmission line can be used. This is a
pipe of length L filled with oil. The output side of the transmission line is connected
to the valve at the seafloor, while the pressure is controlled on the input side of the
pipe. Then the control variable is the volumetric flow q1 at the input side, and the
measurement is the pressure p1 on the input side. The system can be described with the
transfer function

p1
q1

(s) = H1(s) = tanh s =
sinh s

cosh s
=

es − e−s

es + e−s
(2.111)
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First we check if the transfer function is analytic in the right half plane. We find that

es + e−s = 0⇒ e2s = −1

⇒ s = j
π + 2kπ

2
, k = 0,±1,±2, (2.112)

This means that h(s) is analytic for all Re [s] > 0. It is trivial that H1(s) is real for all
positive and real s. We then have to establish that Re [H1(s)] ≥ 0 for all Re [s] > 0 to
show that H1(s) is positive real. To do this we introduce σ = Re [s] and ω = Im [s] , so
that s = σ + jω, and, using

sinh(σ + jω) = sinhσ cosω + j coshσ sinω (2.113)

cosh(σ + jω) = coshσ cosω + j sinhσ sinω. (2.114)

we find that

Re [tanh s] =
sinhσ coshσ

|cosh s|2 > 0 for all σ > 0. (2.115)

We have then showed that H1(s) = tanh s is a positive real transfer function.
The transfer function from the pressure p1 on the input side to the pressure p2 on

the output side is
p2
p1

(s) = H2(s) =
1

cosh s
(2.116)

This transfer function is not positive real as the real part of the transfer function is

Re

·
1

cosh s

¸
=

coshσ cosω

|cosh s|2 (2.117)

It follows that for all ω so that cosω < 0 the real part will be negative for all σ > 0.

2.4.8 Passivity and positive real transfer functions

We have the following result:

A linear time-invariant system with input u and output y described with the transfer
function model y(s) = H(s)u(s) is passive if and only if the transfer function H(s) is
positive real.

To demonstrate that passivity and positive realness are related, we consider the linear
system

y(s) = H(s)u(s) (2.118)

with rational and strictly proper transfer function

H(s) = K
(s + z1) (s+ z2) . . . (s + zm)

(s+ p1) (s + p2) . . . (s + pn)
(2.119)

We will now show that passivity is related to the positive realness of the transfer function
H(s).
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2.4.9 No poles on the imaginary axis

First it is assumed that Re[pi] > 0, which means that the system is stable, and that all
poles are to the left of the imaginary axis. Suppose that the input is

u(t) = U sinω0t (2.120)

Then the output is

y(t) = U |H (jω0)| sin [ω0t +∠H (jω0)] + yt(t) (2.121)

where yt(t) is the transient part of the output. Then the product yu is found to be

y (t)u(t) =
U2

2
ReH (jω0)−U2

2
|H (jω0)| cos [2ω0t+ ∠H (jω0)]+yt(t)U sinω0t (2.122)

Integration givesZ T

0

y (t)u(t)dt =
U2T

2
ReH (jω0) +

U2

4ω0
|H (jω0)| sin [2ω0t +∠H (jω0)]

+

Z T

0

yt (t)u(t)dt (2.123)

The second term on the right side will be a sinusoidal signal that is bounded by its ampli-
tude. In the third term on the right side the transient signal yt(t) will tend exponentially
to zero. This leads to¯̄̄̄

¯+ U2

4ω0
|H (jω0)| sin [2ω0t+∠H (jω0)] +

Z T

0

yt (t)u(t)dt

¯̄̄̄
¯ ≤ E0 (2.124)

for some constant E0 ≥ 0. This implies that¯̄̄̄
¯
Z T

0

y (t)u(t)dt− U2T

2
ReH (jω0)

¯̄̄̄
¯ ≤ E0 (2.125)

for all T ≥ 0. From this result it is seen that the system is passive if and only if
ReH (jω) ≥ 0 for all ω. The if part is obvious. Concerning the only if part, it is
seen that if ReH (jω0) < 0 for some ω0, then there is no lower bound on

R T
0
y (t)u(t)dt

as |U2T ReH (jω0) /2| can be made arbitrarily large by selecting T sufficiently large.

2.4.10 Single poles at the imaginary axis

Assume that the system has all poles to the left of the imaginary axis except two simple
poles at s = ±ja on the imaginary axis. A partial fraction expansion gives

H(s) =
Ress=±jaH(s)

s + ja
+

Ress=±jaH(s)

s− ja
+G(s) (2.126)

= 2
sRess=±jaH(s)

s2 + a2
+G(s) (2.127)

where G(s) is due to the poles to the left of the imaginary axis. Then, if ω0 6= a, the
results (2.121) and (2.125) are still valid. If ω0 = a, then

y(s) = H(s)u(s) = 2
sω0Ress=±jω0H(s)

(s2 + ω20)
2 + . . . (2.128)
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which corresponds to the time function

y(t) = t sin (ω0t)Ress=±jω0H(s) + . . . (2.129)

and it follows thatZ T

0

y (t)u(t)dt =

Z T

0

tU sin2 (ω0t)Ress=±jω0H(s)dt + . . . (2.130)

Finally, assume that the system has a simple pole at the origin s = 0. Then

H(s) =
Ress=0H(s)

s
+G0(s) (2.131)

where G(s) is due to the poles to the left of the imaginary axis. If ω0 6= 0, the results
(2.121) and (2.125) are still valid. If u(t) = U , then

y(s) = H(s)u(s) =
URess=±jω0H(s)

s2
+ . . . (2.132)

and the time function is
y(t) = tRess=0H(s) + . . . (2.133)

This gives Z T

0

y (t)u(t)dt =

Z T

0

t2Ress=0H(s)dt + . . . (2.134)

It may then be concluded that if the system has a simple pole in s = jω0 at the imaginary
axis, then the system is passive if and only if the residual Ress=jω0 [H(s)] is real and
positive.

2.4.11 Bounded real transfer functions

Definition 3 The rational or irrational function B(s) is bonded real if
1. B(s) is analytic for all Re [s] > 0.
2. |B(s)| ≤ 1 for all positive and real s

The transfer function

B(s) =
H(s)− 1

H(s) + 1
(2.135)

is bounded real if and only if H(s) is positive real. This is shown as follows:
Because H(s) is analytic and Re [H(s)] ≥ 0 in Re [s] > 0 it follows that B(s) is

analytic in Re [s] > 0. It is assumed that B(s) 6= ±1 in Re [s] > 0. Solving for H(s) we
get

H(s) =
1 +B(s)

1−B(s)
(2.136)

Then, as H(s) is analytic in Re [s] > 0, it follows that B(s) 6= 1 in Re[s] > 0. Consider
the following calculation:

ReH(s) =
1

2
[H(s) +H∗(s)] =

1

2

1 +B(s)

1−B(s)
+

1

2

1 +B∗(s)
1−B∗(s)

(2.137)

=
1−B(s)B∗(s)

[1−B(s)] [1−B∗(s)]
(2.138)
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From this computation it is seen that Re [H(s)] ≥ 0 for all Re [s] > 0 if and only if
|B(s)| ≤ 1 in Re [s] > 0.

Example 33 Suppose that the transfer function H(s) is positive real. Then the inverse
H−1(s) is positive real. Statement 2 of Definition 2 is trivial in this case. Statements
1 and 3 are shown as follows: It is the possible to conclude from the maximum modulus
theorem that B(s) 6= −1 in Re [s] > 0, and we may express the inverse of H(s) as

G(s) = H−1(s) =
1−B(s)

1 +B(s)
(2.139)

which is analytic in Re [s] > 0 because B(s) is analytic and B(s) 6= −1 in this region.
This proves Statement 1 for G(s). Finally, statement 3 for G(s) is verified from

ReG(s) =
1

2

1−B(s)

1 +B(s)
+

1

2

1−B∗(s)
1 +B∗(s)

=
1−B(s)B∗(s)

[1 +B(s)] [1 +B∗(s)]
(2.140)

2.4.12 Passivity of PID controllers

A PID controller

Hr(s) = K
1 + Tis

Tis

1 + Tds

1 + αTds
(2.141)

where K > 0 and 0 ≤ α < 1 has phase

∠Hr(jω) = −π
2

+ arctanTiω + arctanTdω − arctanαTdω. (2.142)

From this equation it is seen that the phase must satisfy

−π
2
≤ ∠Hr(jω) ≤ π

2
. (2.143)

It follows that Re [H(jω)] ≥ 0 for all ω 6= 0. The transfer function has no poles to the
right of the imaginary axis, and one single pole at the imaginary axis at s = 0. The
residual of this pole is found to be

Ress=0Hr(s) = lim
s→0

[sHr(s)] =
K

Ti
(2.144)

which is real and positive, and it follows that a PID controller is positive real. This
implies the following result

A PID controller u(s) = Hr(s)e(s) is a passive system with input e and output u, and
the transfer function Hr(s) is positive real.

2.4.13 Closed loop stability of positive real systems

Stability properties can easily be established from passivity arguments for a feedback
interconnection of passive systems. Suppose that the system with input u and output y
is passive, and that it is given by

y(s) = H(s)u(s) (2.145)
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The transfer function H(s) is then positive real due to the passivity of the system. The
input u is generated by the system

u(s) = G(s) [yd(s)− y(s)] (2.146)

where the transfer function G(s) is supposed to be positive real. Then the loop transfer
function is L(s) = G(s)H(s). Note the positive realness implies that two transfer func-
tions G(s) and H(s) will have no poles to the right of the imaginary axis. Moreover, the
magnitude of the phase of the of G(jω) and H(jω) will be less than or equal to 90◦. This
implies that L(jω) has phase that is greater than -180◦. This means that the system is
at least marginally stable.

2.4.14 Storage function formulation

Passivity can be described using storage functions which are closely related to energy
functions and Lyapunov functions. In the passivity setting systems can be interconnected
in parallel and feedback interconnections, and the resulting system can be analyzed using
passivity theory or Lyapunov theory.
We consider the state space model

ẋ = f (x,u) (2.147)

y = h (x) (2.148)

Suppose that there is a storage function V (x) ≥ 0 and a dissipation function g(x) ≥ 0
so that the time derivative of V for solutions of the system satisfies

V̇ =
∂V

∂x
f(x,u) = uTy − g(x) (2.149)

for all control inputs u. Then the system with input u and output y is said to be passive.

The result follows from the calculationZ T

0

yT (t)u (t) dt = V (T )− V (0) +

Z T

0

g [x(t)] dt

≥ −V (0) (2.150)

Example 34 We consider again the mass-spring-damper system with input force F .
The model is

mẍ + dẋ + kx = F (2.151)

The total energy

V =
1

2
mẋ2 +

1

2
kx2 (2.152)

is a candidate for being a storage function. The time derivative of the energy function is
found to be

V̇ = Fẋ− dẋ2 (2.153)

where Fẋ is the power that is supplied to the system due to the force F . We see that
if the input is u = F and the output is selected to be y = ẋ then V̇ = yu − dẋ2, which
means that the system with input F and output ẋ is passive.
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Remark 1 Actually, it is sufficient thatZ T

0

g [x(t)] dt ≥ −Eg for all T ≥ 0 (2.154)

for some constant Eg ≥ 0.

2.4.15 Interconnections of passive systems

System 1

System 2

System 1

System 2

u

uu 1 u 1

u 2 u 2

y1 y1

y2 y2

y

y

Figure 2.4: Parallel interconnection and feedback interconnection of two passive systems.

We now consider two systems

ẋ1 = f1(x1,u1), y1 = h1(x1) (2.155)

ẋ2 = f2(x2,u2), y2 = h2(x2) (2.156)

which are passive in the sense that there are functions V1 (x1) ≥ 0 and V2 (x2) ≥ 0 so
that

V̇1 =
∂V1
∂x1

f1(x1,u1) ≤ uT1 y1 − g1(x1) (2.157)

V̇2 =
∂V2
∂x2

f2(x2,u2) ≤ uT2 y2 − g2(x2) (2.158)

where g1(x1) ≥ −Eg1 and g2(x2) ≥ −Eg2. We will now show that the parallel intercon-
nection and the feedback interconnection shown in Figure 2.4 are passive.
A parallel interconnection

u1 = u2 = u, y = y1 + y2 (2.159)

implies that the function V defined by

V := V1 + V2 ≥ 0 (2.160)

satisfies

V̇ = V̇1 + V̇2

= uT1 y1 − g1 (x1) + uT2 y2 − g2 (x2)

= uTy−g1 (x1)− g2 (x2) (2.161)

which shows that the parallel interconnection with input u and output y is passive.
A feedback interconnection

y1 = u2 = y, u1= u− y2 (2.162)



2.4. PASSIVITY 65

implies that

V̇ = V̇1 + V̇2

= uT1 y1 − g1 (x1) + uT2 y2 − g2 (x2)

= uTy−g1 (x1)− g2 (x2) (2.163)

so that also the feedback interconnection with input u and output y is passive.

2.4.16 Storage function for PID controller

A PID controller
u(s) = Hpid(s)e(s) (2.164)

where e(s) is the input to the controller, u(s) is the output from the controller, and

Hpid(s) = K
1 + Tis

Tis
(1 + Tds)

= K

µ
1 +

Td
Ti

+ Tds +
1

Tis

¶
(2.165)

can be written in state-space form as

ż =
e

Ti
(2.166)

u = K

·µ
1 +

Td
Ti

¶
e+ Tdė+ z

¸
(2.167)

Consider the nonnegative function

Vpid =
1

2
KTiz

2 +
1

2
KTde

2 (2.168)

The time derivative of V along the solutions of the PID controller dynamics is

V̇pid = zKTiż + eKTdė

= eK (z + Tdė)

= eu−K

µ
1 +

Td
Ti

¶
e2 (2.169)

It follows that the PID controller is passive.

2.4.17 Passive plant with PID controller

We consider a passive plant with a PID controller as shown in Figure 2.5. We assume
that the passive plant has input u and output y which satisfies

V̇p = yu− gp (2.170)

where Vp ≥ 0 and gp ≥ 0. Consider the nonnegative function

Vcl = Vp + Vpid (2.171)
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Passive
systemPID

yd e u y

Figure 2.5: Passive plant with PID controller.

The time derivative of Vcl along the solutions of the closed-loop system is

V̇cl = yu− gp + eu−K

µ
1 +

Td
Ti

¶
e2

= ydu− gp −K

µ
1 +

Td
Ti

¶
e2 (2.172)

where it is used that e = yd − y. We see that the closed-loop system with input yd and
output y is passive. In particular we have that if yd = 0, then

V̇cl = −gp −K

µ
1 +

Td
Ti

¶
e2 ≤ 0 (2.173)

2.4.18 Example: Control of mass-spring-damper system

For the mass-spring-damper system with input force F we found that

V̇ = Fẋ− dẋ2 (2.174)

Suppose that the input F is generated by the P controller F = −Kẋ. Then, with the
same storage function we have

V̇ = −Kẋ2 − dẋ2 = − (Kp − d) ẋ2 ≤ 0 (2.175)

Suppose that the PID controller

F (s) = Hpid(s)e(s) (2.176)

is used where e(t) = ẋd(t)− ẋ(t). Then

V̇cl = V̇ + V̇pid (2.177)

= ẋdF − dẋ2 −K

µ
1 +

Td
Ti

¶
e2 (2.178)

In particular, we see that if ẋd = 0, then V̇cl ≤ 0. Note that the controller is a PID
controller from velocity, which corresponds to a PD2 controller from position.

2.4.19 Example: Active vibration damping

Spacecraft and large space installations are design with lightweight structures, and the
lack of atmosphere gives little mechanical damping of vibrations. Even the effect of
temperature changes when a satellite passes from the shadow of the earth into the sunlight
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may be sufficient to cause unacceptable vibrations in the structure. Because of this
the use of feedback for active vibration damping is important (Kelkar and Joshi 1996).
Vibration models are usually in the form

Mq̈ + D (q, q̇) q̇ + Kq = Bf (2.179)

where q is the vector of generalized coordinates, which are the elastic deformations, M
is a symmetric mass matrix, K is a symmetric stiffness matrix, D (q, q̇) q̇ is a damping
term and f is the input control force. Detailed vibration models of high accuracy can
be derived from the method of finite elements (Bathe 1996). To give the reader an idea
richness of the structural properties of this model we briefly mention some issues that will
be addressed later in the book: The total energy of the vibration system is V = K +U ,
where

K =
1

2
q̇TMq̇ ≥ 0 (2.180)

is the kinetic energy, and

U =
1

2
qTKq ≥ 0 (2.181)

is the potential energy. The damping term is an energy dissipation term related to
friction, and will always satisfy

q̇TD (q, q̇) q̇ ≥ 0. (2.182)

The time derivative of the total energy along the solutions of the system is

d

dt
V = q̇TMq̈ + q̇TKq = q̇TBf − q̇

T
Dq̇. (2.183)

If the input force is set to the P controller f = −kBT q̇, which is a velocity feedback, then
the time derivative of the energy is

d

dt
V = −q̇T

¡
kBBT + D

¢
q̇ ≤ 0 (2.184)

It is interesting to note that with this velocity feedback the energy will decrease whenever
q̇ 6= 0. It should be clear from this discussion that the vibration model reflects important
physical properties related to energy that may be important in controller design. These
properties may be obscured if the model is reformulated in state space. Therefore, when
energy-based methods are used, the model is usually kept in the second-order form.

2.4.20 Passive electrical one-port

A passive electrical one-port is a circuit with one port and passive components in the
form of resistors, capacitors and inductors. Resistors are elements that dissipate energy,
while capacitors and inductors are elements that store energy. There are no elements
that generate energy. The total energy stored in the circuit is denoted V (t). The stored
energy cannot be negative, so we can assume that V ≥ 0. The port voltage is denoted
u(t) and the current into the port is denoted i(t). The power flowing into the one-port
is P (t) = u(t)i(t), while the power dissipated in the resistors is Pr ≥ 0.
The time derivative of the energy V stored in the circuit will be the power ui supplied

at the port minus the power loss Pr in the circuit. This is written

V̇ = ui− Pr (2.185)
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Integration of this equation givesZ T

0

i (t)u (t) dt = V (T )− V (0) +

Z T

0

Pr(t)dt (2.186)

Here V (T ) ≥ 0 and Pr(t) ≥ 0, and we find thatZ T

0

i (t)u (t) dt ≥ −V (0) (2.187)

This means that for a passive electrical one-port the energy that can be extracted from
the circuit over the terminals is less or equal to the energy V (0) that is initially stored
in the circuit. Note that (2.187) has the form of a passivity inequality, and that if u is
input and i is output, then the system is passive. This implies that the driving point
impedance Z(s) = u(s)/i(s) is positive real. On background of this we may conclude
that

The driving point impedance of a passive electrical one-port is positive real.

Example 35 From the passivity inequality (2.187) it is seen that if the current is taken
as input and the voltage is considered to be the output, then the system will still be passive,
which means that the driving point admittance Y (s) = i(s)/u(s) is passive.

Example 36 To illustrate this we consider a passive electrical one-port which is a par-
allel interconnection of a resistor and a capacitor. The current is given by

i =
1

R
u + Cu̇ (2.188)

The total energy stored in the circuit is the energy V = (1/2)Cu2 stored by the capacitor.
The time derivative of the energy is

V̇ = Cvv̇ = iu− 1

R
u2 (2.189)

where the loss term is due to the energy dissipation in the resistor. Figure 2.6.

+

-
u

i

R C

Figure 2.6: Passive electrical one-port.

2.4.21 Electrical analog of PID controller

A PID controller from current to voltage of a one-port is given by

u (s) = −K
µ

1 +
Td
Ti

+ Tds +
1

Tis

¶
[id (s)− i (s)] (2.190)
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+

-

i d R L C

i

u

Figure 2.7: Electrical analog of PID controller for an electrical one-port where the current
i is controlled with the voltage u.

where id is the desired current. This is an electrical one-port where a current source with
current id is placed in in parallel to a series connection with a resistor R = K(1+Td/Ti),
a capacitor C = Ti/K, and an inductor L = TdK (Figure 2.7). A PI controller is obtained
by setting Td to zero, and in that case there is no inductor in the one-port. In the case
that id = 0, the PID controller is a passive one-port with only passive elements.

2.4.22 Passive electrical two-port

An electrical two-port has two ports, one input port with voltage u1 and current i1, and
one output port with voltage u2 and current i2. The power flowing into the two-port is

P (t) = u1 (t) i1 (t) + u2 (t) i2 (t) (2.191)

As for the passive one-port, the energy that can be extracted from a passive n-port
cannot be larger than the energy Vn(0) that is initially stored in the capacitors and the
inductors. This gives Z T

0

[u1 (t) i1 (t) + u2 (t) i2 (t)] dt ≥ −V2(0) (2.192)

2.4.23 Termination of electrical two-port

An electrical two-port is said to be terminated if the output port is connected to a
one-port so that

u2 = u, i2 = −i (2.193)

Then the two-port with the one-port termination becomes a one-port with port variables
u1 and i1.
Suppose that both the two-port and the one-port termination are passive. Then the

following energy equations are validZ T

0

[u1 (t) i1 (t) + u2 (t) i2 (t)] dt ≥ −V2(0) (2.194)Z T

0

i (t)u (t) dt ≥ −V1(0) (2.195)

If we add these equations and insert the connection equations (2.193) we getZ T

0

i1 (t)u1 (t) dt ≥ − [V1(0) + V2(0)] (2.196)
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The physical interpretation is that the energy that can be extracted from the combined
circuits is equal to the sum of the initially stored energy in the two circuits. This result
shows clearly shows that if a passive two-port is terminated with a passive-one-port, then
the resulting one-port with port variables u1 and i1 is passive.

2.4.24 Passive electrical n-ports

An electrical n-port has n ports with voltage uk and current ik. The power flowing into
the n-port is

P (t) =
nX

k=1

uk (t) ik (t) = iT (t)u (t) (2.197)

where u= (u1, . . . , un)T and i = (i1, . . . , in)T . As for the passive one-port, the energy
that can be extracted from a passive n-port cannot be larger than the energy En that is
initially stored in the capacitors and the inductorsZ T

0

iT (t)u (t) dt ≥ −Vn(0) (2.198)

A general n-port with effort vector e and flow vector f is passive if the energy that can be
extracted from the n-port is limited by the energy that is initially stored in the n-port,
that is, if Z T

0

fT (t) e (t) dt ≥ −E0 (2.199)

As in the electrical case this can be expressed in terms of conditions on the impedance
Z (s) for a one-port.

2.4.25 Example: Telemanipulation

In a telemanipulation system a manipulator is remotely controlled by a human operator.
Early telemanipulation systems were master-slave systems where the operator moved a
handle fixed to a master manipulator that was connected to an identical slave manipulator
through mechanical linkages. This was used to protect the operator from hazardous
environments due to radioactivity or danger of contamination from biological samples.
The operator would then typically watch the slave manipulator through a window, and as
there was a direct mechanical coupling between the master and the slave manipulators
the operator would feel contact forces that resulted when the slave came into contact
with a sample or hit against a table. This feature is called force reflection. At a later
stage such systems were equipped with computer control. This was done to make it
possible to perform telemanipulation in hostile environments for operations in space,
and for underwater operations at great depths. A more recent activity is telesurgery.
In telemanipulation systems with computer control the motion of the master is mea-

sured by sensors, and the position and velocity commands are transmitted to the slave
through a computer, and the slave is driven by DC motors. The opens up for advanced
control functions, but it turns out that the system becomes unstable if force reflection is
used with time delays of 40 ms or more. This problem was analyzed in an energy flow
setting in (Anderson and Moore 1989) and (Niemeyer and Slotine 1991), and it was pro-
posed to transmit wave variables to obtain a closed loop system where the transmission
between the master and the slave could be described in terms of passive two-ports. The
main idea of the solution is presented in the following.
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A human operator that moves a telemanipulation system using a master-slave con-
figuration will expect that the master-slave system in itself will not generate energy that
is transferred to the handle that the operator is using to move the master. If the system
were to generate energy, then the operator might get the impression that the telemanip-
ulation system had a mind of its own, and the operator might have to struggle against
movements that are generated by the telemanipulation system. The operator might even
get injured by the master. This means that the telemanipulation system as felt by the
operator may store energy and dissipate energy, but it may not generate energy. This
means that the handle connected to the master of the telemanipulation system should
appear to the operator as a port to a passive mechanical system where the velocities of
the handle are the flow variables, and the forces on the handle are the effort variables. If
the master and slave are connected with mechanical linkages, then the system will be a
passive mechanical system. However, when computer control is added, then the control
algorithms must be selected with care so that the system still appears as a passive system
to the operator.
What the operator will expect is that the telemanipulation system appears as a passive

two-port that transfers the velocity commands from the operator to the slave, and that
returns the force from the slave to the operator. A mathematical formulation of this in
one dimension is that the master is a two-port

mmv̇m = Fh − Fm (2.200)

with effort Fh and flow vm on the input port, and effort Fm and flow vm on the output
port. The slave is a passive two-port

msv̇s = Fs − Fe (2.201)

with effort Fs and flow vs is the input port and effort Fe and vs at the output port. The
key to a satisfactory system is to have a passive two-port with effort Fm and flow vm on
the input port, and effort Fs and flow vs is the output port to connect the output port
of the master to the input port of the slave. The total energy E of the system will then
be

E(T ) = E(0) +

Z T

0

Fh(t)vm(t)dt+

Z T

0

Fe(t)vs(t)dt (2.202)

It is reasonable to assume that the total energy is positive, that is, E ≥ 0, which implies
that Z T

0

Fh(t)vm(t)dt ≥ −E(0)−
Z T

0

Fe(t)vs(t)dt (2.203)

The physical interpretation of this is that the energy that is returned to the operator
through the handle on the master is less that the energy initially stored in the system
plus the energy supplied to the slave from the environment.
First, suppose that the master is directly connected to the slave through a rigid

interconnection so that
Fs = Fm and vs = vm (2.204)

Then the interconnection between the master and the slave is certainly a passive two-port,
and the desired passivity of the system is ensured. Moreover, we see that

(mm +ms)v̇m = Fh − Fe (2.205)

which means that the operator experiences the environmental force Fe on the slave, and
moves the combined inertia of master and slave.
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Next, consider the case where the slave is driven by DC motors, and that the com-
manded velocity vm from the master is measured by a sensor and transmitted electroni-
cally without any time delay. Then a possible solution is to control the slave with a PD
controller with desired velocity vd and desired position xd given by

vd(t) = vm(t) and xd(t) = xm(t) (2.206)

The slave with PD controller is then given by the passive two-port

msv̇s = Fs − Fe (2.207)

Fs = Ks(xm − xs) +Ds(vm − vs) (2.208)

with effort Fs and flow vm at the input port and effort Fe and flow vs at the output port.
Force reflection to the master is achieved by setting up the force Fm(t) = Fs(t) in the
master, which gives the following two-port for the master:

mmv̇m = Fh − Fs (2.209)

The resulting telemanipulation system is passive with a mechanical analog as shown in
Figure 2.8 where the transmission between the master and the slave is a spring with
stiffness Ks in parallel with a damper with coefficient Ds.

Fh

Fh

Fh

Fe

Fe

Fe

mm

mm

mm

ms

ms

ms

vm

vm

vm

vs

v s

vs

z0 ,

Ks

K s
Ds

Ds

1

2

3

Figure 2.8: Mechanical analogs of telemanipulation systems with force reflection. The
master is represented by a mass mm that is moved with a force Fh from the human
operator. The slave is represented by a mass ms which is exposed to a force Fe from
the environment. In 1) there is a direct mechanical coupling between the master and the
salve. In 2) the slave is controlled by a DC motor with PD control, and there is no time
delay in the signal transmission. In 3) the slave is controlled by a DC motor with PD
control, and the signals are transmitted with time delay using wave variables.
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Finally, suppose that there is a time delay τ in the electronic transmission between
master and slave. Early attempts involved using the same solution as presented above,
but with transmission given by

vd(t) = vm(t− τ) and Fm(t) = Fs(t− τ) (2.210)

The resulting system is not passive, as there is no passive mechanical two-port that delays
the velocity in the forward direction and that delays the force in the opposite direction.
Stability problems where experienced for such solutions already at time delays of 40 ms.
A different solution must therefore be sought. An elegant solution to this problem is to
use a lossless transmission line to interconnect master and slave. The key to this solution
is that a lossless transmission line transmits the wave variables with a time delay that is
the transport time τ of the transmission line. We therefore introduce the wave variables

am = Fm + z0vm and bm = Fm − z0vm (2.211)

for the output port of the master, and the wave variables

as = Fs − z0vd and bs = Fs + z0vd (2.212)

for the input port of the slave where z0 is the characteristic impedance of the transmission
line. The wave variables are transmitted according to

bs(t) = am(t− τ) and bm(t) = as(t− τ) (2.213)

In terms of forces and velocities this gives the following description of the passive two-port

vd(t) = vm(t− τ) +
1

z0
[Fm(t− τ)− Fs(t)] (2.214)

Fm(t) = Fs(t− τ) + z0[vm(t)− v0(t− τ)] (2.215)

with effort Fm and vm at the input and effort Fs and flow vs at the output port. The
slave may then be controlled with the PD controller

Fs = Ks(xd − xs) +Ds(vd − vs) (2.216)

as in the case of no time delay. The mechanical analog is as when there is no time delay,
but with a transmission corresponding to a lossless hydraulic transmission line with a
compressible fluid shown in Figure 2.8.

2.4.26 Passivity and gain

Consider a system with input u and output y. Define the variable

r = u + λy (2.217)

Then Z T

0

r2dt =

Z T

0

u2dt + 2λ

Z T

0

uydt + λ2
Z T

0

y2dt (2.218)

From this equation it is seen thatZ T

0

uydt ≥ −E0 (2.219)



74 CHAPTER 2. MODEL ANALYSIS TOOLS

is equivalent for all λ > 0 toZ T

0

r2dt + 2λE0 ≥
Z T

0

u2dt and

Z T

0

r2dt+ 2λE0 ≥ λ2
Z T

0

y2dt (2.220)

This shows that passivity of the system with input u and output y is equivalent to a small
gain condition in the L2 norm (Khalil 1996) from r to u, and from r to y. A related
result is used in semi-group theory (Pazy 1983, p. 14).

Example 37 This result was used in attitude control in (Egeland and Godhavn 1994)
where

r = ω + λ² (2.221)

was used. A controller was designed so that r ∈ L2, and then (2.220) was used to show
that the passivity of the system with input ω and output ² implied that the mapping from
r to ω, and the mapping from r to ² were L2 stable.

Example 38 In the adaptive tracking controller in (Slotine and Li 1988), stability in
the variable

r = q̇ + λq (2.222)

was used to establish convergence in q and q̇. In (Kelly, Carelli and Ortega 1989) the
same controller was analyzed, and it was shown that r ∈ L2, and linear theory was used
to show that this implied convergence in q and q̇.

2.5 Uncertainty in modeling

2.5.1 General state space models

In a general state space model

ẋ = f (x, u, t) (2.223)

y = h (x, t) (2.224)

or, in the case of linear models,

ẋ = Ax + Bu (2.225)

y = Cx +Du (2.226)

there may be uncertainties related to

• Parameter values

• Model structure

• System order

There are techniques for describing such uncertainties (Skogestad and Postlethwaite
1996), which may be based on additive uncertainties. Such additive terms may be related
to model properties.
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2.5.2 Exact kinematic models

Some types of models or parts of models are exact. In particular this applies to kinemat-
ics, which is the geometric description of motion. Kinematics, which is discussed in great
detail in Chapter 6, play an important role in the models describing the motion of rigid
bodies such as planes, ships, robots, cars and mechanisms. The main role of kinematics
in this context is in the kinematic differential equations that give the time derivative
of the configuration as a function of velocity and angular velocity. It may be of great
importance that the kinematic part of a model is exact because the kinematics are often
nonlinear, and even complicated. Therefore it may be important to keep in mind which
part of the model that is kinematic and therefore exact.

Example 39 In inertial navigation the position of a plane is calculated from inertial
sensors (Titterton and Weston 1997). The inertial sensors are gyroscopes, which measure
the angular velocity of the plane, and accelerometers, which measure the acceleration. The
velocity and position are calculated by integrating the acceleration measurements, while
the angular velocity measurements are used to calculate the direction of the axes of the
accelerometers. The direction of the accelerometers are usually described in terms of
Euler parameters, also known as quaternions. When the angular velocity vector ωb of
the plane is given, the Euler parameters may be calculated by numerical integration of
the kinematic differential equations

η̇ = −1

2
²Tωb (2.227)

²̇ =
1

2

¡
ηI + ²×

¢
ωb (2.228)

where ²×ωb denotes the vector cross product between ² and ωb. The rotation matrix is
Rη,� = I + 2η²× + 2²×²×, and the acceleration in a star-fixed coordinate frame is

a =
¡
I + 2η²× + 2²×²×

¢
ab (2.229)

where ab are the measured accelerations. We see that the equations for calculating the
acceleration a are relatively complicated and highly nonlinear. However, it is interesting
to note that there are no approximations or uncertainty involved in the development of
this model.

In addition, kinematics play an important role in fluid mechanics, where the concepts
of divergence and curl are kinematic, and moreover, the Laplace equation

∇2φ = 0 (2.230)

in potential flow is purely kinematic. Also Reynolds’ transport theorem is a kinematic
result.

2.5.3 Balance equations

Balance equations are based on the physical phenomenon that certain properties like
mass, momentum and energy are conserved. Therefore, the balance equations are exact
models from the outset. As an example of this, the Cauchy equation of motion for a fluid
is exact. This equation, which is discussed in detail in Section 11.2.1, is written

ρ
Dvi
Dt

= Tji,j + ρfi (2.231)
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where ρ is density, vi is the velocity in direction i, Tji,j is the gradient of the stress tensor,
and fi is the body force. The modeling assumptions enter in the constitutive equations
where the assumptions on the functional dependence of the stress tensor on fluid motion
enters. The mass balance is important in many physical systems, and perhaps even more
important is the energy balance. The model

d

dt
[total energy in a V ] = [energy flow into V ]

− [energy flow out of V ]

+ [energy generated in V ] (2.232)

where V is a fixed volume, is exact, and is not influenced by changes in parameter
values. Such insight may be especially interesting in relation to energy-based methods
for controller design.

2.5.4 Passivity

In several important applications the plant may have passivity as a physical property
for a given combination of control variable and output variable. This means that the
plant will be passive when plant parameters undergo large variations in numerical values,
and even under changes in model order. Then with a properly selected PID controller
the closed loop system will always be stable although there may by a high degree of
uncertainty in numerical parameters and detailed modeling.

Example 40 A DC motor is used to control a joint in a robot arm (Slotine 1991),
(Lozano et al. 2000). The DC motor is current controlled, and delivers a specified torque
u. The robot arm has several mechanical resonances, and it may pick up loads of unknown
inertia. Moreover, the robot may come into contact with a rigid environment. However,
in spite of all the uncertainty, the arm seen from the motor will be passive because

d

dt
[total energy in robot] = q̇u− [energy dissipated by friction] (2.233)

where q̇ is the shaft velocity of the robot joint, and u is the torque from the DC motor.
Therefore, the closed loop system is stable as long as the controller is passive. This is
the case if a PI controller from q̇ is used, which is the same as a PD controller from the
motor angle q.
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Motors and actuators
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Chapter 3

Electromechanical systems

3.1 Introduction

This chapter deals with mathematical models of electrical motors, and models of elec-
tromechanical sensors and actuators. These electromechanical systems are based on
energy conversion between electrical energy and mechanical energy due to capacitive and
inductive effects. This type of electromechanical systems are important, as they are vital
components in most control systems. Special attention is given to the DC motor with
constant field, which is a basic building block in many control systems. This motor is
described by a simple model, and it is possible to control the motor torque directly. Be-
cause of its importance and simplicity the chapter starts with the model of a DC motor,
and presents typical load configurations for the DC motor. Then selected topics from the
general theory of electromechanical energy conversion is presented with emphasis on en-
ergy functions. This provides us with the necessary background to derive more advanced
models of electrical motors. This includes the model of a DC motor with externally
controlled field, the model of a general AC motor, and models for induction motors.

3.2 Electrical motors

3.2.1 Introduction

An electrical motor with rotary motion has a stationary part called the stator. The
rotary part of the motor is called the rotor. The rotor is fixed to the motor shaft
which drives the load. The motion of the rotor is due to the motor torque which is
set up by electromagnetic Lorentz forces acting on the rotor. There are many different
ways of setting up an appropriate Lorentz force, and electrical motors are characterized
depending on how this is done. Electrical motors are divided into DC motors and AC
motors. DC motors are well suited for control applications, as the torque of the motor
can be accurately controlled. The recent development in power electronics, however, has
made it possible to control the torque also for AC motors, and, consequently, AC motors
are now used for accurate control. A basic reference on electrical motors is (Fitzgerald,
Kingsley and Umans 1983), while a more advanced textbook including control methods
is (Leonhard 1996).
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3.2.2 Basic equations

A rotary motor has a motor shaft that rotates with angular velocity ωm, and it has some
device for setting up a motor torque T so that the motor shaft has the following equation
of motion:

Jmω̇m = T − TL (3.1)

Here TL is the load torque acting on the shaft. The mechanical power delivered from the
motor to the shaft is

Pm = Tωm (3.2)

while the mechanical power delivered to the load is

PL = TLωm (3.3)

The motor shaft dynamics can be described as a two-port with effort T and flow ωm at
the input port, and effort TL and flow ωm at the output port. Different types of motors
are characterized according to how the motor torque T is generated. In electrical motors
the torque is due to electromagnetic forces, in a hydraulic motor of the hydrostatic type
it is due to the pressure force from a pressurized fluid, while in a turbine the torque is
set up by the forces that result from the change of momentum in the flowing fluid.
The speed of a motor is commonly given in revolutions per minute (rev/min). The

relation to the SI unit rad/s is

1
rev

min
=

2π

60

rad

s
= 0.105

rad

s
(3.4)

3.2.3 Gear model

 in ,Tin  out ,Tout

1 : n

Figure 3.1: Reduction gear

An electrical motor will typically have a speed range from zero up to about 3000
rev/min. Specially designed electrical motors may run up to 12000 rev/min. In compar-
ison to this, car engines run from 800—6000 rev/min. For many applications the required
speed range of the load is significantly less than the speed range of the motor, and a re-
duction gear must be used. This gives a lower speed of the load, and, more importantly,
it gives a higher torque.
A reduction gear with gear ratio n (Figure 3.1) is described by

ωout = nωin (3.5)

where ωin is the angular velocity of the shaft on the input side of the gear, and ωout is
the angular velocity of the shaft on the output side of the gear. For a reduction gear
n < 1, and a gear is said to have a gear ratio of, say, 10 if n = 1/10.
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The relation between the input torque Tin and the output torque Tout is found by
comparing power in and power out for the gear. Suppose that the gear is lossless. Then
power in is equal to power out, that is,

Tinωin = Toutωout (3.6)

Inserting the expression for ωout we find that

Tout =
1

n
Tin (3.7)

This means that a reduction gear reduces the speed by a factor n, while it amplifies the
torque by a factor 1/n.

A gear with gear ratio n may be described as a two-port

ωout = nωin (3.8)

Tout =
1

n
Tin (3.9)

with variables Tin and ωin at the input port, and variables Tout and ωout at the output
port.

3.2.4 Motor and gear

Jm JL

m ,TL L

Te

1 : n

Figure 3.2: Motor and gear.

Consider a motor with equation of motion

Jmω̇m = T − TL (3.10)

that drives a load over a reduction gear with gear ratio n (Figure 3.2). Then the load
has a shaft speed ωL = nωm, and is driven by the output torque of the gear, which is
TL/n. The inertia of the load is JL, and it is assumed that an external torque Te acts on
the load. Then the equation of motion for the load is

JLω̇L =
1

n
TL − Te (3.11)

If the load equation (3.11) is multiplied by n and added to the equation of motion of
the motor (3.10), then the result is the equation of motion for the system referred to the
motor side. Alternatively, the motor equation (3.10) can be divided by n and added to
the load equation (3.11). This will give the equation of motion of the system referred to
the load side. To sum up:
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The equation of motion for motor, gear and load referred to the motor side is

(Jm + n2JL)ω̇m = T − nTe (3.12)

The equation of motion for motor, gear and load referred to the load side isµ
1

n2
Jm + JL

¶
ω̇L =

1

n
T − Te (3.13)

3.2.5 Transformation of rotation to translation

m ,TL

m
Fe

v

r
Jm

Figure 3.3: Transmission from rotation to translation.

Rotational motion of a shaft can be transformed to translational motion and vice
versa by mounting a wheel that rolls on a surface as shown in Figure 3.3. This type
of transmission is commonly seen in rack-and-pinion drives, friction gears, pulleys, and
between car wheels and the road. Suppose that the wheel has radius r, shaft speed ωm,
and torque TL. Then the translational velocity will be v = rωm. Denote the force acting
from the wheel on the translating part by F . Then the input power will be ωmTL and the
output power will be vF . The gear does not store energy, and it follows that F = TL/r.
This shows that:

A rotation to translation transmission can be described by the two-port

v = rωm (3.14)

F =
1

r
TL (3.15)

with variables TL and ωm at the input port, and variables F and v at the output port.

Consider a motor which drives a mass m in translational motion over a wheel with
radius r. The load is assumed to have equation of motion

mv̇ = F − Fe (3.16)

where Fe is an external force acting on the load. A motor described by

Jmω̇m = T − TL (3.17)

is used. By combining these two equations the following result is found:
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The equation of motion for motor and load referred to the motor side is

(Jm +mr2)ω̇m = T − rFe (3.18)

The equation of motion for motor and load referred to the load side is

(
1

r2
Jm +m)v̇ =

1

r
T − Fe (3.19)

3.2.6 Torque characteristics

TL

T

m m

T
TL

1

2

Figure 3.4: To the left is shown a stable system where the load torque TL is increasing
for increasing motor velocity ωm. To the right is shown a system with two equilibrium
points. Equilibrium 1 is stable, while equilibrium 2 is unstable as the load torque TL
decreases faster than the motor torque T when the motor velocity ωm increases.

In many applications the load torque TL will depend on the motor speed. An example
of this is shown in the left diagram of Figure 3.4, where the load torque increases with
increasing speed. This will be the case for systems where the friction increases with the
velocity, like the air resistance of a car or a bicycle. Moreover, the motor torque will
typically be a decreasing function of the motor shaft speed ωm due to increasing energy
loss in the motor. It turns out that if both the motor torque and the load torque are
functions of the motor speed so that T = T (ωm) and TL = TL (ωm), then the stability
of the motor and load can be investigated in a torque-speed diagram. This is done by
linearization of the motor model (3.1), which gives

Jm∆ω̇m = k∆ωm (3.20)

where

k =

µ
∂T

∂ωm
− ∂TL

∂ωm

¶¯̄̄̄
ωmo

(3.21)

is a linearization constant. From linear stability theory we see that the system is stable
if and only if k ≤ 0. This can be investigated graphically in a torque-speed diagram as
shown in Figure 3.4.

Example 41 Suppose that a motor is connected to a load which is simply a friction
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torque TL. The friction is given by

TL(ωm) =

(
Tc + (Ts − Tc) exp

"
−
µ
ωm
ωs

¶2#)
sgn(ωm) +Bωm (3.22)

where Tc is the Coulomb friction and Ts is the static friction and

sgn(ωm) =

½ −1 ωm < 0

1 0 < ωm
(3.23)

The constant ωs is the characteristic velocity of the Stribeck effect, and B is the coeffi-
cient of the viscous friction. For further details on this friction characteristic, see the
Chapter 5. The motor torque is directly controlled, so that T is a constant. The equation
of motion is then

Jmω̇m = T −
(
Tc + (Ts − Tc) exp

"
−
µ
ωm
ωs

¶2#)
sgn(ωm)−Bωm (3.24)

For simplicity it is assumed that ωm ≥ 0 so that sgn(ωm) = 1. Linearization gives

Jm∆ω̇m =

Ã
2
ωm
ωs

(Ts − Tc) exp

"
−
µ
ωm
ωs

¶2#
−B

!
∆ωm (3.25)

This shows that the system is unstable for constant motor torque T at the speed ωm if

B < 2
ωm
ωs

(Ts − Tc) exp

"
−
µ
ωm
ωs

¶2#
(3.26)

3.2.7 The four quadrants of the motor

Generator Motor

Motor

MotorGenerator

GeneratorGeneratorMotor

m

T

ia

ua

Figure 3.5: The four quadrants of the motor (to the left), and the four quadrants of the
power amplifier (to the right).

A motor delivers the mechanical power Tωm through the motor shaft, where T is
the motor torque and ωm is the motor speed. If T and ωm has the same signs under
stationary operation, then the motor delivers power. In this case the motor transforms
electrical power to mechanical power, and is said to work as a motor. If T and ωm has
opposite signs under stationary operation, then the motor receives mechanical power and
transforms it into electrical power, and is said to work as a generator. This is illustrated
in Figure 3.5.
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3.3 The DC motor with constant field

3.3.1 Introduction

The DC motor with constant field has a simple dynamic model, and has been controlled
accurately with simple electronics from the early period of automatic control. Because
of this it has been a very important component in servomechanisms, which are control
systems involving fast and accurate control of motion. In modern servomechanisms, the
DC motor will always be used as a current controlled DC motor, where a high gain
current loop is integrated with the motor. This makes it possible to control the motor
torque directly, and this is one of the reasons for the success of the motor. More recently,
advanced power electronics has made it possible to control other types of electrical motors
with the same fast response as the DC motor. This will typically involve some method
to control the motor torque, which leads to the same dynamic model as for the current
controlled DC motor. Therefore, the models and the analysis results presented for the
current controlled DC motor in this section is also valid for other types of electrical
motors where the motor torque can be controlled.

3.3.2 Model

+

-

+

-

i a

u a ea

Ra La T,m ,m

TL

Jm

Figure 3.6: Armature circuit of DC motor with constant field.

A DC motor with constant field is described by an armature circuit with current
ia and input voltage ua. The armature circuit is a serial connection of the armature
resistance Ra, the armature inductance La, and the electromechanical energy conversion
unit with induced voltage ea. This voltage ea is induced by the motor speed ωm in
combination with a constant electromagnetic field that is set up either by a field circuit
with a constant field current ie, or by a permanent magnet which replaces the field circuit.
An important characteristic of the DC motor with constant field is that the motor torque
is proportional to the armature current, and is given by

T = KT ia (3.27)

where KT is the torque constant.
The DC motor with constant field can be described as a serial interconnection of three

passive two-ports. The first two-port is the armature circuit where the input port has
variables ua and ia, and the output port has variables ea and ia. The second two-port is
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the electromechanical energy conversion unit with an electrical port with port variables
ea and ia, and a mechanical port with port variables T and ωm. Finally, the third
two-port is the motor shaft with input port with variables T and ωm and output port
with variables TL and ωm. There is no energy storage in the electromechanical energy
conversion unit, which implies that the power eaia of the electrical port equals the power
Tωm of the mechanical port. This gives

eaia = Tωm = KT iaωm ⇒ ea = KEωm (3.28)

where KE = KT is the field constant. The dynamic model can then be found from the
voltage law of the armature circuit and the equation of motion for the motor shaft:

A DC motor with constant field has the dynamic model

La
d

dt
ia = −Raia −KEωm + ua (3.29)

Jmω̇m = KT ia − TL (3.30)

θ̇m = ωm (3.31)

The block diagram is shown in Figure 3.7.

ua -
- -

1
La

i a

Ra

KT

TL

1
Jm

m m

Ke

Figure 3.7: Voltage controlled DC motor.

3.3.3 Energy function

The total energy V of the motor is the sum of inductive energy stored in the armature
inductance La and the kinetic energy of the motor shaft. This gives

V =
1

2
Lai

2
a +

1

2
Jmω

2
m ≥ 0 (3.32)

The time derivative of the energy function V along the solutions of the system is

V̇ = iaLa
dia
dt

+ ωmJmω̇m

= ia (−Raia −KEωm + ua) + ωm (KT ia − TL)

= iaua − ωmTL −Rai
2
a

≤ iaua − ωmTL (3.33)
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Now, suppose that the load model with input ωm and output TL is passive, and that
there is a storage function VL ≥ 0 so that

V̇L ≤ ωmTL (3.34)

Then the total energy Vt := V + VL is greater that or equal to zero, and the time
derivative of Vt along the solution of the system is

V̇t ≤ iaua (3.35)

We have then established the following result:

The DC motor model (3.29—3.31) with input ua and output ia is passive if the load with
input ωm and output TL is passive.

Example 42 Suppose that the load is simply a damper with viscous friction so that
TL = BLωm. Then the system with input ωm and output TL is passive with storage
function VL = 0 as this gives

V̇L = 0 ≤ BLω
2
m = ωmTL (3.36)

It follows that the DC motor with input ua and output ia is passive with this load.

Example 43 Suppose that the load is an inertia JL with shaft angle θL connected to the
motor shaft by a spring with torque

TL = K(θm − θL) +D(θ̇m − θ̇L) (3.37)

The equation of motion for the inertia is

JLθ̈L = TL (3.38)

Then the system with input ωm and output TL is passive with storage function equal to
the total energy

VL =
1

2
JLθ̇

2

L +
1

2
K(θm − θL)2 ≥ 0 (3.39)

because the time derivative of VL along the solutions of the system is

V̇L = JLθ̈Lθ̇L +K(θm − θL)(θ̇m − θ̇L)

= TLθ̇L −K(θm − θL)(θ̇m − θ̇L)

= TLθ̇m + TL(θ̇L − θ̇m)−K(θm − θL)(θ̇m − θ̇L)

= TLθ̇m −D(θ̇m − θ̇L)2 (3.40)

3.3.4 Laplace transformed model

Laplace transformation of the DC motor model (3.29—3.31) gives

sia (s) =
1

La
[−Raia (s)−KEωm (s) + ua (s)] (3.41)

sωm (s) =
KT

Jm
ia (s)− 1

Jm
TL (s) (3.42)

sθm (s) = ωm (s) (3.43)
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The equation of motion gives

s2θm (s) =
KT

Jm
ia (s)− 1

Jm
TL (s) (3.44)

while the armature equation gives

(Las +Ra) ia (s) = −KEsθm (s) + ua (s) (3.45)

Insertion of (3.45) in (3.44) gives

s2θm (s) =
KT

Jm

1

Las+Ra
(−KEsθm (s) + ua (s))− 1

Jm
TL (s) (3.46)

and finally

θm(s) =

1
KE

ua(s)− Ra
KEKT

³
1 + La

Ra
s
´
TL(s)

s
³

JmLa
KEKT

s2 + JmRa
KEKT

s + 1
´ (3.47)

This can be written

θm(s) =
1
KE

ua(s)− Ra
KTKE

(1 + Tas)TL(s)

s(TaTms2 + Tms + 1)
(3.48)

where

Ta =
La
Ra

(3.49)

is the electrical time constant of the motor, and

Tm =
JmRa

KEKT
(3.50)

is the mechanical time constant. Usually, one may assume that the electrical time con-
stant is much less than the mechanical time constant so that the model can be written

θm(s) =
1
KE

ua(s)

s(1 + Tms)(1 + Tas)
−

Ra
KEKT

TL(s)

s(1 + Tms)
(3.51)

This leads to the following result:

The transfer function from the input ua to the angle θm is

Hp(s) =
θm
ua

(s) =
1
KE

s(1 + Tms)(1 + Tas)
(3.52)

3.4 DC motor control

3.4.1 Introduction

A DC motor used in a servomechanism will more or less always have a current control
loop integrated in the motor, and it will normally have a speed loop outside of the current
loop. These feedback loops are often seen as an integrated part of the DC motor, and
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it is therefore useful to present models of the DC motor with current control and with
speed control. The advantage of these feedback loops is that the current loop will have
very high bandwidth, and it will therefore suppress nonlinearities in the power amplifier.
The velocity loop can also be given a high bandwidth, and will tend to eliminate the
effect of friction on the motor. The outer position control loop will normally have to
be slower than the first mechanical resonance, and this limits the gain in the position
loop. Usually a PI controller will be used in the current loop, and a PI controller with
limited integral action will used in the velocity loop. In the presentation here we use P
controllers to simplify the expressions. The main results will still be valid.

3.4.2 Current controlled DC motor

The transfer function from the input ua (s) to the current ia (s) of the armature circuit
can be found from

ia
ua

(s) =
ia
θm

(s)
θm
ua

(s) (3.53)

From the Laplace transformed model we see that

s2θm =
KT

Jm
ia ⇒ ia

θm
(s) =

Jms
2

KT
(3.54)

and we find that

Ha(s) :=
ia
ua

(s) =
Jm

KEKT
s

1 + Tms + TmTas2
(3.55)

where it is used that KE = KT . The following current controller is used:

ua = Ki (id − ia) (3.56)

This gives the closed loop dynamics

ia
id

(s) =
KiHa(s)

1 +KiHa(s)
(3.57)

In practice it is possible to select a very high gain Ki. This is a consequence of the
passivity of the system when ua is input and ia is output, which implies that the transfer
function Ha(s) is positive real with phase satisfying |∠Ha(jω)| ≤ 90◦. Therefore we may
let Ki approach infinity in the expression, which gives the approximation

ia(s) = id(s) (3.58)

Insertion in (3.44) gives the following result:

The model of a current controlled DC motor is given by the double integrator model

θm (s) =
1

Jms2
[KT id (s)− TL (s)] (3.59)

where the input is the desired current id.

The block diagram is shown in Figure 3.8.



90 CHAPTER 3. ELECTROMECHANICAL SYSTEMS

i d m m-
KT 1

Jm

TL

Figure 3.8: Current controlled DC motor.

Example 44 Consider a PI controller

ua = KiTi
1 + Tis

Tis
(i0 − ia) (3.60)

for armature current control where Ti = Tm. Assume that Ta ¿ Tm so that the denom-
inator of L(s) can be factored as (1 + Tas)(1 + Tms). Then the loop transfer function
is

L(s) = Ki
Jm

KEKT

1

1 + Tas
(3.61)

which shows that the controller is effective also at low frequencies. Also in this case the
model (3.59) results for realistic gains Ki. This is the controller that is used in practice.

3.4.3 Velocity controlled DC motor

The speed ωm of the motor satisfies sθm = ωm, and it follows that

ωm
id

(s) =
ωm
θm

(s)
θm
id

(s) =
KT

Jms
(3.62)

This transfer function is the product of a gainKT /Jm and an integrator 1/s. The velocity
controller

id = Kω (ωd − ωm) (3.63)

gives gives the closed-loop dynamics

ωm
ωd

(s) =
Ka

s

1 + Ka

s

=
1

1 + s
Ka

(3.64)

where

Ka =
KTKω

Jm
(3.65)

is the acceleration constant of the system. We see that the velocity loop is stable as it
has only one pole, which is at s = −Ka.

3.4.4 Position controlled DC motor

A position feedback loop is closed around the velocity loop as shown in Figure 3.9. The
transfer function from the velocity ωm to the angle θm is an integrator, which leads to

θm
ωd

(s) =
1

s
³
1 + s

Ka

´ (3.66)
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Kv Ka
d  d m m

 ca

 cv

- -

Figure 3.9: Current controlled DC motor with velocity loop and position loop. The
crossover frequency of the velocity loop is ωca = Ka, and the crossover frequency of the
position loop is ωcv = Kv provided that Ka À Kv.

The position controller
ωd = Kv (θd − θm) (3.67)

where Kv is the velocity constant gives the closed-loop dynamics

θm
θd

(s) =
1

1 + 1
Kv

s+ 1
KvKa

s2
(3.68)

Usually, Ka can be selected to be several hundred rad/s, while Kv is usually limited by
the first resonance in the system, which will typically occur in the range 10—100 rad/s.
Therefore, we may assume that Ka À Kv, and we get

θm
θd

(s) =
1³

1 + s
Kv

´³
1 + s

Ka

´ (3.69)

3.5 Motor and load with elastic transmission

3.5.1 Introduction

A situation that is often seen in control applications is that a motor is used to move some
inertial load using an elastic interconnection. The elasticity may be due to a flexibility in
shaft or in a gearbox, or it may be that the motor and load are interconnected by wires
or with a crane that is not completely rigid. This type of system will be modelled and
analyzed in this section. It turns out that the transfer functions of the system have very
interesting properties that have great significance in the selection of controller structure
for such systems. It will be shown that some of these properties can be explained from
passivity arguments where the energy formulation can be used efficiently. The results are
useful both from a practical perspective, and, in addition, the results provide valuable
insight into passivity-based controller design.

3.5.2 Equations of motion

We consider a motor driving a load through an elastic transmission as shown in Fig-
ure 3.10. The equation of motion for the motor and load are given by

Jmθ̈m = Tm − TL (3.70)

JLθ̈L = TL (3.71)
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Motor Load
Jm JL

Tm ,m ,m L ,L

K,D

Figure 3.10: Motor with elastic transmission

where θm is the motor shaft angle, θL is the load shaft angle, Tm is the motor torque, and
TL is the load torque from the transmission on the motor shaft. The elastic transmission
and the load inertia is modelled as a torsional spring with spring constant K in parallel
with a torsional damper with damping coefficient D. The resulting torque is

TL = −Kθe −Dθ̇e (3.72)

where
θe = θL − θm (3.73)

is the elastic deflection of the the transmission. In the derivation of the transfer functions
it is helpful to introduce the variable

θr = θm +
JL
Jm

θL. (3.74)

and derive the model in terms of the variables θe and θr.
The equations of motion for θe and θr are found by combining the equations (3.70—

3.72). This gives

θ̈e +
D

Je
θ̇e +

K

Je
θe = − 1

Jm
Tm (3.75)

θ̈r =
Tm
Jm

(3.76)

where

Je =
JmJL
J

, J = Jm + JL (3.77)

3.5.3 Transfer functions

We see from (3.75) and (3.76) that the dynamic model of the elastic deflection θe is a
second order oscillatory system, while the rigid motion θr results from a double integrator
from the motor torque Tm. The transfer functions from the input Tm to θe and θr are
found to given by

θe
Tm

(s) = − 1

Jm

³
1
ω1

´2
1 + 2ζ1

s
ω1

+
³

s
ω1

´2 (3.78)

θr
Tm

(s) =
1

Jms2
(3.79)

where

ω1 =

r
K

Je
and ζ1 =

D

2

1√
JeK

(3.80)
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The transfer functions for the original variables are found by solving (3.73) and (3.74),
which gives

θm =
Jm
J

µ
θr − JL

Jm
θe

¶
(3.81)

θL =
Jm
J

(θr + θe) (3.82)

This gives

θm
Tm

(s) =
Jm
J

·
θr
Tm

(s)− JL
Jm

θe
Tm

(s)

¸

=
1

J

 1

s2
+

JL
Jm

³
1
ω1

´2
1 + 2ζ1

s
ω1

+
³

s
ω1

´2
 (3.83)

and

θL
Tm

(s) =
Jm
J

·
θr
Tm

(s) +
θe
Tm

(s)

¸

=
Jm
J

 1

Jms2
− 1

Jm

³
1
ω1

´2
1 + 2ζ1

s
ω1

+
³

s
ω1

´2
 (3.84)

After some work the following result is found:

The motor and elastic load with elastic transmission is described by the two transfer
functions

Hθm(s) : =
θm
Tm

(s) =
1

Js2

1 + 2ζa
s
ωa

+
³

s
ωa

´2
1 + 2ζ1

s
ω1

+
³

s
ω1

´2 (3.85)

HθL(s) : =
θL
Tm

(s) =
1

Js2
1 + 2ζ1

s
ω1

1 + 2ζ1
s
ω1

+
³

s
ω1

´2 (3.86)

where the parameters are given by

ζ1 =
D

2

1√
JeK

, ω1 =

r
K

Je
(3.87)

ζa =

r
Jm
J

ζ1, ωa =

r
Jm
J

ω1 < ω1 (3.88)

The transfer functions are often formulated in terms of the shaft speeds ωm(s) =
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sθm(s) and ωL(s) = sθL(s). Then the transfer functions are

Hωm(jω) : =
ωm
Tm

(s) =
1

Js

1 + 2ζa
s
ωa

+
³

s
ωa

´2
1 + 2ζ1

s
ω1

+
³

s
ω1

´2 (3.89)

HωL(jω) : =
ωL
Tm

(s) =
1

Js

1 + 2ζ1
s
ω1

1 + 2ζ1
s
ω1

+
³

s
ω1

´2 (3.90)

Bode Diagram θm/Tm

-40

-30

-20

-10

0

10

20

30

40

M
ag

ni
tu

de

10-1 100 101
-200

-150

-100

-50

0

P
ha

se

-100

-50

0

50

M
ag

ni
tu

de

10-1 100 101
-400

-350

-300

-250

-200

-150

P
ha

se

Bode Diagram θL/Tm

Frequency (rad/s) Frequency (rad/s) 

Figure 3.11: Frequency response from the motor torque Tm to the motor angle θm (to
the left), and frequency response from the motor torque Tm to the load angle θL (to the
right).

An important observation is that ωa < ω1, which means that the break frequency
of the zeros in is smaller than the break frequency of the poles in θm/Tm (jω). The
frequency responses are shown in Figure 3.11 for K1 = 0.5, Jm = J1 = 1 and D1 = 0.01.
Note that the frequency response Hθm(jω) of the motor angle does not have any negative
phase contribution from the elasticity, whereas the frequency response HθL(jω) of the
load angle drops 180◦ because of the resonance. Obviously, this has serious consequences
for controller design, and for the achievable bandwidth when feedback is taken from
either θ̇m or θ̇L. In practice it means that when feedback is taken from θ̇L the crossover
frequency must be less than ω1. In contrast to this, the crossover may be selected above
ω1 when feedback is taken from θ̇m. Experience shows that feedback loops from θ̇m are
very robust, and can be given a very high crossover frequency. Feedback from θ̇L gives
an upper limit on the crossover frequency at ω1.
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3.5.4 Zeros of the transfer function

The zeros of the transfer function Hθm(s) are the roots of

1 + 2ζa
s

ωa
+

µ
s

ωa

¶2
= 0 (3.91)

Under the assumption that ζa ¿ 1 the transfer function Hθm(s) will have zeros close to
±jωa. This means that a nonzero torque input Tm(jωa) with frequency ωa will give a
small θm(jωa) as ±jωa are close to the zeros of Hθm(s).
From (3.85) and (3.86) it is seen that the transfer function from the motor angle to

the load angle is given by

θL
θm

(s) =
θL
Tm

(s)
Tm
θm

(s) =
1 + 2ζ1

s
ω1

1 + 2ζa
s
ωa

+
³

s
ωa

´2 (3.92)

This means that poles of θL (s) /θm (s) are equal to the zeros of Hθm(s) which are close
to ±jωa. This means that the system θL (s) /θm (s) will have resonances near ±jωa, so
that a large amplitude in θL(jωa) can occur with a small θm(jωa). This agrees with the
fact that the zeros of Hθm(s) which are close to ±jωa.

3.5.5 Energy analysis

The sum of kinetic and potential energy for the motor, transmission and load is

V =
1

2
Jmω

2
m +

1

2
JLω

2
L +

1

2
Kθ2e (3.93)

The time derivative of the energy as the system evolves will be the power θ̇mTm supplied
by the input Tm minus the power Dθ̇

2

e dissipated in the rotational damper. This is
written

V̇ = θ̇mTm −Dθ̇
2

e (3.94)

This implies that the system with input Tm and output θ̇m is passive. This again implies
that the transfer function Hωm(s) from the input Tm to ωm = θ̇m is positive real, which
means that

Re[Hωm(jω)] ≥ 0 for all ω. (3.95)

Thus, from simple energy arguments we can establish that

|∠Hωm(jω)| ≤ 90◦ (3.96)

which implies that
−180◦ ≤ ∠Hθm(jω) ≤ 0◦. (3.97)

This result in agreement with the plot in Figure 3.11

3.5.6 Motor with several resonances in the load

We may connect an additional degree of freedom in the load by modifying the load into
a two-port with dynamics

JLω̇L = TL − T1 (3.98)



96 CHAPTER 3. ELECTROMECHANICAL SYSTEMS

and by adding the mechanical two-port

J2ω̇2 = T1 − T2 (3.99)
d

dt
(θ1 − θ2) = (ω1 − ω2) (3.100)

T1 = D1 (ω1 − ω2) +K1 (θ1 − θ2) . (3.101)

where ω2 is the shaft speed, and J2 is the inertia. The transmission is modelled as a
torsional spring with spring constantK1 in parallel with a torsional damper with damping
coefficient D1. The input port has effort T1 and flow ω1, while the output port has effort
T2 and flow ω2. We may add on any number of additional degrees of freedom as two-ports

Jiω̇i = Ti−1 − Ti (3.102)
d

dt
(θi−1 − θi) = (ωi−1 − ωi) (3.103)

Ti−1 = Di−1 (ωi−1 − ωi) +Ki−1 (θi−1 − θi) (3.104)

with port variables Ti−1 and ωi−1 at the input and Ti and ωi at the output. In a
computational setting the inputs are ωi−1 and Ti, while the outputs are ωi and Ti−1.
The sum of kinetic and potential energy for a motor with n degrees of freedom in the

load is

V =
1

2
Jmω

2
m +

nX
i=1

1

2
Jiω

2
i +

1

2
Kθ2e +

n−1X
i=1

1

2
Ki (θi − θi+1)

2 (3.105)

The time derivative of the energy for the solutions of the system will be the power ωmTm
supplied by the input Tm minus the power dissipated in the rotational dampers. This is
written

V̇ = ωmTm −Dθ̇
2

e −
n−1X
i=1

Di (ωi − ωi+1)
2 (3.106)

This implies that the system with input Tm and output ωm will still be passive with n
degrees of freedom in the load.

3.5.7 Two motors driving an elastic load

Consider an inertia JL with rotation angle θL that is driven by two motors. Motor 1 has
shaft angle θ1, inertia J1 and motor torque Tm1, while motor 2 has shaft angle θ2, inertia
J2 and motor torque Tm2. The motors are connected to the load using gears with gear
ratio n.
The model of the system is derived by first establishing the equations of motion for

the two motors and for the load, and then connecting the motors and the load by deriving
expressions for the connecting torques. The equations of motion for the motors are

J1θ̈1 = Tm1 − Tg1 (3.107)

J2θ̈2 = Tm2 − Tg2 (3.108)

where Tg1 is the torque from gear 1 on motor 1, and Tg2 is the torque from gear 2 on
motor 2. The equation of motion for the load is

JLθ̈L =
1

n
(Tg1 + Tg2)− Te (3.109)
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where Te is an external disturbance torque.
The elastic deformation of the gears referenced to the motor side are given by

φ1 = θ1 − 1

n
θL, φ2 = θ2 − 1

n
θL

The gears can then be modeled as springs and dampers with torques

Tg1 = K1φ1 + D1φ̇1, Tg2 = K2φ2 +D1φ̇2 (3.110)

3.5.8 Energy analysis of two motors and load

The system of two motors and a load can be regarded as an interconnection of three
two-ports, where the load is a two-port connected to motor 1 through a port with input
θ̇1 and output Tg1, and to motor 2 through a port with input θ̇2 and output Tg2. The
total energy of the system is

V =
1

2

³
J1θ̇

2

1 + J2θ̇
2

2 + JLθ̇
2

L

´
+

1

2

¡
K1φ

2
1 +K2φ

2
2

¢ ≥ 0 (3.111)

The time derivative of the energy will be the power suppled by the motor torques minus
the power dissipated in the dampers. This gives

V̇ = Tm1θ̇1 + Tm2θ̇2 −D1φ̇
2

1 −D2φ̇
2

2 (3.112)

This shows that if a passive controller from θ̇2 to Tm2 is used for motor 2, then the system
with input Tm1 and output θ̇1 will be passive.

Example 45 Suppose that a PD controller

Tm2 = −Kp2θ2 −Kd2θ̇2 (3.113)

is used for motor 2. This controller is passive when θ̇2 is considered to be the input and
Tm2 is the output. In agreement with this, the controller has a mechanical analog which
is a spring with stiffness Kp2 and a damper with coefficient Kd2. The system can then be
analyzed using the energy function of the system including the mechanical analog. The
energy function for this system is

Va =
1

2

³
J1θ̇

2

1 + J2θ̇
2

2 + JLθ̇
2

L

´
+

1

2

¡
K1φ

2
1 +K2φ

2
2 +Kp2θ

2
2

¢ ≥ 0 (3.114)

which will have time derivative along the solutions of the system given by

V̇a = Tm1θ̇1 −D1φ̇
2

1 −D2φ̇
2

2 −Kd2θ̇
2

2 (3.115)

This shows that the system with input Tm1 and output θ̇1 is passive when the PD controller
(3.113) is used.

3.6 Motor and load with deadzone in the gear

3.6.1 Introduction

In this section we will study the problem of a motor that drives a load through a gear
with a deadzone. In the deadzone there is no physical contact between the input axis and
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the output axis of the gear, and as a consequence of this there is no torque transmitted
through the gear in the deadzone. The modeling of a gear with deadzone requires some
care. In the following it will be seen that if it is assumed that there is elasticity in the
gear, then the modeling is simplified. In case of a rigid gear with deadzone it is necessary
to switch between two models of that have a different number of states.

3.6.2 Elastic gear with deadzone

The equations of motion for the motor and load are given by

Jmθ̈m = Tm − Tgm (3.116)

JLθ̈L = TgL (3.117)

where Tgm is the gear torque on the motor side, and TgL is the gear torque on the load
side. The gear ratio is n. The deflection between the motor and the load is given by

φ = θm − 1

n
θL (3.118)

The gear has a deadzone δ. This means that the gear torque is zero when |φ| < δ.
Suppose that the gear is elastic, and that is can be described by a spring with stiffness
K outside of the deadzone. Then the gear torques Tgm and TgL are given as functions
of the gear deflection φ according to

Tgm(φ) =


K (φ+ δ) , φ ≤ −δ

0, −δ ≤ φ ≤ δ

K (φ− δ) , δ ≤ φ

, TgL(φ) =
1

n
Tgm(φ) (3.119)

The gear is then a mechanical two-port in impedance form where port 1 has input θ̇m
and output Tgm, and port 2 with input θ̇L and output TgL. Port 1 of the gear will then
be compatible with the motor port, which has output θ̇m and input Tgm, and in the same
way port 2 of the gear can be connected with the port of the load. The interconnection
of the motor, gear and load is then straightforward, and a simulation model is given by
the equations (3.116—3.119).

3.6.3 Rigid gear with deadzone

If it is assumed that the gear is rigid, then the system will have two independent degrees
of freedom θ̇L and θ̇m in the deadzone, and only one degree of freedom θ̇L = θ̇m outside
of the deadzone. This means that the system changes the number of degrees of freedom
from two to one when it leaves the dead-zone. In this case the gear torques are functions
of the deflection when the system is inside the deadzone as

Tgm(φ) = 0

TgL(φ) = 0

¾
, |φ| < δ (3.120)

This can be regarded as an impedance model with inputs θ̇m and θ̇L and outputs Tgm
and TgL. Outside the deadzone the gear is defined by the usual gear equations

θ̇L = nθ̇m
Tgm = nTgL

¾
, |φ| = δ (3.121)
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In terms of inputs and outputs this can be regarded as a hybrid model with inputs θ̇m
and TgL and outputs θ̇L and Tgm, or it can be seen as a cascade model with inputs θ̇m
and Tgm and outputs θ̇L and TgL. Note, however, that the gear model for |φ| = δ cannot
be put in impedance form.
The impedance model (3.120) that is valid for |φ| < δ is a two-port with inputs and

outputs that are compatible with the two-port formulation of the motor and load where
shaft speed is output and torque is output. In contrast to this, the hybrid model (3.121)
does not have inputs and output that can be connected to the motor and load. In fact,
the system of motor, gear and load has only one degree of freedom in this case, and the
models of the motor and load must be combined into one model.
The way to handle this in a simulation system is to switch between three models,

where one model is valid inside the deadzone, and there is one model on each side of
the deadzone. At the negative side of the deadzone where φ = −δ the load angle is
θL = n(θm + δ), and JLθ̈L = TgL must be negative if the system is to stay at φ = −δ.
This implies that θ̈m must be negative, which is the case if Tm < 0, while the systems
enters the deadzone if Tm > 0 At the positive side of the deadzone where φ = δ then
Tm > 0 will give positive acceleration, and the system will stay at φ = δ. If Tm < 0,
then the system enters the deadzone. The three models are therefore given by¡

Jm + n2JL
¢
θ̈m = Tm

θL = n(θm + δ)

¾
when φ = −δ and Tm < 0 (3.122)¡

Jm + n2JL
¢
θ̈m = Tm

θL = n(θm − δ)

¾
when φ = δ and Tm > 0 (3.123)

Jmθ̈m = Tm
JLθ̈L = 0

¾
otherwise (3.124)

In simulations it is necessary to have an event-detection method to determine when the
system enters and leaves the deadzone.

3.6.4 Two motors with deadzone and load

Large space antennas need to be rotated with high accuracy at a very low speed. This
will normally require a reduction gear between the motor and the antenna, where gear
will typically have a deadzone. Because of this, the motor and antenna may oscillate
because of the deadzone, and this may prevent the system from achieving the specified
accuracy. A typical configuration for such systems is to use two motors that are connected
with gears to the antenna. With this type of solution the chattering may be eliminated
by pretensioning the motors in opposite directions so that both gears are loaded for
moderate control torques. The equations of motion for the motors are

J1θ̈1 = Tm1 − Tg1 (3.125)

J2θ̈2 = Tm2 − Tg2 (3.126)

where Tg1 is the torque from gear 1 on motor 1, and Tg2 is the torque from gear 2 on
motor 2. The equation of motion for the load is

JLθ̈L =
1

n
(Tg1 + Tg2)− Te (3.127)

where Te is an external disturbance torque.
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The gears are supposed to have a spring constant K and a deadzone δ. The deviation
angle of the gear referenced to the motor side are given by

φ1 = θ1 − 1

n
θL, φ2 = θ2 − 1

n
θL

The gears can then be modeled as a spring with a deadzone, which gives the gear torques

Tgi =


K (φi + δ) , φi ≤ −δ

0, −δ ≤ φi ≤ δ

K (φi − δ) , δ ≤ φi

, i = 1, 2 (3.128)

The motors can then be connected to the load with the gear equations. The system is
shown in Figure 3.12.
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Figure 3.12: Block diagram of two motors driving a load through elastic gears with
deadzone.

Due to the deadzone and the lack of damping in the gear the load may oscillate.
This can be eliminated by pretensioning the gears by controlling the motors with an
offset torque in opposite directions. Alternatively, damping of φ1 and φ2 can be achieved
by including rate feedback from φ̇1 and φ̇2 (Leonhard 1996), (Gavronski, Beech-Brandt,
Ahlstrom and Manieri 2000).

3.7 Electromechanical energy conversion

3.7.1 Introduction

Electrical motors and various electrical sensors and actuators are based on energy conver-
sion between electrical energy and mechanical energy. This energy conversion typically
takes place due to inductive and capacitive effects. The presentation that follows starts
with a presentation of energy functions for inductive and capacitive circuit elements, and
proceeds by extending these results to electromechanical systems.
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3.7.2 Inductive circuit elements

The magnetic field intensity �H and the magnet flux density �B satisfy the equations

�∇× �H = �J (3.129)
�∇ · �B = 0 (3.130)

where �J is the current density. The relation between the two vector fields �H and �B is
given by

�B = µ �H (3.131)

where the permeability µ is a material constant given by the constitutive law

µ = (1 + χm)µ0 (3.132)

of the magnetic material, where µ0 is the permeability of free space.
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Figure 3.13: Magnetic circiut with airgap

We consider the magnetic circuit in Figure 3.13. The magnetic circuit has an iron
core of cross section A and length c. The iron core has a small airgap of length h and a
winding of N turns with current i. Then the integral form of (3.129) isI

�H · d�s = Ni =: F (3.133)

where F is the magnetomotive force (mmf), which is also called the ampere-turns, and
d�s is a differential length which is tangent to the path of integration. The magnetic flux
φ of the circuit is

φ = AB (3.134)

The iron core has much higher magnetic permeability than the surrounding air, and as
the airgap is small, the iron core and the airgap form a closed path for the magnetic
flux φ of length c in the core and length h in air. The magnetic flux density �B has zero
divergence, which means that the flux φ is the same for all cross sections of the iron core
and for the airgap. Therefore we may consider the iron core and the airgap to form a
magnetic circuit where the magnetomotive force Ni sets up a magnetic flux φ that flows
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through the circuit. The magnitude of the magnetic field intensity is Hc = B/µ in the
core and Ha = B/µ0 in the airgap. Then (3.133) gives

Ni = Hcc +Hah =

µ
c

µ
+

h

µ0

¶
B =

µ
c

µ
+

h

µ0

¶
φ

A
(3.135)

The magnetic circuit has a reluctance R defined so that the relation between the mag-
netomotive force and the flux is

Ni = Rφ (3.136)

We see that the reluctance of the magnetic circuit is

R =
Ni

φ
=

1

A

µ
c

µ
+

h

µ0

¶
≈ h

Aµ0
(3.137)

where the approximation can be done as the magnetic permeability µ0 in air is much
smaller than the permeability µ in iron.
We now turn to the electrical circuit with the coil. Define the magnetic flux linkage

λ of the coil which is defined by
λ := Nφ (3.138)

In the example in this section, the flux linkage is a linear function of the current, which
is given by

λ = Li (3.139)

where

L =
µ0N

2A

h
(3.140)

is the inductance of the coil.

The current is given by the constitutive equation

i = i(λ) (3.141)

The voltage set up in the winding is the time derivative of the state λ by Faraday’s law:

u = λ̇ (3.142)

3.7.3 Capacitive circuit elements

The state of a capacitive circuit element is given by the electrical charge q, and the
current is defined by

i = q̇ (3.143)

The voltage is given by the constitutive equation

u = u(q) (3.144)

In the case of the linear element the charge is given by

q = Cu (3.145)

where C is the capacitance.
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3.7.4 Magnetic energy of a linear inductive element

In this section we will derive an expression for the stored energy of a linear inductive
element with current i, flux linkage λ = Li, and voltage u. The state of the element is
given by the flux linkage λ. The voltage is given by Faraday’s law to be u = λ̇. The power
supplied to the inductive element is P = iu, and the stored energy has the differential

dWm = Pdt = iudt = i
dλ

dt
dt = idλ (3.146)

We can then calculate the stored energy corresponding to the state λ from

Wm(λ) =

Z λ

0

i(λ0)dλ0 =

Z λ

0

λ0

L
dλ0 =

λ2

2L
(3.147)

In this expression the variable λ0 is introduced as a integration variable because λ is the
upper limit of the integration, and at the same time the current i(λ) is a function of λ.

3.7.5 Stored energy of a linear capacitive element

Consider a linear capacitive element with charge q, current i and voltage u. The state of
the capacitive element can be given by the charge q. The constitutive equation for the
element is q = Cu where C is the capacitance of the element. The current is by definition
given by i = q̇. Proceeding as for the inductive element we find that the stored energy
Wc has differential

dWc = uidt = u
dq

dt
dt = udq (3.148)

The stored energy corresponding to the state q is found to be

Wc(q) =

Z q

0

u(q0)dq0 =

Z q

0

q0

C
dq0 =

q2

2C
(3.149)

3.7.6 Energy and coenergy

We have seen that the stored energy of an inductive element is given as a function of
the flux linkage λ, while the stored energy of a capacitive element can be given as a
function of the charge q. In the derivation of models for electromechanical systems it is
convenient to have energy functions given by the current i and the voltage u, and this is
the motivation for introducing the concept of the coenergy. It is important to notice the
coenergy does not have a clear physical interpretation, it is merely a mathematical tool
that is useful in the to calculate the forces acting in electromechanical systems.
The energy of an inductive element is

Wm (λ) =

Z λ

0

i
¡
λ0
¢
dλ0 (3.150)

where the energy is given as a function of the flux linkage λ. To change the variable to
the current i we define the coenergy of an inductive element by

W ∗m (i) =

Z i

0

λ (i0) di0 (3.151)
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Figure 3.14: Energy and coenergy of an inductive element.

From Figure 3.14 it is seen that

Wm (λ) +W ∗m (i) = λi (3.152)

which means that the coenergy is found from the energy through a Legendre transfor-
mation

W ∗m (i) = λi−Wm (λ) (3.153)

Again we stress that the coenergy is not necessarily a meaningful physical quantity, but
rather a mathematical tool that is useful in the modeling of electromechanical systems.
The differentials of the energy and the coenergy is given by

dWm(λ) = idλ, dW ∗m(i) = idλ+ λdi− dWm(λ) = λdi (3.154)

This implies
∂Wm (λ)

∂λ
= i and

∂W ∗m (i)

∂i
= λ (3.155)

Example 46 If the flux linkage is given by λ = Li where the impedance L is a constant,
then the coenergy is

W ∗m (i) = λi− λ2

2L
=

1

2
Li2 (3.156)

Then the numerical value of the energy Wm(λ) and the coenergy W ∗m (i) is the same,
note however, that the energy is a function of λ while the coenergy is a function of i.

The energy of a capacitive element is

Wc (q) =

Z q

0

u (q0) dq0 (3.157)

We note that the energy is given in terms of the stored charge q. It may be desirable to
use the voltage u as a free variable instead of q. We therefore define the coenergy by

W ∗c (u) =

Z u

0

q (u0) du0 (3.158)
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Figure 3.15: Energy and coenergy of a capacitive element.

From Figure 3.15 it is seen that

Wc (q) +W ∗c (u) = qu (3.159)

it it may be concluded that the coenergy is found from the energy through the Legendre
transformation

W ∗c (u) = qu−Wc (q) (3.160)

The differential of the energy is
dWc(q) = udq (3.161)

while the differential of coenergy is

dW ∗c (u) = qdu + udq − dWc (q) = qdu (3.162)

We see that
∂Wc (q)

∂q
= u and

∂W ∗c (u)

∂u
= q (3.163)

Example 47 If q = Cu and the capacitance C is a constant, then

W ∗c (u) = qu− q2

2C
=

1

2
Cu2 (3.164)

and we see that the numerical value of the energy and the coenergy is the same. In this
case the characteristic curve of Figure 3.15 is a straight line.

3.7.7 Electromechanical two-port with inductive element

In this section we will consider an important energy-conversion system which will be
described as a two-port where input port is electrical with voltage u and current i, and
the output port is mechanical with effort F and flow ẋ. The conversion from electrical
energy to mechanical energy is done through an inductive element with flux linkage λ.
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The electrical port has current i and voltage given by u = λ̇. The constitutive
equations are assumed to be given by

i = i(λ, x) (3.165)

F = F (λ, x) (3.166)

The power supplied to the two-port is

P = iλ̇− Fẋ (3.167)

The energy stored in the magnetic system is assumed to be given by Wm(λ, x), and we
get

dWm(λ, x) = Pdt = idλ− Fdx (3.168)

Note that dWm (λ, x) is the absolute differential of the function Wm (λ, x). The absolute
differential may also be written

dWm (λ, x) =
∂Wm (λ, x)

∂λ
dλ +

∂Wm (λ, x)

∂x
dx (3.169)

Comparing the two expressions for the absolute differential we find that

i (λ, x) =
∂Wm (λ, x)

∂λ
(3.170)

F (λ, x) = −∂Wm (λ, x)

∂x
(3.171)

The coenergy of the system is

W ∗m (i, x) = λi−Wm (λ, x) (3.172)

The absolute differential of the coenergy is

dW ∗m (i, x) = idλ + λdi− dWm (λ, x) = λdi+ Fdx (3.173)

Then, from the general expression

dW ∗m (i, x) =
∂W ∗m (i, x)

∂i
di+

∂W ∗m (i, x)

∂x
dx (3.174)

for the absolute differential it follows that

The flux linkage λ and the force F of an electromechanical inductive element are given
from the coenergy W ∗m (i, x) by

λ (i, x) =
∂W ∗m (i, x)

∂i
(3.175)

F (i, x) =
∂W ∗m (i, x)

∂x
(3.176)
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3.7.8 Electromechanical two-port with linear flux linkage

If the flux linkage is linear in the current so that λ = L(x)i, and if the force is zero when
the flux linkage is zero so that F (0, x) = 0, then the energy Wm (λ, x) can be found by
first integrating (3.168) from (0, 0) to (0, x), and then from (0, x) to (λ, x). This gives

Wm (λ, x) = −
Z x

0

F (0, x0)dx0 +
Z λ

0

i
¡
λ0, x

¢
dλ0 =

Z λ

0

λ0

L(x)
dλ0 =

1

2

λ2

L(x)
(3.177)

The coenergy is then given by

W ∗m (i, x) = λi− λ2

2L(x)
=

1

2
L(x)i2 (3.178)

An electromechanical two-port with linear flux linkage λ = L(x)i has force given by

F (λ, x) = −∂Wm (λ, x)

∂x
=

1

2

∂L (x)

∂x

λ2

L(x)2
(3.179)

or alternatively, by

F (i, x) =
∂W ∗m (i, x)

∂x
=

1

2

∂L (x)

∂x
i2 (3.180)

The voltage is given by

u = λ̇ =
d

dt
[L (x) i] = L

di

dt
+

∂L (x)

∂x
ẋi (3.181)

A convenient way of describing this is to write

u = L
di

dt
+ e (3.182)

where the first term is the self inductance of the coil, and

e := i
∂L (x)

∂x
ẋ (3.183)

is the voltage induced because of the velocity ẋ. The system is then regarded as a two-
port with input port variables u and i and output port variables e and i. The output port
is connected to a two-port describing the electromechanical conversion. This two-port has
input port with variables e and i, and output variables F and ẋ. This electromechanical
conversion unit does not store energy as ei = Fẋ, which means the electrical power ei in
is equal to mechanical power Fẋ out.

3.7.9 Magnetic levitation

In this section we will derive the model of the magnetic levitation experiment which is
used for teaching in many control laboratories. An iron ball of radius R is lifted by a
magnet with a coil of N turns and a current i around a core of length lc and cross section
A = πR2. The vertical position of the ball is z, which is positive in the downwards
vertical direction. This coil has a magnetic circuit with magnetomotive force Ni. The
flux φ flows through the iron core, then over the airgap, through the ball, and finally
along the return path through the open air as shown in Figure 3.16. This gives
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Figure 3.16: Magnetic levitation experiment.

Ni = φ (Ra +Rc +Rb +Rr) (3.184)

where
Ra =

z

Aµ0
(3.185)

is the reluctance of the airgap, Rc is the reluctance of the core, Rb is the reluctance of the
ball, and Rr is the reluctance of the return path through the open air. The reluctances
Rc and Rb are negligible. Moreover, if the ball is sufficiently close to the core, then the
return path through the open air will not change significantly as the ball moves, and we
may assume that Rr is a constant. Therefore we may write

Ni = φ
z + z0
Aµ0

(3.186)

where z0 = RrAµ0 is a constant. The flux linkage is

λ = Nφ =
N2Aµ0
z + z0

i, (3.187)

and we find that the inductance is

L (z) =
N2Aµ0
z + z0

(3.188)

The magnetic force on the ball is found from (3.180) to be

F =
i2

2

∂L (z)

∂z
= −µ0AN

2

2

i2

(z + z0)
2 (3.189)

The dynamics of the electrical circuit are given by

u = Ri + λ̇ = Ri +

µ
d

dt
L (z)

¶
i+ L(z)

di

dt
(3.190)
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The model for the magnetic levitation experiment is then found from the equation of
motion and the circuit dynamics to be

mz̈ = −1

2
AN2µ0

i2

(z + z0)
2 +mg (3.191)

L
di

dt
= −Ri +

µ0AN
2

(z + z0)
2

dz

dt
i + u (3.192)

Let zd be the constant desired position of the ball. The solution (zd, id) is found from

0 = mz̈d = −1

2
AN2µ0

i2d
(zd + z0)

2 +mg (3.193)

which gives the constant current

id =

s
2mg

AN2µ0
(zd + z0) (3.194)

corresponding to zd. We define ∆z = z−zd and ∆i = i− id and get the linearized model
around z = zd in the form

m∆z̈ =
AN2µ0i

2
d

(zd + z0)
3∆z −AN2µ0

id

(zd + z0)
2∆i

=
2mg

zd + z0
∆z −

p
2AN2µ0mg

zd + z0
∆i (3.195)

3.7.10 Voice coil

Motion
r

x

S N

Paper cone

Figure 3.17: Voice coil actuator for loudspeaker.
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In a loudspeaker the sound is created with a voice coil motor by setting up motion in a
membrane as shown in Figure 3.17. The voice coil is an inductive motor with translational
motion. In this section we will develop a simplified model for the loudspeaker dynamics
that gives some insight into the dynamics at low frequencies (Meisel 1966), (Crandall,
Karnopp, E.F. Kurtz and Pridmore-Brown 1968). More accurate models will depend on
acoustic properties of the loudspeaker, and on the modes of vibration of the membrane.
The membrane has mass m, the air resistance is modeled as a damper with coefficient
b, and the cone suspension is modeled as a spring with stiffness k. The electrical circuit
has input voltage u, resistance R and inductance L and induced voltage e.
The flux density B in the airgap is constant and set up by a permanent magnet. The

magnetic flux from the permanent magnet through the winding is

φ = 2πrBx (3.196)

where x is the position of winding which is wound around a cylinder that is fixed to the
membrane. The flux linkage for the coil with N windings can then be written

λ (i, x) = Li+Kex (3.197)

where L is the self inductance of the coil and Ke = 2πrNB. The magnetic coenergy is
found by integrating (3.173) from (0, 0) to (0, x), and then from (0, x) to (i, x). Under
the assumption that the force is zero when i = 0, this gives

W ∗m (i, x) =

Z i

0

λ(i0, x)di0 =
1

2
Li2 +Kexi (3.198)

We find the equations
F = Kei, e = Keẋ (3.199)

from e = λ̇ and F = ∂W ∗m (i, x) /∂x.
The equation of motion of the membrane and the voltage law for the circuit give the

model

mẍ+ bẋ+ kx = Kei (3.200)

L
di

dt
= −Ri−Keẋ + u (3.201)

3.7.11 Electromagnetic three-port

Electrical motors may have two electrical ports and one mechanical port. In this section
we will study the energy flow of this type of electromechanical three-port.
We consider a three-port where port one has voltage u1 = λ̇1 and current i1, port

two has voltage u2 = λ̇2 and current i2, while the mechanical port has effort T and flow
θ̇. The power flowing into the system is

P = iT λ̇− T θ̇ (3.202)

where i = (i1, i2)
T and λ = (λ1, λ2)

T . The absolute differential of the energy Wm(λ1, θ)
stored in the system is found from dW = Pdt to be

dWm(λ, θ) = iT dλ− Tdθ (3.203)



3.7. ELECTROMECHANICAL ENERGY CONVERSION 111

and by comparing this to the defining expression for the absolute differential we find that

i =
∂Wm(λ, θ)

∂λ

T

, T = −∂Wm(λ, θ)

∂θ
(3.204)

If we assume that the flux linkage vector is a linear function of the current vector,
then the flux linkage can be written

λ = M(θ)i (3.205)

where M(θ) is the inductance matrix. The matrix M(θ) can be shown to be positive
definite and symmetric. We may then integrate dWm(λ, θ) to get the energy function

Wm(λ, θ) =

Z λ

0

¡
λ0
¢T

M−1(θ)dλ0 =
1

2
λTM−1(θ)λ (3.206)

The coenergy is found to be

W ∗m(i, θ) = λT i−1

2
λTM−1(θ)λ = iTM(θ)i− 1

2
iTMT (θ)M−1(θ)M(θ)i (3.207)

which gives

W ∗m(i, θ)=
1

2
iTM(θ)i (3.208)

It follows that the torque is

T =
∂W ∗m(i, θ)

∂θ
=

1

2
iT
∂M(θ)

∂θ
i (3.209)

3.7.12 Electromechanical capacitive element

In this section we will study an electromechanical system with a capacitive element. The
system is described as a two-port where the input port is electrical with voltage u and
current i, and the output port is mechanical with effort F and flow ẋ. We assume that
the constitutive equations are given by

u = u(q, x) (3.210)

F = F (q, x) (3.211)

The power supplied to the two-port is

P = uq̇ − Fẋ (3.212)

The energy stored in the magnetic system is Wc(q, x). The rate of change of the stored
energy must be equal to the energy supplied due to the power P . This may be expressed

dWc(q, x)

dt
= P ⇒ dWc(q, x) = Pdt = udq − Fdx (3.213)

Note that dWc(q, x) is the absolute differential of the function Wc(q, x). The absolute
differential may also be written

dWc(q, x) =
∂Wc(q, x)

∂q
dq +

∂Wc(q, x)

∂x
dx (3.214)
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Comparing the two expressions for the absolute differential we find that

u(q, x) =
∂Wc(q, x)

∂q
(3.215)

F (q, x) = −∂Wc(q, x)

∂x
(3.216)

The coenergy of the system is defined by

W ∗c (u, x) = uq −Wc (q, x) (3.217)

The absolute differential of the coenergy is

dW ∗c (u, x) = udq + qdu− dWc(q, x) = qdu+ Fdx (3.218)

The charge q (u, x) and the force F (u, x) of an electromechanical capacitive element with
constitutive equations (3.210, 3.211) are given from the coenergy W ∗c (u, x) by

q (u, x) =
∂W ∗c (u, x)

∂u
(3.219)

F (u, x) =
∂W ∗c (u, x)

∂x
(3.220)

3.7.13 Electromechanical two-port with linear charge

If the charge q is linear in the voltage u so that q = C(x)u, and if the force is zero when
the charge is zero so that F (0, x) = 0, then the energy Wc(q, x) can be found by first
integrating (3.213) from (0, 0) to (0, x), and then from (0, x) to (q, x). This gives

Wc(q, x) = −
Z x

0

F (0, x0)dx0 +
Z q

0

u(q0, x)dq0 =

Z q

0

q0

C(x)
dq0 =

1

2

q2

C(x)
(3.221)

The coenergy is then from (3.217) to be

W ∗c (v, x) = C(x)u2 − 1

2

C(x)2u2

C(x)
=

1

2
C(x)u2 (3.222)

An electromechanical system with linear charge equation q = C(x)u has force given by
the energy according to (3.216), which gives

F (q, x) = −1

2

d

dx

µ
1

C(x)

¶
q2 (3.223)

Alternatively, the force is found from the coenergy expression (3.220) to be

F (v, x) =
1

2

dC(x)

dx
u2 (3.224)
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3.7.14 Example: Capacitive microphone

A capacitive microphone can be designed with a membrane that moves a capacitive
element so that capacitance is altered. The capacitive element is charged with a voltage
E0, and the change in capacitance can then be picked up by measuring the capacitor
current using an amplifier with resistance R. In this way the sound that excites the
membrane can be recorded (Crandall et al. 1968).
The constitutive equation for the charge over the capacitor is q = C(x)u where the

capacitance C(x) can be described by the relation

C(x) = C0
d0

d0 + x
(3.225)

Here d0 is the nominal position of the moving plate with mass m and position x. More-
over, the force over the capacitor is zero when the charge is zero. The force over the
capacitor is then found from (3.223) to be

F (q, x) = −1

2

d

dx

µ
d0 + x

C0d0

¶
q2 (3.226)

and the constitutive equations are found to be

u(q, x) =
q

C(x)
, F (q, x) = − q2

2C0d0
(3.227)

The dynamic model is then

mẍ + bẋ+ kx +
q2

2C0d0
= −Fa (3.228)

Rq̇ +
q (d0 + x)

C0d0
= u0 (3.229)

Here (3.228) is the equation of motion for the moving plate where b is the friction coeffi-
cient, k is the spring stiffness, the last term on the left side is the force from the capacitor,
and Fa is the acoustic excitation force due to the sound. The stationary value of this
force is zero. Equation (3.229) is the voltage law for the electric circuit with a resistor
R in series with the capacitor, and with a constant driving voltage u0. We note that the
dynamics of the system are nonlinear. Before linearization the equilibrium points are
investigated. By setting the time derivatives of x and q to zero and eliminating q we find
the equilibrium values x0 and q0, which are related to u0 by

kx0 +
q20

2C0d0
= 0,

q0 (d0 + x0)

C0d0
= u0 (3.230)

Elimination of q0 by inserting the second equation of (3.230) into the first equation gives

kx0 +
C0d0u

2
0

2 (d0 + x0)
2 = 0, −d0 ≤ x0 ≤ 0 (3.231)

where the first term is the spring force of the mechanical spring and the second term can
be regarded as a nonlinear electrical spring. There are two equilibrium points where one
is stable, and the other is unstable.
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Linearization and Laplace transformation of (3.228) and (3.229) around x = x0,
q = q0 and Fa = 0 gives¡

ms2 + bs+ k
¢
∆x(s) +

q0
C0d0

∆q(s) = −Fa(s) (3.232)

q0∆x(s) + (C0d0Rs + d0 + x0)∆q(s) = 0 (3.233)

By inserting ∆x from the second equation into the first equation we get·¡
ms2 + bs+ k

¢
(C0d0Rs+ d0 + x0)− q20

C0d0

¸
∆q(s)

q0
= Fa(s) (3.234)

The output from the microphone is the increment in voltage ∆uR over the resistor R,
which is ∆uR = R∆i = Rs∆q. The transfer function from the acoustic force to the
measurement is found from (3.234) to be

∆uR(s)(s)

Fa(s)
=

Rs∆q(s)

Fa(s)
=

Rsq0

(ms2 + bs + k) (C0d0Rs + d0 + x0)− q20
C0d0

(3.235)

For large R this expression can be approximated with

∆uR(s)

Fa
(s) =

q0
(ms2 + bs + k)C0d0

=

q0
kC0d0µ

1 + 2ζ0
s
ω0

+
³

s
ω0

´2¶ (3.236)

where

ω20 =
k

m
, ζ0 =

b

2
√
km

(3.237)

We see that the measured voltage u0 is proportional to the acoustic excitation force Fa
in the frequency range up to ω0.

Example 48 The condition for the equilibrium point to be stable is given by

k (d0 + x0)− q20
C0d0

≥ 0 (3.238)

which is simplified to

x0 ≥ −d0
3

(3.239)

by inserting the equation (3.230) for the equilibrium point.

3.7.15 Piezoelectric actuator

Piezoelectric sensors or actuators are electromechanical systems where the energy con-
version is due to capacitive effects. An example of this is the axial piezoelectric stack
actuator (IEEE 1987), (Fuller, Elliott and Nilsen 1996), which is a translational capac-
itive actuator with small displacements that can exert large forces. These actuators are
of particular interest for vibration damping.
The constitutive equations for a piezoelectric actuator are given by

q (u, x) = Cpx + Cu (3.240)

Fpe (u, x) = −Kx + Cpu (3.241)
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where x is the elongation of the piezoelectric material, Fpe is the actuator force, q is the
charge, u is the voltage, C is the capacitance, Cp is the piezoelectric constant, and K is
the mechanical stiffness. The coenergy W ∗c (u, x) of the actuator is found by integrating
dW ∗c = qdu+ Fpedx from (0, 0) to (0, x), and then from (0, x) to (u, x). This gives

W ∗c (u, x) =

Z x

0

Fpe (0, x0) dx0 +
Z u

0

q (u0, x) du0 (3.242)

= −
Z x

0

Kx0dx0 +
Z q

0

(Cpx + Cu0) du0 (3.243)

The coenergy is then found to be

W ∗c (u, x) = −1

2
Kx2 + Cpxu +

1

2
Cu2 (3.244)

and it can be verified that

Fpe =
∂W ∗c (u, x)

∂x
, q =

∂W ∗c (u, x)

∂u
(3.245)

Moreover, the energy stored in the actuator is found to be

Wc(q, x) = qu−W ∗c (u, x) =
1

2
Kx2 +

1

2
Cu2(q, x) (3.246)

3.7.16 Actuator configuration

Piezoelectric
Actuator Piezoelectric force

Actuator force
F F

Ks

Fpe Fpe

x

Figure 3.18: Piezoelectric actuator pretensioned by a spring

A typical actuator configuration would be to have the actuator pretensioned by a
spring with stiffness Ks and equilibrium xs (Figure 3.18), and to input the voltage u to
the actuator. Then the actuator force will be F = Fpe−Ks(x− xs), and the actuator is
described by the equation

F = −(K +Ks)(x− x0) + Cpu (3.247)

where x0 = xsKs/(K + Ks). In this case we view the piezoelectric actuator as a force
actuator where the actuator force F is controlled with the voltage u. Then F is seen as
an output while the deflection x is an input to the actuator (Figure 3.19). Alternatively,
the actuator can be regarded as a displacement actuator controlled by the voltage u
according to

x = x0 +
Cpu− F

K +Ks
(3.248)
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control input

Force
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-V F
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Figure 3.19: Piezoelectric actuator seen as a force actuator

In this case the deflection x is treated as an output while the force F on the actuator
is an input (Figure 3.20. The decision on whether to treat the piezoelectric actuator as

Voltage
control input

Force
response

Deflection
output

V x

x0

F

Cp 1
KKs

Figure 3.20: Piezoelectric actuator as a deflection actuator

a force or deflection actuator depends on how the actuator is connected to the system
to be controlled. If the actuator is connected to a spring, then deflection should be the
output of the actuator. If the actuator is connected to mass, then force should be the
actuator output.

3.8 DC motor with externally controlled field

3.8.1 Model

In this section the model for DC motor with externally controlled field is presented
(Figure 3.21). The field is assumed to be set up by a field winding. The field winding
is an electrical circuit which has a conductor that is wound around an iron core in the
stator. The rotor has a winding, which is called the armature winding, around an iron
core in the rotor. The current in the field windings in the stator is used to set up a
magnetic flux density �Be through the rotor, and a Lorentz force �F ∼�ia× �Be on the rotor
result when a current �ia is run through a conductor in the rotor windings.
Kirchhoff’s voltage law for the field circuit in the stator gives

Reie + λ̇e = ue (3.249)

where ie is the field current, Re is the field resistance, Ne is the number of windings in
the field circuit, λe = λe (ie) is the flux linkage of the field circuit, and ue is the field



3.8. DC MOTOR WITH EXTERNALLY CONTROLLED FIELD 117

e

+ +

-
-

+

-

eaua

u e

i a

i e

Ra La

Re
Jm

T,m ,m

TL

Figure 3.21: Armature circuit and field circuit of DC motor.

circuit voltage. The voltage law for the armature circuit in the rotor gives

Raia + La
d

dt
ia + ea = ua (3.250)

where ia is the armature current, Ra is the armature resistance, La is the armature
inductance, ua is the armature voltage, ea is the induced voltage, ωm is the angular
velocity of the motor shaft and kf is a constant. The main feature of a DC motor is that
the motor is designed so that the field is set up so that the induced voltage

ea = keλeωm (3.251)

is proportional to the flux linkage λe and the shaft speed ωm. The electrical power eaia
and the mechanical power Tωm of the electromechanical conversion unit must be equal,
and this implies that the motor torque

T = kTλeia (3.252)

where kT = ke is a constant, is proportional to the product of the magnetizing flux
linkage λe and the armature current ia. Then the armature part of the DC motor may
be described by the two-port

Raia + La
d

dt
ia + keλeωm = ua (3.253)

T = kTλeia (3.254)

The input port variables are ua and ia and the output port has variables T and ωm.
The equation of motion for the motor shaft is

Jmω̇m = T − TL (3.255)

where Jm is the inertia of the motor shaft, and TL is the torque that acts on the motor
shaft from the load.
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The dynamic model of a DC motor with externally controlled field is given by

λ̇e = −Reie + ue (3.256)

La
d

dt
ia = −Raia − keλeωm + ua (3.257)

Jmω̇m = kTλeia − TL (3.258)

θ̇m = ωm (3.259)

The input variables to the DC motor are the field voltage ue and the armature voltage
ua. Note that the model is nonlinear due to the product λeωm in the armature equation
and the product λeia in the field equation.

3.8.2 Network description

The energy of the armature circuit and the motor shaft is

V =
1

2
Lai

2
a +

1

2
Jω2m (3.260)

The time derivative along solution trajectories is

V̇ = iaLa
dia
dt

+ ωmJm
dωm
dt

= ia (−Raia − keλeωm + ua) + ωm (kTλeia − TL)

= iaua − ωmTL −Rai
2
a (3.261)

This shows that if the load is passive, then the DC motor with input ua and output ia is
passive. Note in particular that this result does not rely on any assumptions on how the
field circuit is controlled. This means that a passive current controller like a PI controller
will give a stable armature current control independently of the field circuit.
Moreover, the energy of the field circuit is

Ve =
1

2
Lei

2
e (3.262)

with time derivative

V̇e = ieLe
die
dt

= ie (−Reie + ue) (3.263)

= ieue −Rei
2
e (3.264)

along the solutions of the system. These calculations show that the field circuit is passive
with input ue and output ie. Moreover, it is seen that there is no energy exchange between
the field circuit and the rest of the system. This means that the field current ie can be
controlled with a passive controller of the PI type independently of how the armature
circuit is controlled.
In terms of a network description the field circuit is a passive electrical one-port

with input port with voltage ue and current ie. The dynamic model of the armature
circuit and the motor shaft can be described as in the case of a DC motor with constant
field with interconnection of three passive two-ports, namely, the armature circuit, the
electromechanical energy conversion unit, and the motor shaft.
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3.8.3 DC motor with field weakening

Stationary conditions for a DC motor are found by setting the time derivatives to zero.
Then the following equations result:

Reie = ue (3.265)

Raia + kfλeωm = ua (3.266)

kTλeia = TL. (3.267)

The armature equation (3.266) gives an expression for the stationary velocity

ωm =
ua −Raia

kfλe
=

ua
kfλe

− RaTL

kTkfλ
2
e

(3.268)

where the torque equation (3.267) was used to eliminate ia. Suppose that the armature
voltage is limited by

−U ≤ ua ≤ U (3.269)

while the flux linkage is limited by

0 ≤ λe ≤ λ̄ (3.270)

Then, with a constant maximum flux linkage λe = λ̄ the maximum velocity will be

ωm =
U

kf λ̄
− RaTL

kT kf λ̄
2 . (3.271)

It turns out that the speed of the the motor may be increased over this value by reducing
the flux linkage λe. This is referred to as field weakening . To see this we note that for
ua = U then

∂ωm
∂λe

= − U

kfλ
2
e

+ 2
RaTL

kT kfλ
3
e

< 0 if λe > λmin =
2RaTL
kTU

. (3.272)

This means that when the armature voltage ua has reached its maximum value U , an
additional increase in velocity can be achieved by weakening the field as long as the
load torque TL is sufficiently small, so that λe > λmin. Field weakening is typically
implemented so that the induced voltage ea = kfλeωm is kept constant, that is, with a
desired field is set to

λed =

(
λ̄ |ea| < ea,max¯̄̄

ea,max
kfωm

¯̄̄
otherwise

(3.273)

The induced voltage can be computed from the armature voltage and armature current
measurements using

ea = ua −Raia − La
dia
dt

(3.274)

and a feedback controller can be used to achieve the desired flux linkage λed. In this case
the desired flux linkage λed is considered as an input to the system, and, assuming that
the field circuit is sufficiently fast, the model is

La
dia
dt

= −Raia − kfλedωm + ua (3.275)

Jmω̇m = kTλedia − TL (3.276)

θ̇m = ωm (3.277)
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Typically, the armature current ia is controlled with a PI controller where the armature
voltage ua is the input. Stability of the armature current control loop is ensured as the
system with input ua and output ia is passive independently of the dynamics of the field
circuit.

3.9 Dynamic model of the general AC motor

3.9.1 Introduction

DC motors with a constant field have been the usual electrical motors in control appli-
cations. The reason for this is that it is straightforward to control the armature current
of this type of motor, and as the motor torque of a DC motor is proportional to the
armature current when the field is constant, it has been possible to control the motor
torque. This is certainly an ideal situation in control applications. In contrast to this,
AC motors have mainly been used in steady-state drives where the transient performance
has not been the main objective. There is a large literature on steady-state dynamics
for AC motors. However, in the last two decades there has been a strong development in
power electronics (Mohan, Undeland and Robbins 1989), and it is now possible to achieve
servo control of AC motors (Leonhard 1996). In the context of servo control there is a
need for dynamic models of AC motors that account for the transient dynamics. The
inclusion of transient dynamics may at first be unfamiliar for readers with a background
in the steady-state dynamics of AC motors, but it is needed for servo designs for AC
motors. The dynamic models presented in the following will start with the general AC
motor with a rotor that has a circular cross section. Then, this result will be specialized
for induction motors, which are of great interest in control systems due to their rugged
and reliable design.

3.9.2 Notation

For the modeling of the general AC motor we will represent voltages, currents and flux
linkages in terms of two-dimensional coordinate vectors in the stator-fixed frame s, the
rotor-fixed frame r, and in the rotor flux frame f . The stator-fixed frame s is also referred
to as the ab frame, while the flux frame f is referred to as the dq frame. The tradition
in the literature of electrical machines is to write the coordinate vectors as complex
numbers. A voltage vector given in the coordinates of the stator frame s is written as
the complex number

us = ua + jub. (3.278)

The same vector in the flux frame is written

uf = ud + juq. (3.279)

The frame f is obtained by rotation of frame s by an angle ρ. The coordinate transfor-
mation is written

us = ufejρ. (3.280)

The time derivative of the vector us in the s frame can be expressed by the time derivative
in the f frame according to

dus

dt
=

d

dt

¡
ufejρ

¢
=

µ
duf

dt
+ jρ̇uf

¶
ejρ (3.281)
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In the same way the vector can be given in the rotor frame r as ur.

The rotational angle from the stator to the rotor is denoted θ, so that

us = urejθ (3.282)

and
dus

dt
=

µ
dur

dt
+ jθ̇ur

¶
ejθ (3.283)

3.9.3 Dynamic model
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Figure 3.22: General AC machine.

We will here develop the dynamic model of a general alternating current (AC) mo-
tor based on the presentation in (Leonhard 1996) where complex numbers are used to
represent vectors in the plane. An alternative formulation based on vector notation is
found in (Vas 1990). The results of this section will later be specialized to the dynamic
model of the induction motor. The general AC motor has a stationary part called the
stator, which is assumed to be an iron cylinder containing a concentric rotor, which is
the moving part of the motor. Both the rotor and the stator are assumed to have circular
cross sections separated by a constant airgap h. Both stator and rotor have symmetrical
three-phase windings close to the airgap. Each stator phase has NS windings, while each
rotor phase has NR windings. The magnetic permeability of the fully laminated stator
and rotor iron is assumed to be infinite, and iron losses are left out of the analysis. A mo-
tor with two poles is considered. For details on this consult (Leonhard 1996) for control
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issues, and (Fitzgerald et al. 1983), which is a basic textbook on electrical machines.
The geometry of the AC motor is given in Figure 3.22. The angle θ is the rotor angle,

α is the angular coordinate of the stator, and β = α − θ is the corresponding angular
coordinate of the rotor. The currents of the stator phases 1, 2 and 3 are denoted iS1, iS2
and iS3, respectively. The stator currents are balanced so that

iS1 (t) + iS2 (t) + iS3 (t) = 0 (3.284)

Note that the currents iS1 (t), iS2(t) and iS3 (t) are real, and, moreover, they are general
time functions that need not have any specified wave-form. The radial magnetomotive
force (mmf) distribution from the stator windings at the angular coordinate α is by
design sinusoidal and given by

FS (α, t) = NS [iS1 cosα + iS2 cos (α− γ) + iS3 cos (α− 2γ)] , γ = 120◦ (3.285)

From the trigonometric identity

cos(x− y) = cosx cos y + sinx sin y (3.286)

we get

FS (α, t) = NS [cosα (iS1 + iS2 cos γ + iS3 cos 2γ) (3.287)

+sinα (iS1 + iS2 sin γ + iS3 sin 2γ)] . (3.288)

Complex notation

cosα =
1

2

¡
ejα + e−iα

¢
(3.289)

sinα =
1

2j

¡
ejα − e−jα

¢
(3.290)

is introduced, and this makes it possible to write the magnetomotive force in the form

FS (α, t) =
1

2
NS

£
isS(t)e−jα + is∗S (t) ejα

¤
= NS Re

£
isS(t)e−jα

¤
(3.291)

where the complex variable isS and its complex conjugate i
s∗
S are defined by

isS = iS1 + iS2e
jγ + iS3e

j2γ (3.292)

is∗S = iS1 + iS2e
−jγ + iS3e

−j2γ . (3.293)

To explain the introduction of the complex current isS further we note that in the gen-
eration of the magnetomotive force FS (α, t) the three stator phases are rotated in the
stator by an angle γ = 120◦ relative to each other. Because of this, the influence of a
current iS2 (t) in the second phase is the same as the influence of a current iS2 (t) ejγ in
the first phase. In the same way, the influence of a current iS3(t) in the third phase is the
same as the influence of a current iS3 (t) ej2γ in the first phase. The combined influence
of the three phases iS1 (t), iS2(t) and iS3 (t) is therefore the same as the single complex
current isS .
The polar form of isS is written

isS = |iS | ejζ (3.294)
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where |iS | =
p
isSi

s∗
S is the magnitude of isS and ζ is the angle of i

s
S . Using the polar form

of the stator current we may write the magnetomotive force at the angular coordinate α
as

FS (α, t) =
1

2
NS

h
|iS | ej(ζ−α) + |iS | e−j(ζ−α)

i
= NS |iS | cos (ζ − α) . (3.295)

The currents of the rotor phases 1, 2 and 3 are denoted iR1, iR2 and iR3, respectively.
The radial magnetomotive force from the three-phase rotor windings is given at the
angular coordinate β in the rotor as

FR (β, t) = NR [iR1 cosβ + iR2 cos (β − γ) + iR3 cos (β − 2γ)] (3.296)

where
β = α− θ. (3.297)

The rotor currents iR1, iR2 and iR3 are represented by the complex variable irR and its
complex conjugate ir∗R defined by

irR = iR1 + iR2e
jγ + iR3e

j2γ = |iR| ejξ (3.298)

ir∗R = iR1 + iR2e
−jγ + iR3e

−j2γ = |iR| e−jξ (3.299)

which gives

FR (α, θ, t) =
1

2
NR

h
irRe
−j(α−θ) + ir∗R ej(α−θ)

i
. (3.300)

The total radial magnetomotive force is then given by the sum

F = FS (α, t) + FR (α, θ, t) (3.301)

As the magnetic permeability of the iron is much higher than the magnetic permeability
for air, the magnetomotive force will be over the airgaps. The corresponding magnetic
flux density at the airgap is

BS (α, θ, t) =
µ0
2h

[FS (α, t) + FR (α, θ, t)] (3.302)

where µ0 is the magnetic permeability of air.
The flux linkage of stator winding 1 is

λS1 (t) =
1

2
NS

Z π
2

−π
2

cosψ

Z ψ+π
2

ψ−π
2

lrBS (α, θ, t) dαdψ. (3.303)

Integration gives, after some work,

λS1 (t) =
1

3
LS [isS(t) + is∗S (t)] +

1

3
M [isR(t) + is∗R (t)] (3.304)

where

LS = 3
N2
S lrπµ0
8h

, M = 3
NSNRlrπµ0

8h
(3.305)

Proceeding in the same way with the flux linkages λS2 and λS3 it is found that

λS2 (t) =
1

3
LS
£
isS(t)e−jγ + is∗S (t) ejγ

¤
+

1

3
M
£
isR(t)e−jγ + is∗R (t) ejγ

¤
λS3 (t) =

1

3
LS
£
isS(t)e−j2γ + is∗S (t) ej2γ

¤
+

1

3
M
£
isR(t)e−j2γ + is∗R (t) ej2γ

¤
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Then, we may define the complex stator flux linkage λsS by

λsS = λS1 + λS2e
jγ + λS3e

j2γ , (3.306)

and we find that the complex stator flux linkage λsS is given by the complex stator current
isS and the complex rotor current i

s
R according to

λsS = LSi
s
S +MisR (3.307)

Note that the complex rotor current isR = irRe
jθ is given in the stator frame s.

In the same way the rotor flux linkages λR1, λR2 and λR3 of the rotor phases 1, 2 and
3 are represented by the complex rotor flux variable λrR defined by

λrR = λR1 + λR2e
jγ + λR3e

j2γ (3.308)

The complex rotor flux linkage λrR is given by the complex current variables i
r
R and irS

according to
λrR = LRi

r
R +MirS (3.309)

where

LS = 3
N2
Rlrπµ0
8h

(3.310)

and the complex stator current irS = isSe
−jθ is given in the rotor frame r. The stator
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Figure 3.23: Stator and rotor circuits

and rotor circuits are shown in Figure 3.23. For each of the stator phases 1, 2 and 3 the
voltage law leads to

RSiS1 +
dλS1
dt

= uS1 (3.311)

RSiS2 +
dλS2
dt

= uS2 (3.312)

RSiS3 +
dλS3
dt

= uS3 (3.313)

Likewise, the voltage law for each of the rotor phases gives

RRiR1 +
dλR1
dt

= uR1 (3.314)

RRiR2 +
dλR2
dt

= uR2 (3.315)

RRiR3 +
dλR3
dt

= uR3 (3.316)
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Define the complex stator voltage

usS = uS1 + uS2e
jγ + uS3e

j2γ (3.317)

and the complex rotor voltage

urR = uR1 + uR2e
jγ + uR3e

j2γ (3.318)

The voltage laws for stator and rotor in terms of complex variables can be written

RSi
s
S +

dλsS
dt

= usS (3.319)

RRi
r
R +

dλrR
dt

= urR. (3.320)

where
λsS = LSi

s
S +MisR, λrR = LRi

r
R +MirS (3.321)

Note that the dynamics of the stator circuits are given in the stator-fixed frame s,
while the dynamics of the rotor circuits are given in the rotor fixed frame r.
The motor torque is due to the Lorentz force on the rotor, which is caused by the

rotor current flowing in the magnetic flux from the stator. The magnetic flux from the
stator is

BRS (β, θ, t) =
NSµ0

4h

h
isS(t)e−j(β+θ) + is∗S (t) ej(β+θ)

i
(3.322)

while the current density in the rotor is given by

aR (β, t) =
1

2r

∂FR
∂β

= −jNR

4r

£
irRe
−jβ − ir∗R ejβ

¤
(3.323)

The resulting torque is

dT = −rBRSaRlrdβ (3.324)

=
j

2π

M

3

h
isSe
−j(β+θ) + is∗S ej(β+θ)

i £
irRe
−jβ − ir∗R ejβ

¤
dβ (3.325)

=
j

2π

M

3

h
is∗S irRe

jθ − isSi
r∗
R e−jθ + isSi

r
Re
−j(2β+θ) − is∗S ir∗R ej(2β+θ)

i
dβ (3.326)

which is integrated to

T =
M

3

·
isSi

r∗
R e−jθ − is∗S (t) irRe

jθ

2j

¸
=

2

3
M Im [isSi

s
R
∗] (3.327)

The dynamic model of a general AC motor is given by

RSi
s
S + LS

disS
dt

+M
d

dt

¡
irRe

jθ
¢

= usS (3.328)

RRi
r
R + LR

dirR
dt

+M
d

dt

¡
isSe
−jθ¢ = urR (3.329)

J
dωm
dt

=
2

3
M Im

h
isS
¡
irRe

jθ
¢∗i− TL (3.330)

dθ

dt
= ωm (3.331)
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The general AC motor can be described as an electromechanical three-port that is
connected to a mechanical rotary two-port. The electromechanical three-port has a stator
port with effort usS and flow isS , a rotor port with effort u

r
R and flow irR, and a mechanical

port with effort T and flow ωm. The mechanical port is connected to the mechanical
port which has effort T and flow ωm at the input port and effort TL and flow −ωm at
the input port.

3.10 Induction motors

3.10.1 Basic dynamic model

R1

R2

R3

i R1

i R2

i R2

RR

RR

RR

Figure 3.24: Rotor circuit of indiction motor.

A type of induction motor that is widely used is the squirrel cage induction motor,
which is designed so that the rotor circuits are short-circuited (Figure 3.24). The dynamic
model is obtained by setting the rotor voltage urR to zero in the general AC motor model.

The model for an induction motor with short-circuited rotor is give by

RSi
s
S + LS

disS
dt

+M
d

dt

¡
irRe

jθ
¢

= usS (3.332)

RRi
r
R + LR

dirR
dt

+M
d

dt

¡
isSe
−jθ¢ = 0 (3.333)

J
dωm
dt

=
2

3
M Im

h
isS
¡
irRe

jθ
¢∗i− TL (3.334)

dθ

dt
= ωm (3.335)

In a network description the induction motor model is obtained from the general AC
motor model by introducing a short circuit of the rotor port.

3.10.2 Induction motor model in stator frame

An alternative model formulation that is often seen for induction motors is obtained by a
change of variables from current irR to flux linkage λ

s
R in the stator equation (3.332) and

the rotor equation (3.333). The resulting model, which is called the ab-model is given in
the stator frame in terms of stator currents isS and rotor flux λsR. The model is derived
from (3.319) and (3.320). First it is noted that (3.320) implies that

RRi
s
R +

d

dt

¡
λsRe

−jθ¢ ejθ = 0 (3.336)
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where the equation is expressed in the s frame, and where it is used that urR = 0.
Differentiation gives

RRi
s
R +

dλsR
dt
− jωmλ

s
R = 0 (3.337)

Next, insertion of (3.307) into (3.319) gives

RSi
s
S +

d

dt
(LSi

s
S +MisR) = usS (3.338)

From (3.309) it follows that

isR = irRe
jθ =

1

LR
(λsR −MisS) (3.339)

and, combining this with (3.337), it is found that

disR
dt

=
1

LR

µ
dλsR
dt
−M

disS
dt

¶
=

1

LR

µ
jωmλ

s
R −RRi

s
R −M

disS
dt

¶
=

1

LR

·µ
jωm − RR

LR

¶
λsR +

RR

LR
MisS −M

disS
dt

¸
(3.340)

Insertion of these results into (3.338) and (3.337) gives

RSi
s
S + LS

disS
dt

+
M

LR

·µ
jωm − RR

LR

¶
λsR +

RR

LR
MisS −M

disS
dt

¸
= usS (3.341)

RR

LR
(λsR −MisS) +

dλsR
dt
− jωmλ

s
R = 0 (3.342)

which is simplified to

LSσ
disS
dt

= −
µ
RS +

RRM
2

L2R

¶
isS −

M

LR

µ
jωm − RR

LR

¶
λsR + usS (3.343)

dλsR
dt

= −RR

LR
λsR + jωmλ

s
R +

RRM

LR
isS (3.344)

where

σ = 1− M2

LSLR
(3.345)

The torque can be expressed

T =
2

3
M Im

h
isS
¡
irRe

jθ
¢∗i

=
2

3

M

LR
Im
h
isS
¡
λrRe

jθ
¢∗

+ MisS (isS)
∗i

=
2

3

M

LR
Im
h
isS
¡
λrRe

jθ
¢∗i

=
2

3

M

LR
Im [isSλ

s
R
∗] (3.346)

where it is used that Im
£
isS (isS)

∗¤
= 0. The equation of motion is then

J
dωm
dt

=
2

3

M

LR
Im
h
isS
¡
λrRe

jθ
¢∗i− TL

The coordinate form of this model is found by inserting

isS = ia + j ib, usS = ua + jub, λsR = λa + jλb, (3.347)
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This gives the ab-model for an induction motor:

dia
dt

= −L
2
RRS +M2RR

L2RLSσ
ia +

RRκ

LR
λa + κωmλb +

1

LSσ
ua (3.348)

dib
dt

= −L
2
RRS +M2RR

L2RLSσ
ib +

Rrκ

LR
λb − κωmλa +

1

LSσ
ub (3.349)

dλa
dt

= −RR

LR
λa − ωmλb +

RRM

LR
ia (3.350)

dλb
dt

= −RR

LR
λb + ωmλa +

RRM

LR
ib (3.351)

Jmω̇m = µ (λaib − λbia)− TL (3.352)

where

σ = 1− M2

LSLR
, κ =

M

σLSLR
, µ =

2

3

M

LR
(3.353)

This model has no trigonometric terms.

3.10.3 Dynamic model in the flux frame
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Figure 3.25: The flux frame dq.

A model formulation that is of great practical importance is the dq-model which is
the basis for field-oriented control of induction motors. This model has strong similarities
with the dynamic model of the DC motor, and is particularly suited for the design of
servo controllers for induction motors. To arrive at the dq-model the rotor flux linkage
is written in polar form

λsR = λrRe
jθ = |λR| ejρ (3.354)

where |λR| is the magnitude of the rotor flux linkage. We define the rotor flux frame f as
the frame rotated by an angle ρ relative to the stator frame s (Figure 3.25). This frame
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is also referred to as the dq frame. Here d refers to the direct axis, which is the xf axis,
and q refers to the quadrature axis, which is the yf axis. The rotor flux linkage in the
dq frame is then purely real, which is seen from

λfR = λrRe
jθe−jρ = |λR| (3.355)

The stator current and voltage in the dq frame are written

ifS = isSe
−jρ = iSd + j iSq (3.356)

ufS = usSe
−jρ = uSd + j uSq (3.357)

The torque is then

T =
2

3

M

LR
Im
h
ifS

³
λfR

´∗i
=

2

3

M

LR
|λR| iSq. (3.358)

This expression for the torque is very interesting as it resembles the torque expression for
a DC motor. In particular, it is seen that if the field represented by the rotor flux linkage
|λR| can be controlled to a constant, say |λR| = Λ, then the torque will be proportional
to the stator current component iSq along the quadrature axis yf . To investigate this
further we develop a model of the induction motor in the dq frame. The rotor flux linkage
can be expressed by the rotor and stator currents by rotating (3.309) to the flux frame
f , which gives

λfR = LRi
f
R +MifS (3.359)

This expression is combined with the voltage law

RRi
r
R +

dλrR
dt

= 0 (3.360)

for the rotor windings. In the f frame this gives

d
³
λfRe

−j(θ−ρ)
´

dt
ej(θ−ρ) +

RR

LR

³
λfR −MifS

´
= 0, (3.361)

which leads to the following differential equation for the rotor flux linkage:

dλfR
dt

+ j (ρ̇− ωm)λfR +
RR

LR

³
λfR −MifS

´
= 0. (3.362)

The real and imaginary part of this equation gives

LR
RR

d |λR|
dt

+ |λR| = MiSd (3.363)

ρ̇ = ωm +
MRR

LR

iSq
|λR| (3.364)

Note that the second equation is singular when the rotor flux is zero, that is, for |λR| = 0.
The stator flux equation is

RSi
s
S +

d

dt
(LSi

s
S +MisR) = usS (3.365)
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The rotor current is eliminated, which gives

RSi
s
S +

d

dt

·
LSσi

s
S +

M

LR
λsR

¸
= usS (3.366)

where

σ = 1− M2

LSLR
(3.367)

In the f frame this gives

RSi
f
S + LSσ

Ã
difS
dt

+ jρ̇ifS

!
+

M

LR

dλfR
dt

+ jρ̇
M

LR
λfR = ufS (3.368)

The real and imaginary part of this equation is

LSσ
diSd
dt

= −RSiSd + uSd − M

LR

d |λR|
dt

+ LSσρ̇iSq (3.369)

LSσ
diSq
dt

= −RSiSq + uSq − M

LR
ρ̇ |λR|− LSσρ̇iSd (3.370)

A reasonable assumption is that the rotor flux linkage is slowly changing compared to
the stator current, and this expression is therefore not developed further by inserting
expressions for the derivative of the rotor flux linkage.

The dq model of an induction motor is given by

LSσ
diSd
dt

= −RSiSd + uSd − M

LR

d |λR|
dt

+ LSσρ̇iSq (3.371)

LSσ
diSq
dt

= −RSiSq + uSq − M

LR
ρ̇ |λR|− LSσρ̇iSd (3.372)

LR
RR

d |λR|
dt

+ |λR| = MiSd (3.373)

ρ̇ = ωm +
MRR

LR

iSq
|λR| (3.374)

Jmω̇m = µ |λR| iSq − TL (3.375)

We can interpret this in the following way: The stator current component iSd along
the direct axis is controlled by the voltage uSd, and is used to magnetize the motor,
that is, to control the flux linkage |λR|. The stator current component iSq along the
quadrature axis is controlled by the quadrature voltage component uSq, and is used to
control the torque Tm. This is the underlying principle of field-oriented control . In field-
oriented control the magnitude |λR| of the rotor flux is controlled to a constant value Λ
with the controllers

iSd,ref = Kid (s) [Λ− |λR| (s)] (3.376)

uSd = Kud (u) [iSd,ref − iSd] (3.377)

Then the torque can be controlled to a desired value τd by controlling the quadrature
current

uSq = Kuq (u) [iSq,ref − iSq] (3.378)

where iSq,ref = τd/ (µΛ). In addition, the flux angle ρ must be calculated in some way.
Solutions to this problem are discussed in great detail in (Leonhard 1996).
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Example 49 The dq model of the induction motor can be described as a electromechan-
ical three-port with a quadrature axis port with voltage uSq and current iSq, a direct axis
port with voltage uSd and current iSd, and a mechanical rotary port with effort T and
flow ωm. The direct port is used to control the flux in the machine, while the quadrature
port is used to control the torque.

3.11 Lagrangian description of electromechanical sys-
tems

3.11.1 Generalized coordinates

The dynamics of electrical motors involves the dynamics of an electrical system and a
mechanical system. The mechanical system can be modeled with the Lagrange’s equation
of motion, and this is quite useful for analysis and controller design. It turns out that also
the electrical system can be modelled using a Lagrange formalism, and this description
can be integrated with the Lagrangian description of the mechanical system. A detailed
discussion of this is found in (Meisel 1966) and (Crandall et al. 1968), and the material
in this section is based on these two references.
Lagrangian models for mechanical systems (Chapter 8 relies on the definition of gen-

eralized coordinates qi that may be positions or angles. In addition the generalized
momenta

pi =
∂L

∂q̇i
(3.379)

are used, where L is the Lagrangian. In electrical systems there are two alternatives for
generalized coordinates. One is the electrical charge q of a capacitive element, and the
other is the flux linkage λ of an inductive element. The time derivative of the electrical
charge is a current, and the time derivative of a flux linkage is a voltage, so we may write

q̇ = i and λ̇ = u (3.380)

3.11.2 Energy and coenergy

The power input to a circuit of n elements can be written

P =
nX

k=1

ikuk = q̇kλ̇k (3.381)

where q̇k = ik is the current through element k, and λ̇k = uk is the voltage over element
k. The energy stored in the circuit is

W =
nX

k=1

Z t

t0

q̇kλ̇kdt (3.382)

Suppose that circuit element k is capacitive, and that the voltage λ̇k can be given as
a function of the charge qk according to

λ̇k = λ̇k (qk) (3.383)

Then, using q̇kdt = dqk, the energy of element k can be written

Wck (qk) =

Z qk

qk(t0)

λ̇k (q0k) dq
0
k (3.384)
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where q0k is the dummy variable used in the integration. The coenergy of element k is

W ∗ck
³
λ̇k

´
=

Z λ̇k

λ̇k(t0)

qk

³
λ̇
0
k

´
dλ̇

0
k (3.385)

where λ̇
0
k is the dummy variable in the integration. Then the following expressions hold

∂Wck (qk)

∂qk
= λ̇k and

∂W ∗ck(λ̇k)
∂λ̇k

= qk (3.386)

Next, suppose that circuit element i is inductive, and that the current can be written
as a function

q̇i = q̇i (λi) (3.387)

of the flux linkage λi. Then the energy is of an inductive element is

Wmi (λi) =

Z λi

λi(t0)

q̇i
¡
λ0i
¢
dλ0i (3.388)

Define the coenergy of an inductive element by

W ∗mi (q̇i) =

Z q̇i

q̇i(t0)

λi (q̇
0
i) dq̇

0
i (3.389)

The flux linkage and the current are then given by

∂Wmi (λi)

∂q̇i
= λi and

∂W ∗mi (q̇i)

∂λi
= q̇i (3.390)

The energyWc (q) and the coenergyW ∗c
³
λ̇
´
of the capacitive elements of the circuit

are given by

Wc (q) =
X
k

Wck (qk) , W ∗c
³
λ̇
´

=
X
k

W ∗ck
³
λ̇k

´
(3.391)

where the summation is done over the capacitive elements of the circuit. The energy
Wm (λ) and the coenergy W ∗m (q̇) of the circuit are given by

Wm (λ) =
X
i

Wmi (λi) , W ∗m (q̇) =
X
i

W ∗mi (q̇i) (3.392)

where the summation is done over the inductive elements of the circuit.

3.11.3 Analogy of electrical and mechanical systems

In a translational mechanical system the effort is the force F and the flow is the velocity
ẋ. In an electrical circuit the usual analog of a mechanical system is obtained using the
voltage u as the effort variable, and the current q̇ as the flow variable. This gives electrical
analog 1 where a mass corresponds to an inductance, a viscous damper corresponds to a
resistor, and a spring corresponds to a capacitor as in Table 3.1.
An alternative electrical analog appears if the current is used as the effort variable,

and the voltage is taken as the flow variable. This gives electrical analog 2 where a mass
corresponds to a capacitor, a viscous damper corresponds to a resistor, and a spring
corresponds to an inductance as in Table 3.2.
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Translational Electrical analog 1

Effort Energy Effort Energy

Mass F = mẍ K = 1
2mẋ2 u = Lq̈ W ∗m = 1

2Lq̇
2

Damper F = Bẋ 0 u = Rq̇ 0

Spring F = Kx V = 1
2Kx2 u = Cq Wc = 1

2C q
2

Table 3.1: Electrical analog 1.

Translational Electrical analog 2

Effort Energy Effort Energy

Mass F = mẍ K = 1
2mẋ2 i = 1

C λ̈ W ∗c = 1
2Cλ̇

2

Damper F = Bẋ 0 i = 1
R λ̇ 0

Spring F = Kx V = 1
2Kx2 i = 1

Lλ Wm = 1
2Lλ

2

Table 3.2: Electrical analog 2.

Suppose that electrical analog 1 is used, which means that the charge q is taken as a
generalized coordinate of the electrical system. Then the energy stored in an inductance
is analog to the kinetic energy of a mass, and the energy stored in a capacitor is the
analog of the potential energy in a spring. On the equation level there is no distinction
between mechanical components and electrical components, and therefore Lagrangian
dynamics can be formulated also for electrical systems by using the analogies that have
been pointed out.

3.11.4 The Lagrangian

With electrical analog 1 the voltages are given as functions of the charge and current.
Then the generalized coordinate vector is the charge vector q, and the Lagrangian can
be defined by

Le (q, q̇) = W ∗m (q̇)−Wc (q) , (3.393)

which is the coenergy of the inductive elements minus the energy of the capacitive ele-
ments. When electrical analog 2 is used the currents are given as functions of the flux
linkage and the voltages. Then the generalized coordinate vector is the flux linkage vector
λ, and the Lagrangian is

Le

³
λ, λ̇

´
= W ∗c

³
λ̇
´
−Wm (λ) , (3.394)

which is the coenergy of the capacitive elements minus the energy of the inductive ele-
ments.
The generalized forces Qi corresponding to the generalized coordinate in the form

of an electrical charge qi is found from a power consideration. The power a generalized
force Qi is Pi = Qiq̇i, which shows that the generalized force must be the voltage over
element i, that is,

Qi = ui. (3.395)
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The generalized force Λk corresponding to a generalized coordinate in the form of a
flux linkage λk is found from Pk = Λkλ̇k, and it follows that the generalized force Λk
must be the current through element k, that is

Λk = ik. (3.396)

3.11.5 Electromechanical systems

For an electromechanical system the Lagrangian L for the complete system turns out
to be the sum of the Lagrangian for the electrical system and the Lagrangian of the
mechanical system. Suppose that the charge vector qe is the generalized coordinate
vector of the electrical system. The generalized coordinate vector q and the generalized
force vector Q for the total system are then taken to be

q =

µ
qe
qm

¶
, Q =

µ
Qe

τ

¶
(3.397)

where Qe are the generalized forces corresponding to the electrical coordinates qe, and
τ are the generalized forces corresponding to the mechanical coordinates qm. We define
the kinetic energy term to be

T (q, q̇) = Tm (qm, q̇m) +W ∗m (q̇e,qm) (3.398)

which is the sum of the kinetic energy of the mechanical system and the coenergy of the
inductive elements of the electrical system. The potential energy term in the Lagrangian
is defined to be

V (q) = Vm (qm) +Wc (qe,qm) (3.399)

which is the sum of the potential energy of the mechanical system and the potential
energy of the capacitive elements of the electrical system. Then the Lagrangian for the
total system is

L (q, q̇) = T (q, q̇)− V (q) (3.400)

The dynamics are given by

d

dt

∂L

∂q̇e

T

− ∂L

∂qe
= Q (3.401)

d

dt

∂L

∂q̇m

T

− ∂L

∂qm
= τ (3.402)

These expressions can be further developed into

d

dt

µ
∂W ∗m (q̇e,qm)

∂q̇e

¶T
+

∂Wc (qe,qm)

∂qe

T

= Q (3.403)

and

d

dt

µ
∂Tm (qm, q̇m)

∂q̇m

¶T
− ∂Tm (qm, q̇m)

∂qm

T

− ∂W ∗m (q̇e,qm)

∂qm

T

+
∂Wc (qe,qm)

∂qm

T

+
∂Vm (qm)

∂qm

T

= τ (3.404)

The term ∂W ∗m/∂qm is the change in the electrical coenergy W ∗m due to a change in the
mechanical configuration qm. This is the generalized interaction force on the mechanical
system due to electromagnetic forces.
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Example 50 We consider an electrical motor with shaft angle qm and inertia Jm. The
kinetic energy of the shaft is given by Tm (q̇m) = 1

2Jmq̇
2
m, and the potential energy is

V (q) = 0. The coenergy of the inductive elements of the motor is given by

W ∗m (q̇e, qm) =
1

2
q̇Te Me (qm) q̇e (3.405)

and the Lagrangian is L = Tm (q̇m) + W ∗m (q̇e, qm). Then the dynamics of the motor is
given by

Me (qm) q̈e + q̇m
∂Me (qm)

∂qm
q̇e = u (3.406)

Jmq̈m − 1

2
q̇Te

∂Me (qm)

∂qm
q̇e = τ (3.407)

where the input voltage u is the generalized force corresponding to the generalized co-
ordinates, and τ is the external torque acting on the motor. The coupling between the
electrical part and the mechanical part gives rise to a torque

τm =
1

2
q̇Te

∂Me (qm)

∂qm
q̇e (3.408)

delivered from the motor, and an induced voltage

e = q̇m
∂Me (qm)

∂qm
q̇e (3.409)

In terms of the energy T = Tm (q̇m)+W ∗m (q̇e, qm), the coupling terms balance the energy
exchange between the electrical part and the mechanical part along the solutions of the
system. This is seen from

Ṫ = q̇mJmq̈m + q̇Te Me (qm) q̈e +
1

2
q̇mq̇Te

∂Me (qm)

∂qm
q̇e

= q̇mτ+q̇Te u (3.410)

and we may conclude that if the mechanical port with effort τm and flow q̇m is terminated
with a passive mechanical one-port, then the system with input u and output q̇e is passive.

Example 51 The electrical motor in the previous example can be described as a passive
electrical two-port in series with a passive electromechanical two-port. The input port of
the electrical two-port has variables u and q̇e and output port with variables e and −q̇e.
The electromechanical two-port has input port with variables e and −q̇e and output port
with variables τm and q̇m.

Example 52 The flux linkage for the motor in the previous examples is given by

λ =
∂W ∗m (q̇e, qm)

∂q̇e
= Me (qm) q̇e (3.411)

Example 53 The Lagrangian of a mechanical system is actually defined in (Meisel 1966)
and (Crandall et al. 1968) as L = T ∗−V where T ∗ is the kinetic coenergy. This is based
on the application of Newton’s law in the form F = ṗ where p = p(v) is the momentum.
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The power is P = Fv = ṗv, the differential of the kinetic energy is dT = Pdt = vdp, and
the kinetic energy is

T (p) =

Z p

0

v(p0)dp0 (3.412)

The kinetic coenergy is then

T ∗(v) =

Z v

0

p(v0)dv0 (3.413)

In the linear case where p = mv, the kinetic energy and the kinetic coenergy have same
numerical values as

T (p) =
1

2

p2

m
=

1

2
mv2 = T ∗(v) (3.414)

Therefore, the kinetic coenergy T ∗(v) is referred to as the kinetic energy and is denoted
by T (v). However, in a relativistic setting where m(v) = m0/

p
1− (v2/c2) there is a

difference between kinetic energy and kinetic coenergy.

3.11.6 Lagrange formulation of general AC motor

In this section we will derive the model of the general AC using Lagrange’s equation of
motion in vector notation. The charge vector qe, the current vector q̇e and the voltage
vector u are given by

qe =

µ
qsS
qrR

¶
, q̇e =

µ
isS
irR

¶
and u =

µ
usS
urR

¶
(3.415)

Note that the stator charge vector qsS is given in the stator frame s, and that the rotor
charge vector qrR is given in the rotor frame r. The reason for this is that the stator
charge is in the stator, while the rotor charge rotates with the rotor. If the definition
of current as the time derivative of charge is to be meaningful, it is necessary to take
the time derivative of the charge in the frame where the charge is flowing. Therefore the
currents must be defined by

isS =
d

dt
(qsS) = q̇sS , irR =

d

dt
(qrR) =: q̇rR (3.416)

which is in agreement with (3.415).
We consider an electrical motor with shaft angle qm and inertia Jm. The kinetic

energy of the shaft is given by Tm (q̇m) = 1
2Jmq̇

2
m. The coenergy of the inductive elements

of the motor is given by

W ∗m (q̇e, qm) =
1

2
q̇Te Me (qm) q̇e (3.417)

where the inductance matrix Me (qm) is

Me (qm) =

µ
LSI2 MR2 (qm)

MR2 (−qm) LRI2

¶
(3.418)

and

R2 (qm) =

µ
cos qm − sin qm
sin qm cos qm

¶
(3.419)

is the 2× 2 rotation matrix corresponding to a rotation by and angle qm. We note that

∂R2 (qm)

∂qm
= SR2 (qm) , Ṙ2 (qm) = q̇mSR2 (qm) (3.420)
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where

S =

µ
0 −1
1 0

¶
(3.421)

The partial derivative of the inductance matrix with respect to the shaft angle is

P (qm) :=
∂Me (qm)

∂qm
=

µ
0 MSR2 (qm)

−MSR2 (−qm) 0

¶
(3.422)

The Lagrangian is equal to the sum of kinetic energy and electrical coenergy:

L = T (q̇e, qm, q̇m) = Tm (q̇m) +W ∗m (q̇e, qm) (3.423)

Then the dynamics of the motor is given by

Me (qm) q̈e + P (qm) q̇mq̇e + Req̇e = u (3.424)

Jq̈m − 1

2
q̇Te P (qm) q̇e = −τL (3.425)

Example 54 The dynamic equations for the electrical part can be written out as

LS
disS
dt

+MR2 (qm)
dirS
dt

+Mq̇mSR2 (qm) irR +RSi
s
S = usS (3.426)

MR2 (−qm)
disS
dt

+ LR
dirR
dt
−Mq̇mSR2 (−qm) isS +RRirR = urR (3.427)

This leads to the result

LS
disS
dt

+M
d

dt
[R2 (qm) irR] +RSi

s
S = usS (3.428)

LR
dirR
dt

+M
d

dt
[R2 (−qm) isS ] +RRirR = urR (3.429)

J
dq̇m
dt

= τm − τL (3.430)

where the motor torque is given by

τm = M (isS)
T

SR2 (qm) irR (3.431)

This result corresponds to the model (3.328—3.331) of the general AC motor except for
the factor 2/3 in the torque expression which is due to the three phase assumption used
in the previous derivation.

Example 55 The time derivative of the energy function T for solutions of the general
AC motor is given by

Ṫ =
∂T

∂q
q̇ +

∂T

∂q̇
q̈

=

µ
0

1
2 q̇

T
e P (qm) q̇e

¶T
q̇+

µ
Me (qm) q̇e

Jq̇m

¶T
q̈

=
1

2
q̇Te P (qm) q̇eq̇m + q̇Te Me (qm) q̈e+q̇mJq̈m

=
1

2
q̇Te P (qm) q̇eq̇m + q̇Te [−P (qm) q̇mq̇e −Req̇e − ue]

+q̇m

·
1

2
q̇Te P (qm) q̇e − τL

¸
= q̇Te ue − q̇mτL − q̇Te Req̇e

= isTS usS + irTR urR − q̇mτL − q̇Te Req̇e
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3.11.7 Lagrange formulation of induction motor

The vector model of the induction motor is given by

Me (qm) q̈e + P (qm) q̇mq̇e + Req̇e =

µ
usS
0

¶
(3.432)

Jq̈m − 1

2
q̇Te P (qm) q̇e = −τL (3.433)

The total energy is

V =
1

2
q̇Te Me (qm) q̇e +

1

2
Jq̇2m (3.434)

and the time derivative of the energy is

V̇ = isTS usS − q̇mτL − q̇Te Req̇e (3.435)

It follows that if the load is passive, then the stator circuit dynamics with input usS
and output isS is passive. The passivity of this model was used for controller design in
(Nicklasson 1996) and (Ortega, Loria, Nicklasson and Sira-Ramirez 1998).

3.11.8 Lagrange formulation of DC motor

In this section the model for a DC motor with external field will be derived from the
model (3.428—3.430) for the general AC motor. In a DC motor with externally controlled
field the current vectors are given by

isS =

µ
ie
0

¶
and isR = R2 (qm) irR =

µ
0
−ia

¶
(3.436)

This means that the field current is along the a axis of the stator frame s, while the
armature current in the rotor is along the negative b axis. Note that the angle between
the stator current vector and the rotor current vector is 90◦. In the same way the voltage
vectors are given by

usS =

µ
ue
0

¶
and usR = R2 (qm)urR=

µ
0
−ua

¶
(3.437)

The dynamics of the motor is then

LS
disS
dt

+M
disR
dt

+RSi
s
S = usS (3.438)

LR
d

dt

£
R2 (−qm) iSR

¤
+M

d

dt
[R2 (−qm) isS ] +RRirR = urR (3.439)

J
dq̇m
dt

= M (isS)
T

SisR − τL(3.440)

The rotor equation is transformed to the stator frame, and the product rule of differen-
tiation is used to arrive at

LR
diSR
dt
− LRq̇mSiSR +M

disS
dt
−Mq̇mSisS +RRisR = usR (3.441)

The stator flux linkage is

λsS = LSi
s
S +M isR =

µ
Leie
−Mia

¶
=

µ
λe
−Mia

¶
(3.442)
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where the field flux linkage λe = LSie. In the torque expression (3.431) the stator current
can be expressed in terms of the stator flux linkage according to

isS =
1

LS
(λsS −M isR) (3.443)

which gives the torque expression

τm =
M

LS
(λsS)T SisR =

M

LS
λeia (3.444)

where it is used that (isS)T SisR = 0.
Then the model is found from the first row of the stator equation (3.438), the second

row of the rotor equation (3.441), and the equation of motion (3.440). This gives

LS
die
dt

+RSie = ue (3.445)

LR
dia
dt

+
M

LS
q̇mλe +RRia = ua (3.446)

J
dq̇m
dt

=
M

LS
λeia − τL (3.447)
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Chapter 4

Hydraulic motors

4.1 Introduction
Hydraulic motors are widely used because of the low weight and small size of hydraulic
motors compared to electrical motors with the same power. Typically a hydraulic motor
can have 10 times as high power as an electrical motor of the same dimensions. Hydraulic
systems can be divided into hydrostatic and hydrodynamic systems. Hydrostatic motors
are motors that are driven by pressure work of a flowing fluid. In contrast to this,
hydrodynamic motors are driven by the exchange of momentum of a fluid that flows past
the turbine blades. We will use the term hydraulic systems for hydrostatic systems in
the following. In this chapter dynamic models for hydraulic systems will be presented
and analyzed. The main reference for the material is (Merritt 1967). We mention the
following conversion rules between commonly used physical units:

• 1 bar = 105 Pa

• 1 atm = 1.01325 · 105 Pa
• 1 psi = 1 pound/inch2 = 6897 Pa = 0.068 bar
• 1 Pa = 1 N/m2

4.2 Valves

4.2.1 Introduction

Valves are important components of hydraulic systems, and are used to control flow. In
this section background material and models for typical valves will be developed.

4.2.2 Flow through a restriction

The flow through a restriction or orifice in a valve is generally turbulent and is given by

q = CdA

r
2

ρ
∆p (4.1)

where A is the cross section of the orifice, and ∆p is the pressure drop over the orifice,
and ρ is the density of the fluid. The discharge coefficient Cd is a constant. Under
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the assumption of zero loss of energy, and that the flow area is not smaller than A, the
discharge coefficient is found to be Cd = 1 from the continuity equation and Bernoulli’s
equation in Section 11.2.8. In practice, there will be some loss of energy, and the cross
section of the flow will be somewhat smaller than the cross section A. This will reduce
the discharge coefficient Cd to be in the range 0.60 — 0.65 for orifices with sharp edges,
and in the range 0.8 — 0.9 when the edges are rounded.
The Reynolds number for flow through a restriction is given by

Re =
D

Aν
q (4.2)

where D is the diameter of the restriction, A is the cross sectional area of the flow, and
ν is the kinematic viscosity. For hydraulic oil the kinematic viscosity is approximately
ν ≈ 30 × 10−6 m2/s. The flow may be assumed to be turbulent and given by (4.1) for
Reynolds numbers larger than 1000.
For a narrow restriction with low volumetric flow q the Reynolds number becomes

small. If the Reynolds number becomes less than 10 the flow may be assumed to be
laminar and given by

q = Cl∆p (4.3)

where Cl is a constant and ∆p is the pressure drop. This is the case for leakage flows
through narrow openings, and for typical restrictions in pressure feedback channels.

When Re > 1000 the flow through a restriction will be turbulent and proportional to the
square root of the pressure difference according to (4.1). When Re < 10 the flow will be
laminar and proportional to the pressure drop as in (4.3).

Example 56 The leakage flow coefficient of laminar flow through a circular tube (Hagen-
Poiseuille flow) is (Merritt 1967):

Cl =
r2

8µL
A (4.4)

where µ = νρ is the absolute viscosity

4.2.3 Regularization of turbulent orifice flow

The turbulent flow characteristic in (4.1) is often used to describe the flow through
an orifice for all Reynolds numbers. This is not physically justified, and, moreover, it
creates problems in simulations as the derivative of the characteristic (4.1) is infinite at
the origin where the flow approaches zero. As discussed in Section 4.2.2, the Reynolds
number becomes small when the flow tends to zero, and this means that the flow is
actually laminar around zero flow. On background of this it is recommended that the
valve characteristic is modified so that the flow is modeled as laminar around zero flow
and turbulent for high Reynolds numbers. In the following it is shown how this can be
done.
First it is noted that the laminar flow characteristic (4.3) can be written in the same

form as the turbulent flow characteristic (4.2) by defining a threshold constant Retr for
the Reynolds number by

Retr = 2
C2dDA

Clµ
(4.5)
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and by expressing the laminar flow characteristic (4.3) according to

q = Cd

r
Re

Retr
A

r
2

ρ
∆p (4.6)

This result is verified by squaring (4.6) and inserting the Reynolds number from (4.2),
which gives

q =
C2d

Retr

2DA

µ
∆p (4.7)

Then (4.3) is recovered when Retr is defined by (4.5).
This means that we should seek a flow characteristic that satisfies

q =

 Cd

q
Re
Retr

A
q

2
ρ∆p Re ¿ Retr

CdA
q

2
ρ∆p Retr ¿ Re

(4.8)

To obtain a solution which is defined for all ∆p a smooth transition between the laminar
and turbulent regimes was introduced in (Ellman and Piché 1999) using

q =


3ν Retr

4
A
D
∆p
ptr

³
3− ∆pptr

´
∆p ≤ ptr

CdA
q

2
ρ∆p ptr ≤ ∆p

(4.9)

Here the threshold pressure

ptr =
9Re2tr ρν

2

8C2d

1

D2
(4.10)

corresponds to a given threshold Retr for the Reynolds number. Assuming a circular
orifice with diameter D, we have

A =
πD2

4
⇒ D2 =

4A

π
⇒ A

D
=

√
π

2

√
A (4.11)

Moreover, we define the constant

Ftr = ptrA = ptr
πD2

4
=

9Re2tr ρν
2

8C2d

π

4
(4.12)

Then the following result has been established:

The flow through a restriction can be described by the regularized flow characteristic

q(A,∆p) =


3ν Retr

4

√
π
2

√
AA∆p

Ftr

³
3− A∆p

Ftr

´
A∆p ≤ Ftr

CdA
q

2
ρ∆p Ftr ≤ A∆p

(4.13)

where

Ftr =
9Re2tr ρν

2

8C2d

π

4
(4.14)

The regularized characteristic (4.13) describes the flow as laminar according to (4.3) for
low Reynolds numbers, and turbulent as given by (4.1) for high Reynolds numbers. There
is a smooth transition between the laminar and the turbulent flow regimes.

Numerical values for hydraulic oil are according to (Ellman and Piché 1999): Retr =
1000, ρ = 900 kg/m3, ν = 30 × 10−6 m2/s =30 cSt, Cd = 0.6. The regularized charac-
teristic (4.13) is well suited for numerical simulation as it it physically justified, and it
eliminates the problems that are experienced with the turbulent characteristic (4.1).
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Figure 4.1: Four-way valve

4.2.4 Four-way valve

Typical flow control valves used in hydraulic systems have four orifices, and the flow is
controlled by varying the flow areas of the orifices. This type of valve is termed a four-
way valve. In this section we will derive the flow equations for the four-way valve shown
schematically in Figure 4.1. The valve is connected to the rest of the hydraulic system
through four ports, where each port has pressure as the effort variable and volumetric
flow as the flow variable. The supply port is connected to the pressure supply with
pressure ps and flow qs, the return port is connected to the return tank with pressure
pr = 0 and flow qr, port 1 with pressure p1 and flow q1 is connected to input side of the
load, and port 2 with pressure p2 and flow q2 is connected to the output side of the load.
The volumetric flows through the orifices a, b, c and d are given by the orifice equations

qa = CdAa(xv)
q

2
ρ (ps − p1)

qb = CdAb(xv)
q

2
ρ (ps − p2)

qc = CdAc(xv)
q

2
ρ (p1 − pr)

qd = CdAd(xv)
q

2
ρ (p2 − pr)

(4.15)

where the opening areas Aa(xv), Ab(xv), Ac(xv) and Ad(xv) of the orifices are assumed
to be functions of the spool position xv, and the turbulent flow characteristic (4.1) has
been used to keep the equations simple. The more elaborate flow model (4.13) should be
used in simulations. The port flows are related to the orifice flows through the equations

qs = qa + qb, qr = qc + qd (4.16)

q1 = qa − qc, q2 = qd − qb (4.17)
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Figure 4.2: A matched and symmetric four-way valve.

4.2.5 Matched and symmetrical four-way valve

In a spool-controlled four-way valve the port openings are controlled by controlling the
spool position xv (Figure 4.2). A matched and symmetrical valve is designed so that

Aa(xv) = Ad(xv) = Ab(−xv) = Ac(−xv) (4.18)

If a matched and symmetric valve is equipped with a critical spool and rectangular
orifices, then the port areas are given by

Aa(xv) = Ad(xv) =

½
0, xv ≤ 0

bxv, xv ≥ 0
(4.19)

Ab(xv) = Ac(xv) =

½ −bxv, xv ≤ 0
0, xv ≥ 0

(4.20)

A matched and symmetric valve with open center spool and rectangular orifices has port
openings given by

Aa(xv) = Ad(xv) = b(U + xv), |xv| ≤ U (4.21)

Ab(xv) = Ac(xv) = b(U − xv), |xv| ≤ U (4.22)

4.2.6 Symmetric motor and valve with critical spool

The characteristic of a four-way valve is given by the orifice equations (4.15). These
equations can be combined into one characteristic if the valve is assumed to be matched
and symmetric, and if it is assumed that the load is symmetric in the sense that

q1 = q2 (4.23)

The symmetric load assumption (4.23) implies that the load does not accumulate fluid,
which means that compressibility effects are not accounted for. This assumption is
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therefore not consistent with the assumptions that will used in the derivation of models of
hydraulic motors in the following. However, the assumption of a matched and symmetric
valve and a symmetric load leads to a very useful transfer function model for valve
controlled hydraulic motors, and in spite of the inconsistent assumptions introduced in
the modeling, the resulting transfer function model turns out to represent the dynamics
of the system with sufficient accuracy. In this connection it is it is interesting to note that
major textbooks on hydraulic control systems like (Merritt 1967) and (Watton 1989) rely
to a great extent on the use of the symmetric load assumption (4.23) in the analysis of
control systems for valve controlled motors and cylinders.
The symmetric load assumption (4.23) together with the orifice equations (4.15) and

the matching conditions (4.19, 4.20) imply the equations

qa = qd, qb = qc (4.24)

which in turn imply that
ps + pr = p1 + p2 (4.25)

In the symmetric load case it is convenient to define the load pressure

pL = p1 − p2 (4.26)

and the load flow
qL =

1

2
(q1 + q2) (4.27)

We then find that the pressures p1 and p2 can be expressed as

p1 =
ps + pL

2
, p2 =

ps − pL
2

(4.28)

and the load flow can be found to be

qL = CdAa(xv)

r
1

ρ
(ps − pL)− CdAb(xv)

r
1

ρ
(ps + pL) (4.29)

If a valve with a critical spool and rectangular ports is connected to a symmetric load,
then the port areas are given by

Aa(xv) =

½
0 xv ≤ 0
bxv xv ≥ 0

, Ab(xv) =

½ −bxv xv ≤ 0
0 xv ≥ 0

(4.30)

This leads to the following result:

The load flow of a matched and symmetric valve with a symmetric load can be expressed
by valve characteristic

qL = Cdbxv

r
1

ρ
(ps − sgn(xv)pL) (4.31)

The valve characteristic (4.31) is usually written in the nondimensional form

qL

Cdbxvmax
p
ps/ρ

=
xv

xvmax

r
1− sgn(xv)

pL
ps

(4.32)
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Figure 4.3: Valve characteristic

which is commonly plotted using pressure-flow curves as in (Figure 4.3), where the nor-
malized values are

q∗L =
qL

Cdbxvmax
q

ps
ρ

, x∗v =
xv

xvmax
, p∗L =

pL
ps

(4.33)

Valve-controlled hydraulic motors are usually designed so the load pressure pL is
limited according to |p∗L| < 2

3 , and in this range the pressure-flow curves are close to
linear. The valve characteristic can be linearized to give

qL = Kqxv −KcpL (4.34)

where

Kq =
∂qL
∂xv

= Cdb

r
1

ρ
(ps − sgn(xv)pL) (4.35)

and

Kc = −∂qL
∂pL

=
Cdbxv

p
(1/ρ)(ps − sgn(xv)pL)

2(ps − sgn(xv)pL)
(4.36)

At zero flow, zero load pressure and zero spool position, that is, at qL = 0, pL = 0
and xv = 0 the constants of linearization are

Kq0 = Cdb

r
ps
ρ

(4.37)

Kc0 = 0 (4.38)



148 CHAPTER 4. HYDRAULIC MOTORS

If the system is designed so that the load pressure satisfies the condition |pL| < 2
3ps, then

|pL| < 2

3
ps ⇒ 0.577Kq0 ≤ Kq ≤ 1.29Kq0 (4.39)

The calculated value for Kc is not consistent with what is found in practice. A more
realistic value for the constant Kc is obtained by setting the spool in its zero position
(xv = 0) and measuring the leakage flow ql as a function of the load pressure pL. The
flow-pressure coefficient Kc0 is then found from Kc0 = ql/pL.

The valve characteristic (4.31) is only valid when a matched and symmetrical valve with
critical spool is connected to a symmetric load as defined by (4.23). If the load is not
symmetric, then the valve must be modelled with the orifice equations (4.15).

Example 57 A regularization of the characteristic (4.31) for simulation is found from
(4.13) by defining ep := ps − sgn(xv)pL (4.40)

and inserting ∆p = p̃/2 into the expression of (4.13). This gives

qL =


3ν Retr

4

√
π
2

√
A Aep
2Ftr

³
3− Aep

2Ftr

´
Aep ≤ 2Ftr

CdAv

q
1
ρ ep 2Ftr ≤ Aep (4.41)

where

Ftr =
9Re2tr ρν

2

8C2d

π

4
, A = bxv, ep = ps − sgn(xv)pL (4.42)

4.2.7 Symmetric motor and valve with open spool

A matched and symmetric valve with open spool with rectangular ports and symmetric
load gives the load flow

qL

CdbU
p
ps/ρ

=
³
1 +

xv
U

´r
1− pL

p
−
³
1− xv

U

´r
1 +

pL
p
, |xv| ≤ U (4.43)

4.2.8 Flow control using pressure compensated valves

Flow control valves can be designed with an additional pressure compensation spool
that is designed to keep the pressure across the main spool constant. This is done with
hydraulic feedback interconnections in the valve as shown in Figure 4.4. Let the valve
have an input port with pressure p1 and flow q1, and an output port with pressure p2
and flow q2. The motion of the pressure compensation spool is controlled by a spring
with force

Fc = −Kcxc + Fc0 (4.44)

and by two compensation chambers with pressures p3 and p4 acting on the spool cross
section Ac. Chamber 3 is connected to the pressure pc through a restriction with laminar
flow constant C3, and chamber 4 is connected to the output pressure p2 with a restriction
with laminar flow constant C4, and is connected to the output pressure p2 on the on the
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p1,q1

p2,q2

Ac x v

Figure 4.4: The figure shows the mechanical design and symbols for a pressure com-
pensated valve for volume flow control. The compensation spool with position xc which
is positive in the upwards direction will be positioned so that the pressure difference
p2 − pc over the main spool is approximately constant for varying input variables q1, p1
and output variables q2, p2. The position xv of the main spool may be controlled with a
electric actuator or a pilot valve.

spring side, and to the internal pressure pc on the opposite side. The input and output
flows are given by the orifice equations

q1 = Cdbcxc

r
2

ρ
(p1 − pc) (4.45)

q2 = Cdbxv

r
2

ρ
(pc − p2) (4.46)

where xc is the position of the spool in the pressure compensation valve, and xv is the
position of the main valve.
To analyze the dynamics of the pressure correction valve we use the equation of

motion for the pressure compensation spool

mcs
2xc(s) +Kcxc(s) = Ac[p4(s)− p3(s)] + Fc0 (4.47)

and the pressure dynamics of the compensation chambers

V3
β
ṗ3 = +Acẋc + C3 (pc − p3) (4.48)

V4
β
ṗ4 = −Acẋc + C4 (p2 − p4) (4.49)

The Laplace transformed pressure equations are

C3

µ
1 +

V3
C3β

s

¶
p3 = +Acsxc + C3pc (4.50)

C4

µ
1 +

V4
C4β

s

¶
p4 = −Acsxc + C4p2 (4.51)
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Under the assumption that the time constants V3/(C3β) and V4/(C4β) are sufficiently
small, we may use the approximations

C3p3 = +Acsxc + C3pc ⇒ p3 = pc +
Ac

C3
sxc (4.52)

C4p4 = −Acsxc + C4p2 ⇒ p4 = p2 − Ac

C4
sxc (4.53)

Insertion in the equation of motion gives

mcs
2xc(s) +A2c

C3 + C4
C3C4

sxc(s) +Kcxc(s) = Ac[p2(s)− pc(s)] + Fc0 (4.54)

which is Laplace transformed and rearranged to

pc(s)− p2(s) = +
Fc0
Ac
− Kc

Ac

µ
mc

Kc
s2 +

A2c
Kc

C3 + C4
C3C4

s+ 1

¶
xc(s)

= +
Fc0
Ac
− Kc

Ac

µ
s2

ω2c
+ 2ζc

s

ωc
+ 1

¶
xc(s) (4.55)

where ω2c = Kc/mc. It can be seen that for frequencies well below ωc, the compensation
spool dynamics will satisfy

pc − p2 =
Fc0
Ac
− Kcxc

Ac
(4.56)

It follows that if Kc/Ac is sufficiently small, then the pressure difference pc− p2 over the
main spool will be approximately constant, and the flow (4.46) through the valve can be
approximated by

q1 = q2 = Cd

s
2

ρ

Fc0
Ac

bxv (4.57)

This means that the use of an additional pressure compensated stage in the valve, the
flow through the valve becomes proportional to the orifice area bxv of the main spool.

4.2.9 Balance valve

p2,q2
p1,q1

Ap

A

pp

x v

Figure 4.5: Balance valve: Mechanical design and symbol
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Balance valves are used in heavy lifting operations to ensure that a hanging load will
not fall down if the supply pressure is lost. In a balance valve a preset spring will push
the spool towards the closed position. The inlet pressure will set up a force that will
push the spool to the open position, while a high output pressure will tend to close the
spool. In addition, a pilot pressure is used to assist in the opening of the valve. Consider
a balance valve with inlet pressure p1, outlet pressure p2 and pilot pressure pp. The
balance valve has a spool with cross section A at the spring end and cross section Ap at
the pilot end. Define the area

Ar = A−Ap (4.58)

and the pilot ratio

R =
Ap

Ar

The spring force on the spool is F = F0 + Kexv where F0 is the pretensioning of the
spring, Ke is the spring stiffness, and xv is the spool position. We define xv = 0 in the
closed position, while the valve is open for xv > 0. A preset pressure p0 = F0/Ar is
defined for convenience of notation. The equation of motion for the spool is

mvẍv = ppAp + (p1 − p0)Ar −Kxv − p2A (4.59)

where mv is the mass of the spool. For a properly selected balance valve, the spool
dynamics will be stable, and in the frequency range of the rest of the system it can be
represented by the static characteristic

xv =
Ar

K
[p1 − p0 +Rpp − p2 (R + 1)] , 0 ≤ xv ≤ xv,max

It is seen that the valve will open when the input pressure p1 and the pilot pressure pp
are sufficiently high in comparison to the preset pressure p0 and the outlet pressure p2.
The influence of the pilot pressure increases when the area ration R increases. If p1 > p2
then there will be flow in the positive direction if the spool opens. If the pressures reverse
so that p2 > p1, then the flow is lead through the relief which can be considered to have
a flow area Ac when it is open. The resulting flow is given by

q1 =

 Cdxvb
q

2
ρ (p1 − p2) p1 > p2

−CdAc

q
2
ρ (p2 − p1) p1 < p2

(4.60)

Again the regularized orifice flow model (4.13) should be used in simulations.

4.3 Motor models

4.3.1 Mass balance

The compressibility effect of the working fluid is significant for hydraulic motors. This
means that the density ρ is a function of the pressure p. A customary assumption is:

The relation between the differential dρ in density and the differential dp in pressure is
given by

dρ

ρ
=

dp

β
(4.61)

where β is the bulk modulus .
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We see that the bulk modulus β has the physical dimension of pressure. Usually a
numerical value of β = 7× 108 Pa =7000 bar (which corresponds to 105 psi) is assumed
for the bulk modulus, although the value can change by a factor of 10.
The mass balance for a volume V is given by

d

dt
(ρV ) = win − wout (4.62)

Here win = ρqin is the mass flow and qin is the volumetric flow into the volume, while
wout = ρqout is the mass flow and qout is the volumetric flow out of the volume. The
density is assumed to be a function of time only. This leads to

ρ̇V + ρV̇ = ρ(qin − qout) (4.63)

and insertion of the expression (4.61) leads to the following result:

The mass balance of a hydraulic volume V is

V

β
ṗ + V̇ = qin − qout (4.64)

Example 58 The differential pressure work on a volume V of constant mass m is

pdV = pd

µ
m

ρ

¶
= −pV dρ

ρ
= −pV

β
dp (4.65)

This means that the stored energy in a volume V due to a pressure p is

Wp =

Z p

0

V

β
p0dp0 =

1

2

V

β
p2 (4.66)

4.3.2 Rotational motors

m

case drain line

rotating cylinder barrel
and drive shaft

piston shoes
slide on plate

stationary
valving plate stationary cam plate

at fixed angle

q 1 ,p 1

q 2 ,p 2

TL

Figure 4.6: Hydraulic motor
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Figure 4.7: Rotational hydraulic motor of the single vane type with limited travel.

Rotational hydraulic motors are available in many designs, and are made with limited
travel and continuous travel (Merritt 1967). A limited travel motor (Figure 4.7) will have
a maximum rotational angle that will be slightly less than 180◦ or slightly less than 360◦,
while a motor with continuous travel (Figure 4.6) there is no limit on the rotational angle.
A hydraulic motor may also run as a pump. The dynamic model is the same for a motor
and pump operation.
In this section the dynamic model for a motor with limited travel will be derived. A

schematic diagram of the motor is shown in Figure 4.7. The resulting model is equal
to the model for motors of continuous travel. A motor with limited travel has one inlet
chamber and one outlet chamber. The inlet chamber has volume V1 and pressure p1,
and the flow into the chamber is q1. The outlet chamber has volume V2 and pressure
p2, and the flow out of the chamber is q2. A motor torque is set up by the pressure
difference between the two chambers, and the motor torque drives the motor shaft. A
dynamic model for a rotational hydraulic motor can be derived from the mass balances
of chambers 1 and 2, and the equation of motion for the motor shaft. The mass balance
for the inlet and outlet chambers are

V̇1 +
V1
β
ṗ1 = −Cim(p1 − p2)− Cemp1 + q1 (4.67)

V̇2 +
V2
β
ṗ2 = −Cim(p2 − p1)− Cemp2 − q2 (4.68)

where Cim is the coefficient for the internal leakage and Cem is the coefficient for leakage
out of the motor. β is the bulk modulus, and V1 and V2 are the volumes of the two
chambers. The rate of change of the chamber volumes are proportional to the angular
velocity ωm of the motor:

V̇1 = −V̇2 = Dmωm (4.69)

The constant Dm is called the displacement. The shaft angle is denoted θm.
The motor torque T is proportional to the pressure difference, and by equating the
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Figure 4.8: Valve controlled motor with elastic modes in the load.

power of the motor torque with the power of the working fluid we find that

Tωm = p1V̇1 + p2V̇2 = (p1 − p2)Dmωm (4.70)

It follows that the motor torque is

T = Dm (p1 − p2) (4.71)

The equation of motion for the motor shaft is therefore

Jtω̇m = −Bmωm +Dm (p1 − p2)− TL (4.72)

where Jt is the moment of inertia of the motor, Bm is the viscous friction coefficient, and
TL is the load torque. To sum up:

The model of a rotational hydraulic motor is given by

V1
β
ṗ1 = −Cim(p1 − p2)− Cemp1 −Dmωm + q1 (4.73)

V2
β
ṗ2 = −Cim(p2 − p1)− Cemp2 +Dmωm − q2 (4.74)

Jtω̇m = −Bmωm +Dm (p1 − p2)− TL (4.75)

The rotational hydraulic motor can be described with a two-port for each chamber,
and a three-port for the shaft dynamics. Chamber 1 has one port with effort p1 and flow
q1, and one port with effort T1 = Dmp1 and flow ωm. Chamber 2 has one port with effort
p2 and flow q2, and one port with effort T2 = Dmp2 and flow ωm. The shaft model has
one port with effort T1 and flow ωm, one port with effort −T2 and flow ωm, and one port
with effort TL and flow ωm. In terms of computation the systems can be interconnected
if the variables q1 and ωm are inputs to chamber 1, q2 and ωm are inputs to chamber 2,
and T = T1 − T2 and TL are inputs to the shaft dynamics.

4.3.3 Elastic modes in the load

In many applications there will be elastic resonances in the load. If there is one resonance,
then this can be modelled with an elastic transmission and an inertia. This can be
modelled as a mechanical two-port

J1ω̇1 = TL − T1 (4.76)

θ̇1 = ω1 (4.77)

TL = D1 (ωm − ω1) +K1 (θm − θ1) (4.78)
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where the input port has been connected to the motor shaft. The inputs to the two-port
are ωm and T1, while TL and ω1 are outputs. We may add on any number of additional
degrees of freedom as two-ports

Jiω̇i = Ti−1 − Ti (4.79)

Ti = Di (ωi−1 − ωi) +Ki (θi−1 − θi) (4.80)

with port variables Ti−1 and ωi−1 at the input and Ti and ωi at the output.

4.3.4 Hydraulic cylinder

V1 ,p 1 V2 ,p 2

A1 A2

q 1

q 2

Figure 4.9: Symmetric hydraulic cylinder

V2 ,p 2V1 ,p 1

A1
A1

q 1

q 2

Figure 4.10: Single-rod hydraulic piston

The model of a hydraulic cylinder, which is a linear hydraulic motor, is found in
same way as for a rotational motor. The cylinder will have an inlet chamber with
volume V1 = V10 + A1xp and pressure p1, and an outlet chamber with volume with
V2 = V20 − A2xp and pressure p2. Here V10 and V20 the chamber volumes when the
piston position xp is zero. Suppose that the piston has cross sectional area Ap, and that
the piston is connected to a rod with cross section Ar.

1. If the rod goes through both chambers as in Figure 4.9, then the cylinder is said
to be symmetric, and the areas A1 and A2 are equal and given by

A1 = A2 = Ap −Ar (4.81)

2. If the rod goes through chamber 2 but not chamber 1 as in Figure 4.10, then the
cylinder is said to have a single-rod piston and the areas are given by

A1 = Ap, A2 = Ap −Ar (4.82)
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The motor force acting on the piston will be F = A1p1−A2p2. The mass balance for
the inlet and outlet chambers and the equation of motion for the piston will then give
the model.

The dynamic model for a hydraulic cylinder is

V10 +A1xp
β

ṗ1 = −Cim(p1 − p2)− Cemp1 −A1ẋp + q1 (4.83)

V20 −A2xp
β

ṗ2 = −Cim(p2 − p1)− Cemp2 +A2ẋp − q2 (4.84)

mtẍp = −Bpẋp +A1p1 −A2p2 − FL (4.85)

Here q1 is the flow into chamber 1, q2 is the flow out of chamber 2, Cim is the
coefficient for the internal leakage and Cem is the coefficient for leakage out of the motor,
mt is the mass of the piston and load, Bp is the viscous friction coefficient, FL is the load
force.

4.4 Models for transfer function analysis

4.4.1 Matched and symmetric valve and symmetric motor

Valve controlled hydraulic motors are used for servomechanisms where high accuracy and
high bandwidth are the primary objectives. The power efficiency is moderate or low for
such systems, so that for systems where power efficiency is important it is usual to have
pump controlled hydraulic motors, which will be addressed in a later section. If the load
is assumed to be symmetric in the sense that it satisfies the symmetric load condition
(4.23), and the valve is matched and symmetric and satisfies (4.31), then it is possible
to combine the two mass balances of the motor into one single mass balance, where the
load flow qL is input and the load pressure pL is output. This is very useful in transfer
function analysis of the valve controlled motor.
We consider the motor in Figure 4.6. It is assumed that when the shaft angle is zero,

then the volumes are both equal to V0. The volumes may then be written

V1 = V0 +Dmθm, V2 = V0 −Dmθm (4.86)

Subtraction of the mass balance (4.74) for chamber 2 from the mass balance (4.73) for
chamber 1 gives

2Dmωm+
V0
β

(ṗ1− ṗ2)+
Dmθm

β
(ṗ1+ ṗ2) = q1+q2−2Cim(p1−p2)−Cem(p1−p2) (4.87)

In this expression we have the pressures and flows of the individual chambers. It is
recalled that according to (4.25) the sum of the chamber pressures p1 and p2 are equal
to the constant supply pressure ps, and it follows that ṗ1 + ṗ2 = 0. It is then possible
to reformulate (4.87) using the load pressure pL defined in (4.26) and the load flow qL
defined in (4.27). This gives

Vt
4β

ṗL = −CtmpL −Dmωm + qL (4.88)

where Vt = V1 + V2 = 2V0 is the total volume and Ctm = Cim + 1
2Cem is the leakage

coefficient. Combining this with the equation of motion (4.72) we get the following result:
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The model of a symmetric hydraulic motor with a matched and symmetric valve is given
by

Vt
4β

ṗL = −CtmpL −Dmωm + qL (4.89)

Jtω̇m = −Bmωm +DmpL − TL (4.90)

Example 59 An energy function of the motor is

V =
1

2
Jtω

2
m +

1

2

V

4β
p2L (4.91)

The time derivative is

V̇ = ωmJtω̇m + pL
Vt
4β

ṗL

= −Bmω
2
m − ωmTL + ωmDmpL − Ctmp

2
L − pLDmωm + pLqL

= pLqL − ωmTL −Bmω
2
m − Ctmp

2
L (4.92)

We see that is the load dynamics is passive, then the system with input qL and output pL
is passive. However, this does not have much relevance for the controller design for this
system.

4.4.2 Valve controlled motor: Transfer function

- -

- m m
-

xv pL T

TL

Kq 4
V t

Dm 1
J t

Kce Bm

Dm

Figure 4.11: Valve controlled hydraulic motor.

A linearized dynamic model for a valve controlled motor is found by inserting the
linearized valve characteristic (4.34) into the model (4.89, 4.90). The result is

Vt
4β

ṗL = −KcepL −Dmωm +Kqxv (4.93)

Jtω̇m = −Bmωm +DmpL − TL (4.94)

θ̇m = ωm (4.95)

where Kce = Kc + Ctm is the leakage coefficient for motor and valve, Bm is the viscous
friction coefficient, while θm is the angle of rotation of the motor shaft. A block diagram
is shown in Figure 4.11. Note the similarity to Figure 3.7.
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The Laplace transformed model is found by Laplace transformation of the model
(4.93, 4.94). This gives

Kce

µ
1 +

Vt
4βKce

s

¶
pL = (−Dmsθm +Kqxv) (4.96)¡

Jts
2 +Bms

¢
θm = DmpL − TL (4.97)

Insertion of the mass balance (4.96) into the equation of motion (4.97) gives

Kce

µ
1 +

Vt
4βKce

s

¶¡
Jts

2 +Bms
¢
θm = −D2

msθm +DmKqxv

−Kce

µ
1 +

Vt
4βKce

s

¶
TL (4.98)

which can be rearranged as

θm(s) =

Kq

Dm
xv(s)− Kce

D2
m

³
1 + Vt

4βKce
s
´
TL(s)

s
h

VtJt
4βD2

m
s2 +

³
KceJt
D2
m

+ BmVt
4βD2

m

´
s +

³
1 + BmKce

D2
m

´i (4.99)

Under the assumption that Bm = 0 the standard formulation of this expression is ob-
tained:

The Laplace transformed model of a symmetric hydraulic motor with matched and sym-
metric valve and Bm = 0 is given by

θm(s) =

Kq

Dm
xv(s)− Kce

D2
m

³
1 + s

ωt

´
TL(s)

s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.100)

where ωh the hydraulic undamped natural frequency, ζh is the the relative damping, and
ωt is the break frequency of the pressure dynamics defined by

ω2h =
4βD2

m

VtJt
, ζh =

Kce

Dm

r
βJt
Vt

, ωt =
4βKce

Vt
(4.101)

We note that

2ζhωh =
4βKce

Vt
= ωt (4.102)

The transfer function from the spool position xv to the shaft angle θm is given by

Hm(s) =
θm
xv

(s) =

Kq

Dm

s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.103)

The magnitude of the frequency response Hm(jω) is shown in Figure 4.12 with the
parameters Kq/Dm = 40, ωh = 400 rad/s and ζh = 0.1.
The transfer function Hm(s) has a pole in s = 0, which corresponds to the integrator

from angular velocity to the valve angle. This means that for low frequencies where

(1 + 2ζh
s

ωh
+

s2

ω2h
) ≈ 1 (4.104)
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Figure 4.12: Magnitude of the frequency response from the valve spool position xv to
the motor angle θ. Numerical values are Kq/Dm = 40, ωh = 400 rad/s and ζh = 0.1.
The dashed line is drawn at -6 dB.

the motor velocity ωmwill be proportional to the spool position xv. The gain Kq/Dm of
the transfer function is the flow gain Kq divided by the displacement Dm. The displace-
ment is given by the geometry of the motor, and will be available with high accuracy.
Thus, variations in the gain will only depend on the flow gain Kq. The flow gain will
vary with the factor

√
ps − pL/

√
ps, and under the usual design rule |pL| < 2

3ps the flow
gain will be between 57.7 % and 129 % of the nominal value.
The hydraulic undamped natural frequency ωh is an important parameter in the

design of electrohydraulic servomechanisms. The undamped natural frequency is given
by β, Dm and Jt. The parameters Jt and Dm can be found with high accuracy, while
the bulk modulus β may vary. However, the numerical value β = 7.0 ·108 Pa (= 105 psi)
(Merritt 1967) will in many cases be reasonably accurate when the working fluid is
hydraulic oil. It turns out that the leakage coefficient Kce will be dominated by the
valve.
The transfer function to the load torque TL to the shaft angle θm is

θm
TL

(s) =
−Kce

D2
m

³
1 + s

ωt

´
s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.105)

4.4.3 Hydraulic motor with P controller

With a proportional controller

xv = Kp(θd − θm) (4.106)
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the loop transfer function for a hydraulic motor is

L(s) = KpHm (s) =
Kv

s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.107)

where

Kv =
KpKq

Dm
(4.108)

is the velocity constant of the closed loop system. The loop transfer function L(s) has
a pole in s = 0 and two complex conjugated poles as the numerical value of the relative
damping is typically in the range 0.1 < ζh < 0.5.
An important parameter in the control design is the gain of the loop transfer function

at ω180, which is the frequency where the frequency response L (jωh) has a phase of 180◦.
A closer inspection of the loop transfer function L(s) reveals that ω180 = ωh, and that

|L (jωh)| = Kv

2ζhωh
, ∠L (jωh) = −180◦ (4.109)

Using the expression for ζh in (4.101) we find that

|L (jω180)| = Kv

2ζhωh
(4.110)

Thus, a gain margin of ∆K = 6 dB, which occurs for |L (jω180)| = 1/2, is achieved with

Kv = ζhωh ⇒ Kp =
Dm

Kq
ζhωh (4.111)

For the numerical values in Figure 4.12 a gain margin of 6 dB will be obtained with
Kv = ζhωh = 40, which corresponds to a gain of Kp = KvDm/Kq = 1, and it follows
that in Figure 4.12 we have L(jω) = Hm(jω) if Kp = 1. The dashed line in the figure,
which is drawn at -6 dB, will therefore indicate |L (jω180) | = Kv/(2ζhωh) = 0.5.
Then, from Nyquist stability theory it may be concluded that:

A rotation motor with matched and symmetric valve that is controlled with a proportional
controller xv = Kp(θd − θm) will be stable if the velocity constant satisfies

Kv =
KpKq

Dm
≤ 2ζhωh ⇒ Kp ≤ 2

Dm

Kq
ζhωh (4.112)

A gain margin of 6 dB is achieved with

Kv = ζhωh ⇒ Kp =
Dm

Kq
ζhωh (4.113)

Example 60 Suppose that the leakage coefficient Kce is determined by the valve, which is
the typical situation as the leakage in motors are usually negligible. Then if two different
motors are used with the same valve and the same fluid, the constants Kq, Kce and β
will be unchanged. It follows that the stability limit will be proportional to V −1t .
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Example 61 If a nonzero Bm is used, the undamped natural frequency and the relative
damping are given by

ω2h =
4βD2

m

VtJt

µ
1 +

BmKce

D2
m

¶
and

ζh =

Ã
Kce

Dm

r
βJt
Vt

+
Bm

4Dm

s
Vt
βJt

!µ
1 +

BmKce

D2
m

¶− 1
2

We note that in this case

2ζhωh =

µ
KceJt
D2
m

+
BmVt
4βD2

m

¶
4βD2

m

VtJt
=

4βKce

Vt
+

Bm

Jt
(4.114)

4.4.4 Symmetric cylinder with matched and symmetric valve

A symmetric cylinder, which is a cylinder with a symmetric piston, has a dynamic model
that is similar to a rotary motor. Therefore, the model of a symmetric cylinder with
matched and symmetric valve is found by combining the two mass balances and using
the equation of motion for the mass. This gives

Vt
4β

ṗL = −CtppL −Apẋp + qL (4.115)

mtẍp = −Bpẋp +AppL − FL (4.116)

The Laplace transform of a symmetric cylinder with matched and symmetric valve is

xp(s) =

Kq

Ap
xv(s)− Kce

A2
p

³
1 + s

ωt

´
FL(s)

s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.117)

where

ω2h =
4βA2p
Vtmt

, ζh =
Kce

Ap

r
βmt

Vt
, ωt =

4βKce

Vt
(4.118)

if it is assumed that Bp = 0.

Example 62 With a proportional controller xv = Kp(xd−xp), the stability limit for the
gain Kp is found in the same way as for the rotation motor with matched and symmetric
valve. Moreover, to have a gain margin of 6 dB the gain should be selected as

Kp =
Ap

Kq
ζhωh (4.119)

Example 63 A hydraulic cylinder is to be selected so that it can generate a force F0
for a given supply pressure ps, and so that the position xp of the piston can be changed
between zero and x̄p. The cross sectional area of the cylinder must then be Ap = F0/ps,
and the volume is found from Vt = Apx̄p = F0x̄p/ps. Note that the required volume can
be found if the force F0, the stroke x̄p and the supply pressure ps is given. Suppose that
a similar installation with the same valve has volume Vs and bandwidth ωs as defined by
the crossover frequency. Then the bandwidth of the system with volume Vt will be

ωc = ωs
Vs
Vt

(4.120)
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4.4.5 Pump controlled hydraulic drive with P controller

The model of a pump controlled motor is derived in Section 4.7.2. At this point we simply
state that the Laplace transformed model of a pump controlled motor with constant
motor displacement Dm and constant pump speed ωp is

θm(s) =

kpωp
Dm

φp(s)− Ct
D2
m

³
1 + s

ω0

´
TL(s)

s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.121)

where

ω2h =
βD2

m

V0Jt
, ζh =

Ct

2Dm

r
βJt
V0

, ω0 =
βCt

V0
(4.122)

It is seen that the dynamic model of a pump controlled hydraulic motor has the same
structure as a valve controlled motor. The main differences are:

• The volume V0 includes the high pressure pipe and the high pressure chamber of
the motor and pump. Only the high pressure side is considered to be driving the
motor, and because of this the volume term in ω2h is V0 for the pump controlled
system instead of the 4Vt term which appears for the valve controlled motor.

• The gain kpωp/Dm does not vary and can be found with high accuracy.

• The relative damping of the system may be very small compared to a valve con-
trolled motor where the main leakage is in the valve. Additional leakage may be
introduced in the system to make it less oscillatory. This will give loss of power,
but it may be necessary to achieve satisfactory performance.

The usual controller for this system is a proportional feedback from the motor shaft
angle θm:

up = Kp (θd − θm) (4.123)

The loop transfer function L (s) is seen to be

L (s) =
Kv

s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.124)

where Kv = Kpkpωp/Dm is the velocity constant. The system is seen to be stable if and
only if

Kv ≤ 2ζhωh (4.125)

where 2ζhωh = ω0. Typically, a gain margin equal to 2 will be used, in which case the
velocity constant is set to

Kv = ζhωh ⇒ Kp =
Dm

kpωp
ζhωh (4.126)

4.4.6 Transfer functions for elastic modes

Suppose that the load is driven by the motor through an elastic transmission as shown
in Figure 4.8. We restrict our analysis to one mechanical resonance in the load, which is
the case when an inertia is connected to the motor shaft through a spring and a damper.
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Figure 4.13: Block diagram for valve controlled motor with elastic modes in the load.

Then the transfer function from the motor torque T to the motor angle θm is given by
(3.85) to be

Js2θm (s) = G (s)T (s) (4.127)

where

G (s) =
1 + 2ζa

s
ωa

+
³

s
ωa

´2
1 + 2ζ1

s
ω1

+
³

s
ω1

´2 , ωa < ω1 (4.128)

The pressure dynamics will still be given by (4.96), while the equation of motion is found
from (4.127) and T = DmpL. This gives

Kce

µ
1 +

Vt
4βKce

s

¶
pL = (−Dmsθm +Kqxv) (4.129)

Jts
2θm = G (s)DmpL (4.130)

Insertion of the first equation into the second gives

Kce

µ
1 +

Vt
4βKce

s

¶
Jts

2θm = G (s)
¡−D2

msθm +DmKqxv
¢

(4.131)

This is more or less the same equation as (4.98) except for the appearance of G(s), and
the transfer function is found to be

He(s) =
θm
xv

(s) =
G (s)

Kq

Dm

s
³
G (s) + 2ζh

s
ωh

+ s2

ω2h

´ (4.132)

which reduces to the transfer function Hm(s) given by (4.103) for the rigid case if G(s) =
1. The block diagram is given in Figure 4.13.

1. In the frequency ranges ω ¿ ωa and ω À ω1 we will have G (jω) ≈ 1 and therefore
Hs (jω) ≈ Hm (jω) . This means that in the frequency range below ωa and above
ω1 the frequency response is the same for the rigid and the elastic case.

2. If ω1 ¿ ωh, then

He(s) ≈
Kq

Dm

s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.133)
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3. If ωh ¿ ωa, then

He(s) ≈
G (s)

Kq

Dm

s
³
1 + 2ζh

s
ωh

+ s2

ω2h

´ (4.134)

4.4.7 Mechanical analog

D2

m
K1

K2

x x0

Fs

Figure 4.14: Mechanical analog of hydraulic motor with proportional position controller.

We consider a mechanical analog of a valve controlled motor with P controller. The
analog is modelled as in Figure 4.14 with a spring S1 of stiffness K1 in series with a
parallel interconnection of a spring S2 of stiffness K2 and a damper with coefficient D2.
The spring S1 is connected to a mass m in position x, while the spring S2 is connected
to a moving attachment of position x0. The force from the spring S1 on the mass is

F1 (s) = Kp

³
1 + s

ω1

´
³
1 + s

ω2

´ [x0 (s)− x (s)] (4.135)

which clearly shows that this corresponds to a PD controller with limited derivative
action, and where the constants are given by.

Kp =
K1K2

K1 +K2
, ω1 =

K2

D2
, ω2 =

K1 +K2

D2
(4.136)

Suppose that a mass m with position x and friction coefficient B is actuated by the force
F1 from the mechanical interconnection, and that the mass is subject to the load force
FL. Then the equation of motion will be

(ms2 +Bs)x(s) = Kp

³
1 + s

ω1

´
³
1 + s

ω2

´ [x0(s)− x (s)]− FL (4.137)

Consider a hydraulic motor with equation of motion given by (4.98)

¡
Jts

2 +Bms
¢
θm =

D2
m

Kce

Kq

Dm
xv − sθm

1 + s
ωt

− TL

where

ωt =
4βKce

Vt
(4.138)
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Then, with proportional feedback xv = Kp(θ0 − θm) this becomes

¡
Jts

2 +Bms
¢
θm = −Kv

D2
m

Kce

1 + s
Kv

1 + s
ωt

θm +Kv
D2
m

Kce

1

1 + s
ωt

θ0 − TL (4.139)

where Kv = KpKq/Dm is the velocity constant. If we introduce the variable θd defined
by

θ0 (s) =
1

1 + s
Kv

θd (s) (4.140)

then equation (4.139) can be written

¡
Jts

2 +Bms
¢
θm = Kv

D2
m

Kce

1 + s
Kv

1 + s
ωt

[θd (s)− θm (s)]− TL

and we find that the dynamics are the same as for the mechanical analog if the constants
satisfy

Kv
D2
m

Kce
=

K1K2

K1 +K2
, Kv =

K2

D2
, ωt =

K1 +K2

D2
(4.141)

We may solve for the parameters of the mechanical analog, which are found to be

K1 =
4βD2

m

Vt
, K2 =

Kv

ωt −Kv

4βD2
m

Vt
, D2 =

1

ωt −Kv

4βD2
m

Vt
(4.142)

Note that the mechanical analog is passive if and only if Kv ≤ ωt, which is also the
condition for stability of the closed loop system. It is interesting to see that in the
unstable case when Kv > ωt, then the mechanical analog is no longer passive as K2

and D2 become negative for Kv > ωt. This means that the closed loop system has a
passive mechanical analog if and only if the closed loop system is stable. This result also
applies to pump-controlled motors, which have the same transfer transfer functions as
valve controlled motors with minor adjustments in the parameters.

4.5 Hydraulic transmission lines

4.5.1 Introduction

The mass balance of a volume V was found in (4.64) to be given by

V

β
ṗ + V̇ = qin − qout (4.143)

In the derivation of this equation it was assumed that the pressure would be the same
over the volume, which means that the pressure p = p(t) is a function of time only.
Pressure changes will propagate with the speed of sound, which is about c = 1000 m/s
for hydraulic oil. If the volume is reasonably small so that the pressure only propagates
less than one meter, then pressure differences in the volume will disappear after 1 ms. It
is then normally justified to assume that the pressure is the same over the volume.
However, there are systems where the spatial variations of the pressure must be taken

into account by describing the pressure as a function of position and time. If the volume
V is a pipe of length L, then the time for a pressure change to propagate through the
pipe will be T = L/c. Long pipes are used in large hydraulic installations where pipes
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Figure 4.15: Volume element for hydraulic transmission line.

of length up to 10 m are not uncommon. Moreover, in offshore oil and gas production
pipes of several hundred meters may be used. A propagation time of T = 10 ms will
result if L = 10 m. This introduces a time delay that may be significant if bandwidths
up to 100 rad/s (16 Hz) are required. The propagation time will increase to T = 0.5 s
for a pipe with length L = 500 m. In addition to problems associated with time delays,
a severe problem with long hydraulic pipes is that pressure pulses may be reflected at
the end of the pipe. This may cause strong pressure fluctuations in the system that will
limit bandwidth, and that will increase the risk of mechanical damage to the system.
On background of this there is a need to describe the pressure and flow dynamics of

long hydraulic pipes. It will be shown that the dynamics of such systems are described
by partial differential equations in the form of the wave equation, and that this is a
special case of the theory of transmission lines. The relevant models, analysis tools and
simulation algorithms will be presented in the following. Basic references are (Goodson
and Leonard 1972), (Stecki and Davis 1986a) and (Stecki and Davis 1986b).

4.5.2 PDE Model

A hydraulic transmission line is a pipe filled with a compressible liquid which may be
water or mineral oil. The pipe is of length L and has a cross section of area A, and the
length coordinate along the pipe is denoted x. The pressure of the liquid is p(x, t), the
volumetric flow is q(x, t), the density is ρ(x, t), and the bulk modulus is β.
The dynamic model is developed in detail in Section 11.2.7. The model is found from

the mass balance and momentum balance of a differential control volume Adx where A
is the cross sectional area of the pipe and x is the length coordinate along the pipe. The
velocity along the pipe is denoted v, and the volumetric flow is q = Av̄, where v̄ is the
velocity v averaged over the cross section A. The friction force on the volume element
is Fdx where F = F (q) is assumed to be a function of the volumetric flow q. Then,
assuming that the velocity v̄ is small, and that the density can be considered to be a
constant ρ0, the following model is found from the mass balance and the momentum
balance:

The model for a hydraulic transmission line can be written as the partial differential
equations

∂p(x, t)

∂t
= −cZ0 ∂q(x, t)

∂x
(4.144)

∂q(x, t)

∂t
= − c

Z0

∂p(x, t)

∂x
− F [q(x, t)]

ρ0
(4.145)
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where the sonic velocity c and the line impedance Z0 are defined by

c =

s
β

ρ0
, Z0 =

ρ0c

A
=

p
ρ0β

A
(4.146)

4.5.3 Laplace transformed model

The PDE model (4.144, 4.145) can be Laplace transformed to give

∂q(x, s)

∂x
= − s

cZ0
p(x, s) (4.147)

∂p(x, s)

∂x
= −Z0s

c
q(x, s)− Z0F [q(x, s)]

cρ0
(4.148)

The friction force F [q(x, s)] will depend on the volumetric flow q(x, s), and different
models will result depending on the friction model that is used. It is commonly assumed
that the friction F [q(x, s)] is a linear function of q(x, s). This makes it possible to define
the propagation operator Γ(s) according to

Z0Γ(s)
2

LTs
q(x, s) =

Z0s

c
q(x, s) +

Z0F [q(x, s)]

cρ0
(4.149)

where T = L/c is the propagation time.

The transmission line model can be written

∂q(x, s)

∂x
= − Ts

LZ0
p(x, s) (4.150)

∂p(x, s)

∂x
= −Z0Γ(s)

2

LTs
q(x, s) (4.151)

where Γ(s) is the wave propagation operator, Z0 is the line impedance, and T is the
propagation time.

To complete the model the friction model F = F [q(x, s)] must be specified so that
the wave propagation operator Γ(s) can be found from (4.149). This will be done in the
following with three different friction models.

Example 64 The equations of the transmission line model (4.150) and (4.151) can be
combined so the Laplace transformed model can be written as a wave equation in pressure
or flow as given by the two equations

L2
∂2p(x, s)

∂x2
− Γ2p(x, s) = 0 (4.152)

L2
∂2q(x, s)

∂x2
− Γ2q(x, s) = 0 (4.153)

Example 65 The series impedance X(s) and the parallel admittance Y (s) are given by

X(s) =
Z0Γ(s)

2

LTs
, Y (s) =

Ts

L(s)Z0
(4.154)
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The characteristic impedance Zc(s) is then found to be

Zc(s) =

s
X(s)

Y (s)
= Z0

Γ(s)

Ts
(4.155)

4.5.4 Lossless model

First it is assumed that there is no friction in the pipe, which means that F = 0. The
transmission line model becomes

∂q(x, s)

∂x
= − s

cZ0
p(x, s) (4.156)

∂p(x, s)

∂x
= −Z0s

c
q(x, s) (4.157)

Comparison with the general case (4.151) and (4.155) shows that:

In the lossless case the propagation operator Γ(s) and the characteristic impedance Zc(s)
are given by

Γ(s) = Ts, Zc(s) = Z0 (4.158)

4.5.5 Linear friction

Loss terms in the form of friction in the pipe can be modelled using the Hagen-Poiseuille
equation (White 1999) by assuming laminar flow. Then the friction force is

F = ρ0Bq (4.159)

where the friction coefficient B is
B =

8ν0
r20

(4.160)

where r0 is the radius of the pipe, and ν0 is the kinematic viscosity. The model (4.147,
4.148) becomes

∂q(x, s)

∂x
= − s

cZ0
p(x, s) (4.161)

∂p(x, s)

∂x
= −Z0

c
(s +B) q(x, s) (4.162)

Then the propagation operator can be found according to (4.150) to be given by

Γ2 = T 2s(s +B) (4.163)

From this result and (4.155) it is seen that:

With linear friction the propagation operator and the characteristic impedance are

Γ = Ts

r
s +B

s
, Zc = Z0

r
s+B

s
(4.164)
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In this the case the wave equation from the lossless case is modified to

∂2p

∂t2
+B

∂p

∂t
− c2

∂2p(x, s)

∂x2
= 0 (4.165)

or, using the Laplace transform,

L2
∂2p(x, s)

∂x2
= T 2s (s +B) p(x, s) (4.166)

4.5.6 Nonlinear friction

In the case of nonlinear friction the PDE model is (Goodson and Leonard 1972)

∂q

∂t
= −A

ρ0

∂p

∂x
+

µ0
ρ0

µ
∂2q

∂r2
+

1

r

∂q

∂r

¶
(4.167)

∂ρ

∂t
= −ρ0

A

∂q

∂x
− ρ0

µ
∂v

∂r
+

v

r

¶
(4.168)

∂T

∂t
= α0

µ
∂2T

∂r2
+

1

r

∂T

∂r

¶
(4.169)

In this case viscosity and heat transfer effects has been added to the model. Without
further explanation we state that the propagation operator is

Γ2 = (Ts)2
1

N
¡
r
p

s
ν

¢ (4.170)

where the function N is given by the two alternative expressions

N(z) = 1− 2J1(jz)

jzJ0(jz)
=

I2(z)

I0(z)
(4.171)

Here J0 and J1 are Bessel functions of the first kind of order 0 and 1, respectively, and
I0 and I2 are modified Bessel functions of the first kind of order 0 and 1, respectively.
Note that the propagation operator is irrational. Details are found in (Goodson and
Leonard 1972).

4.5.7 Wave variables

The transmission line model given by (4.150) and (4.151) can be written

∂

∂x

µ
q(x, s)
p(x, s)

¶
=

Ã
0 − Ts

L(s)Z0

−Z0Γ(s)
2

LTs 0

!
| {z }

A

µ
q(x, s)
p(x, s)

¶
(4.172)

By taking the eigenvectors of the matrix A it is found that the system can be made
diagonal a change of variables.

The transmission line can be modeled with the wave variables

a(x, s) = p(x, s) + Zc(s)q(x, s) (4.173)

b(x, s) = p(x, s)− Zc(s)q(x, s) (4.174)
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Here

Zc = Z0
Γ

Ts
(4.175)

is the characteristic impedance of the transmission line. From 4.172) the model for the
wave variables is found to be

∂a(x, s)

∂x
= −Γ

L
a(x, s) (4.176)

∂b(x, s)

∂x
=

Γ

L
b(x, s) (4.177)

The solutions for the wave variables are given by

a(x, s) = exp
³
−Γ x

L

´
a(0, s) (4.178)

b(x, s) = exp

µ
−ΓL− x

L

¶
b(L, s) (4.179)

In the lossless case
Γ = Ts; Zc = Z0 =

ρ0c

A
(4.180)

The solutions are then

a(x, s) = exp
³
−x

L
Ts
´
a(0, s) (4.181)

b(x, s) = exp

µ
−L− x

L
Ts

¶
b(L, s) (4.182)

It is seen that a describes a wave moving in the positive x direction, and b describes a
wave moving in the negative x direction.

The inverse relations are

p(x, s) =
1

2
[a(x, s) + b(x, s)] (4.183)

q((x, s) =
1

2Zc(s)
[a(x, s)− b(x, s)] (4.184)

Suppose that the transmission line is terminated with an impedance ZL(s) so that

p(L, s) = ZL(s)q(L, s) (4.185)

The boundary conditions for the wave variables are given by

a(0, s) = a1(s) (4.186)

b(L, s) = GL(s)a(L, s) (4.187)

where

GL(s) =
ZL(s)− Zc
ZL(s) + Zc

(4.188)

The transfer function from a(0, s) to b(0, s) is then found to be

b(0, s)

a(0, s)
= exp (−2Γ)GL(s) (4.189)
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In the lossless case this gives the transfer function

b(0, s)

a(0, s)
= exp (−2Ts)GL(s) (4.190)

which is a time delay of 2T multiplied multiplied with GL(s).

4.5.8 Example: Lossless pipe

In the lossless case the transfer function from the inlet pressure p(0, s) to the outlet
pressure p(L, s) is given by (1.210), but an alternative expression can be found from
(4.183) to be

p(L, s)

p(0, s)
=

a(L, s) + b(L, s)

a(0, s) + b(0, s)
=

[1 + GL(s)] exp (−Ts)
[1 + exp (−2Ts)GL(s)]

(4.191)

while the transfer function from q(0, s) to p(0, s) is given by

p(0, s)

q(0, s)
= Zc

a(0, s) + b(0, s)

a(0, s)− b(0, s)
= Zc

1 + b(0,s)
a(0,s)

1− b(0,s)
a(0,s)

= Zc
exp (Ts) + exp (−Ts)GL(s)

exp (Ts)− exp (−Ts)GL(s)

= Zc
ZL coshTs+ Zc sinhTs

Zc coshTs + ZL sinhTs
(4.192)

Consider a lossless pipe which is open at the outlet x = L. Then p(L, s) = 0 and
therefore ZL(s) = 0 and GL(s) = −1. It follows that

b(0, s)

a(0, s)
= − exp (−2Ts) (4.193)

while
p(L, s)

p(0, s)
= 0 (4.194)

and
p(0, s)

q(0, s)
= Zc tanhTs (4.195)

Next, consider a pipe which is closed at the outlet at x = L. Then q(L, s) = 0, ZL(s) =∞
and GL(s) = 1 The transfer functions become

b(0, s)

a(0, s)
= exp (−2Ts) (4.196)

and
p(L, s)

p(0, s)
=

1

cosh(Ts)
(4.197)

and
p(0, s)

q(0, s)
= Zc

1

tanhTs
(4.198)

Finally, consider impedance matching which is achieved with a restriction giving p(L, s) =
Zcq(L, s), that is with ZL = Zc. Then GL(s) = 0, and

b(0, s)

a(0, s)
= 0 (4.199)
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p(L, s)

p(0, s)
= exp (−Ts) (4.200)

and
p(0, s)

q(0, s)
= Zc (4.201)

4.5.9 Linear network models of transmission lines

From an input-output perspective a transmission lines can be modeled as a passive system
with one inlet port at x = 0 with pressure p1 and flow q1 into the line, and one outlet
port at x = L with pressure p2 and flow q2 out of the volume. The dynamics can then
be described by transfer functions. If the ports are connected to valves at both sides,
then the valves will normally be describe with pressures as inputs and flows as outputs.
This means that the inputs to the transmission line model will be flows, and the transfer
function should be given in impedance formµ

p1 (s)
p2 (s)

¶
= Z(s)

µ
q1 (s)
−q2 (s)

¶
(4.202)

If the transmission line is connected to volumes at both sides, where the volumes may
be chambers in a pump, a hydraulic motor or a cylinder, then flows will be inputs and
pressures will be outputs of the mass balance models of the volumes. This means that
pressures will be input variables at the transmission line ports, and an admittance formµ

q1 (s)
−q2 (s)

¶
= Y(s)

µ
p1 (s)
p2 (s)

¶
(4.203)

is is the appropriate model formulation. If the transmission line is connected to a valve
at port 1 and a volume at port 2, then the flow q1 will be the input at port 1 and the
pressure p2 will be the input variable at port 2. The the model should be formulated as
a hybrid model µ

p1 (s)
q2 (s)

¶
= H(s)

µ
q1 (s)
p2 (s)

¶
(4.204)

The impedance model, the admittance model and the hybrid models are well suited for
analysis and simulation models.
To describe a cascade of components it may seem to be a good idea to use the cascade

form µ
p2 (s)
q2 (s)

¶
= B(s)

µ
p1 (s)
q1 (s)

¶
(4.205)

However, the cascade form leads to an ill-conditioned formulation. This is due to the
fact that the solution of the wave equation can be described as the sum of two waves
that travel in opposite directions. The cascade form is only suited to describe solutions
that propagate from port 1 to port 2.

4.5.10 Rational approximations of transfer function models

The dynamic model of a transmission line is given by partial differential equations. Be-
cause of this, the transfer function matrices Z(s), Y(s) and H(s) will have irrational
entries. It is necessary to find rational approximations to derive simulation models based
on the transfer function description. Methods for finding rational approximations of the
transfer functions are developed in the following sections. The material is taken from
(Piché and Ellman 1996) and (Mäkinen et al. 2000). Alternative solutions are presented
in (Yang and Tobler 1991).
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4.5.11 Rational series expansion of impedance model

The dynamic model for a hydraulic transmission line is given by partial differential equa-
tions, and the transfer functions are therefore irrational. For use in simulation models
there is a need for an approximation in the form of ordinary differential equations cor-
responding to rational transfer functions. There are several ways of doing this. In this
section we will present a rational series expansion of the irrational transfer functions.
The results are taken from (Piché and Ellman 1996), and the point of departure is the
impedance form of the transfer functions where volumetric flows are inputs, and pressures
are outputs. The impedance model is given by (1.201) asµ

p1 (s)
p2 (s)

¶
= Zc(s)

µ
coshΓ
sinhΓ

1
sinhΓ

1
sinhΓ

coshΓ
sinhΓ

¶µ
q1 (s)
−q2 (s)

¶
(4.206)

The development is simplified by a change of variables into symmetric variables ps and
qs, and antisymmetric variables pa and qa according to

qs =
1

2
(q1 − q2) , ps =

1

2
(p1 + p2) (4.207)

qa =
1

2
(q1 + q2) , pa =

1

2
(p1 − p2) (4.208)

The transfer function model of a hydraulic transmission line can be written in the
impedance form

ps(s) = Zs(s)qs(s) (4.209)

pa(s) = Za(s)qa(s) (4.210)

where the transfer functions or impedance functions are found from (4.206—4.208) to be
given by

Zs(s) =
Z0Γ(s)

Ts

µ
coshΓ(s) + 1

sinhΓ(s)

¶
(4.211)

Za(s) =
Z0Γ(s)

Ts

µ
coshΓ(s)− 1

sinhΓ(s)

¶
(4.212)

The transfer functions Zs(s) and Za(s) both have singularities for

sinhΓ = 0⇔ e2Γ = 1⇔ Γ = jωsk (4.213)

where the natural frequencies are

ωsk = kπ, k = 0,±1,±2, . . . (4.214)

Note that there are infinitely many singularities with an even spacing of π along the
imaginary axis.

The following partial fraction expansions of the impedance functions can be used to arrive
at the rational series with infinitely many terms:

Zs(s) =
2Z0
Ts

+
∞X

k=2,4,...

4Z0Γ
2

Ts (Γ2 + ω2sk)
, Za(s) =

∞X
k=1,3,...

4Z0Γ
2

Ts (Γ2 + ω2sk)
(4.215)

where ωsk = kπ
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It is possible to develop a rational transfer function model by using a truncated model
where terms up to k = N are included.

Example 66 The partial fraction expansion is done by expanding (coshΓ + 1)/ sinhΓ
and (coshΓ− 1)/ sinhΓ using the formula

f(s)

g(s)
=

A1
s− a1

+
A2

s− a2
+ . . .⇒ Ai =

f(ai)

g0(ai)
(4.216)

We can then find the coefficients of the partial fraction expansions from

coshΓ+ 1

coshΓ
=

e2Γ + 2eΓ + 1

e2Γ + 1
=

½
0 Γ = jωsk, k = odd
2 Γ = jωsk, k = even

(4.217)

The coefficient for the second order terms are found for even k from

2

Γ+ jωsk
+

2

Γ− jωsk
=

4Γ

Γ2 + ω2sk
(4.218)

In the same way we calculate

coshΓ− 1

coshΓ
=

e2Γ − 2eΓ + 1

e2Γ + 1
=

½
2 Γ = jωsk, k = odd
0 Γ = jωsk, k = even

(4.219)

and find that for odd k we have

2

Γ+ jωsk
+

2

Γ− jωsk
=

4Γ

Γ2 + ω2sk
(4.220)

4.5.12 Rational series expansion of admittance model

The admittance for of the transmission line model is given by (1.202) asµ
q1(s)
−q2(s)

¶
=

1

Zc

µ
coshΓ
sinhΓ − 1

sinhΓ

− 1
sinhΓ

coshΓ
sinhΓ

¶µ
p1(s)
p2(s)

¶
(4.221)

Again the model is simplified by using symmetric and asymmetric variables defined in
(4.207) and (4.208). Then the transfer functions become

qs(s) = Ys(s)qs(s) (4.222)

qa(s) = Ya(s)qa(s) (4.223)

where the admittances are

Ys(s) =
Ts

Z0Γ

coshΓ+ 1

sinhΓ
(4.224)

Ya(s) =
Ts

Z0Γ

µ
coshΓ− 1

sinhΓ

¶
(4.225)

Using partial fraction expansion in the same way as for the impedance model we find the
following rational representation of the infinite-dimensional admittances:

Ys(s) =
∞X

k=1,3,...

4Ts

Z0 (Γ2 + ω2sk)
, Ya(s) =

2Ts

Z0Γ2
+

∞X
k=2,4,...

4Ts

Z0 (Γ2 + ω2sk)
(4.226)
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4.5.13 Galerkin derivation of impedance model

An alternative and more general approach to find a rational model of the transmission line
dynamics is based the use of Galerkin’s method (Mäkinen et al. 2000). Shape functions
φk(x) are then used to express the pressure as

p̄(s, x) =
NX
k=0

Pk(s)φk(x) (4.227)

This is used in combination with the transmission line model (4.157) which is

Γ2p(s)− L2
d2p(s)

dx2
= 0 (4.228)

The boundary conditions are supposed to be

∂p(0, s)

∂x
= −Z0Γ(s)

2

LTs
q(0, s),

∂p(L, s)

∂x
= −Z0Γ(s)

2

LTs
q(L, s) (4.229)

where q(0, s) and q(L, s) are inputs to the model.
The pressure shape functions in the lossless case with zero flow at the end-points are

φk(x) = cos

µ
kπ

L
x

¶
(4.230)

which is a well-established result for the wave equation. These shape functions are
orthogonal in the sense thatZ L

0

φk(x)φj(x)dx =

Z L

0

cos

µ
kπ

L
x

¶
cos

µ
jπ

L
x

¶
dx =

L

2
δkj (4.231)

Moreover, the derivatives of the shape functions are orthogonal and satisfiesZ L

0

φ0k(x)φ0j(x)dx =

Z L

0

sin

µ
kπ

L
x

¶
sin

µ
jπ

L
x

¶
dx =

(kπ)
2

2
δkj (4.232)

These shape functions will be used as assumed modes in a Ritz approximation as in
(Mäkinen et al. 2000) to derive a rational model with Galerkin’s method. This is done
by multiplying the shape function φk(x) with the model (4.228) using p = p̄, and then
integrating over the length of the transmission line. This gives

I :=

Z L

0

φk(x)

µ
Γp̄(s, x)− L2

d2p̄(s, x)

dx2

¶
dx = 0 (4.233)

As usual in the Galerkin approach the expression for the integral is developed using
partial integration:

I =

Z L

0

φk

µ
Γ2φk(x)p̄(s, x) + L2

dφk(x)

dx

dp̄(s, x)

dx

¶
dx

+ φk(x)L2
∂p̄(s, x)

∂x

¯̄̄̄L
0

=

Z L

0

µ
Γ2φk(x)p̄(s, x) + L2

dφk(x)

dx

dp̄(s, x)

dx

¶
dx

+
z0Γ

2L

Ts
[φk(L)q(L)− φk(0)q(0)] (4.234)
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Using the orthogonality of φk(x) and φ0k(x) as stated in (4.231) and (4.232) we find that

Pk(s)
L

2

³
Γ2 + (kπ)2

´
− z0Γ

2L

Ts

£
(−1)kq(L) + q(0)

¤
= 0 (4.235)

which means that the pressure coefficients are given by

Pk(s) =
2z0Γ

2

Ts
³
Γ2 + (kπ)2

´ £q(0) + (−1)kq(L)
¤

(4.236)

Then the impedance functions Zs(s) and Za(s) in the model

ps(s) = Zs(s)qs(s) (4.237)

pa(s) = Za(s)qa(s) (4.238)

for the symmetric variables are found to be

Zs(s) =
2Z0
Ts

+
∞X

k=2,4,...

4Z0Γ
2

Ts
³
Γ2 + (kπ)2

´ , Za(s) =
∞X

k=1,3,...

4Z0Γ
2

Ts
³
Γ2 + (kπ)2

´ (4.239)

This result is the same as the result (4.215) that was obtained by series expansion of the
transfer functions.

4.5.14 Galerkin derivation of the admittance model

The Galerkin solution when the pressures are inputs is found in a similar way as in the
case where the flows are inputs. In this case the flow is represented by shape functions
φk(x) so that

q̄(s, x) =
∞X
k=0

Qk(s)φk(x) (4.240)

and the transmission line model is given by (4.157) as

Γ2q(s)− L2
d2q(s)

dx2
= 0 (4.241)

with boundary conditions

∂q(0, s)

∂x
= − s

cZ0
p(0, s),

∂q(L, s)

∂x
= − s

cZ0
p(L, s) (4.242)

where p(0, s) and p(L, s) are inputs to the model. The shape functions are taken to be
the orthogonal eigenfunctions of the lossless wave equation when the pressures are zero
at both ends. This gives

φk(x) = cos

µ
kπ

L
x

¶
(4.243)

The Galerkin approach gives

I :=

Z L

0

φk(x)

µ
Γ2q̄(x)− L2

d2q̄(x)

dx2

¶
dx = 0 (4.244)
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and

I =

Z L

0

φk

µ
Γ2φk(x)q̄(s) + L2

dφk(x)

dx

dq̄(x)

dx

¶
dx

+ φk(x)L2
∂q(x)

∂x

¯̄̄̄L
0

=

Z L

0

µ
Γ2φk(x)q̄(x) + L2

dφk(x)

dx

dq̄(x)

dx

¶
dx

+
LTs

z0
[φk(L)p(L)− φk(0)p(0)] (4.245)

and due to the orthogonality of φk(x) and φ0k(x), it follows that

Qk(s)
L

2

³
Γ2 + (kπ)

2
´

=
LTs

z0

£
p(0) + (−1)kp(L)

¤
(4.246)

so that

Qk(s) =
2Ts

z0

³
Γ2 + (kπ)

2
´ £p(0) + (−1)kp(L)

¤
(4.247)

The admittance functions of the symmetric and asymmetric variables

qs(s) = Ys(s)ps(s) (4.248)

qa(s) = Ya(s)pa(s) (4.249)

are found to be

Ys(s) =
∞X

k=1,3,...

4Ts

Z0

³
Γ2 + (kπ)2

´ , Ya(s) =
2Ts

Z0Γ2
+

∞X
k=2,4,...

4Ts

Z0

³
Γ2 + (kπ)2

´ (4.250)

which is the same result as the result (4.226) that was found from the transfer functions.

4.5.15 Galerkin derivation of the hybrid model

Finally the hybrid case is investigated where the pressure is given at one end, and where
flow is given at the other end. Then the model is

Γ2p(s)− L2
d2p(s)

dx2
= 0 (4.251)

with boundary condition

p(0, s) = p1,
∂p(L, s)

∂x
= −Z0Γ(s)

2

LTs
q(L, s) (4.252)

where p1 and q(L, s) inputs to the model. The pressure is represented by

p̄(s, x) = p1 +
∞X
k=1

Pk(s)φk(x) (4.253)

where the shape functions

φk(x) = sin

·µ
k − 1

2

¶
πx

L

¸
(4.254)
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are the orthogonal eigenfunctions of the lossless wave equation when the pressure at the
input is zero and the flow at the output is zero. The Galerkin method gives

I :=

Z L

0

φk(x)

µ
Γp̄(s, x)− L2

d2p̄(s, x)

dx2

¶
dx = 0 (4.255)

and

I =

Z L

0

φk

µ
Γ2φk(x)p̄(s, x) + L2

dφk(x)

dx

dp̄(s, x)

dx

¶
dx

+ φk(x)L2
∂p̄(s, x)

∂x

¯̄̄̄L
0

=

Z L

0

µ
Γ2φk(x)p̄(s, x) + L2

dφk(x)

dx

dp̄(s, x)

dx

¶
dx

+
Z0Γ

2L

Ts

h
(−1)k q(L)

i
(4.256)

and orthogonality of the shape functions gives

Pk(s)
L

2

Ã
Γ2 +

·µ
k − 1

2

¶
π

¸2!
+

Γ2L¡
k − 1

2

¢
π
p1 − Z0Γ

2L

Ts

£
(−1)kq(L)

¤
= 0 (4.257)

and the pressure coefficients are found to be

Pk(s) = − 2Γ2

Γ2 +
£¡
k − 1

2

¢
π
¤2
Ã

1¡
k − 1

2

¢
π
p1 + (−1)k

Z0
Ts

q2

!
(4.258)

The output variables q1(s) and p2(s) are then found to be

p2(s) = p1 +
∞X
k=1

(−1)k+1Pk(s) (4.259)

q1(s) = − Ts

Z0Γ2

∞X
k=1

µ
k − 1

2

¶
πPk(s) (4.260)

4.5.16 Rational simulation models

To find a simulation model it is necessary to develop a model with finite dimension. This
can be done by truncating the infinite series (4.215). Then the model is

ps(s) = Zs(s)qs(s) (4.261)

pa(s) = Za(s)qa(s) (4.262)

where the impedances are given by the truncated versions

Zs =
2Z0
Ts

+
NX

k=2,4,...

4Z0Γ
2

Ts (Γ2 + ω2sk)
, Za =

N−1X
k=1,3,...

4Z0Γ
2

Ts (Γ2 + ω2sk)
(4.263)

of the rational transfer functions where N terms are included. It is assumed that N
is an even number. To find a state-space formulation for this model it is necessary to
investigate the terms of Zs(s) and Za(s) closer. In the lossless case Γ = Ts and

4Z0Γ
2

Ts (Γ2 + ω2sk)
=

4Z0Ts

T 2s2 + ω2sk
(4.264)
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which is straightforward to represent as a second-order system. Moreover, with linear
friction Γ2 = T 2s(s+B) and we find that

4Z0Γ
2

Ts (Γ2 + ω2sk)
=

4Z0T (s +B)

T 2s2 +BT 2s+ ω2sk
(4.265)

which is also a second-order system.
With nonlinear friction it is necessary to introduce a rational approximation of Γ2.

An approximation due to (Woods 1983) is

Γ2 =
(Ts)2

1− ¡1 + 2TsB
¢−1/2 (4.266)

In (Piché and Ellman 1996) this approximation is used to get a rational approximation
which is accurate at the natural frequencies. This is done with

4Z0Γ
2

Ts (Γ2 + ω2sk)
=

4T (s +B)

(Ts)
2

+BkT 2s + ω2k
(4.267)

where

Bk =
1

2

p
ωskB +

B

8
, ωk = ωsk − Bk

2
(4.268)

Then the transfer function from qs(s) to ps(s) can be expressed as a parallel intercon-
nection of an integrator and N/2 second order systems that can be given a state-space
realization. In the same way the transfer function from qa(s) to pa(s) will be a parallel
interconnection of N/2 second order systems.
Solutions computed from such a truncated model will give spurious and non-physical

oscillations in the face of discontinuities like a step change in an input. This is known
as the Gibb’s phenomenon, and resembles problems that appear with data windows in
digital signal processing. A solution to the problem (Piché and Ellman 1996) is to use a
data window to modify the truncated transfer function to

Zs =
2Z0
Ts

+
NX

k=2,4,...

4Z0Γ
2σk

Ts (Γ2 + ω2sk)
, Za =

N−1X
k=1,3,...

4Z0Γ
2σk

Ts (Γ2 + ω2sk)
(4.269)

where

σk =
sinβk
βk

, βk =
ωsk

N + 1
(4.270)

are the coefficients of a Riemann window. It is also possible to use a Hann window with
σk = (1 − cosβk)/2 or a Hamming window with σk = 0.54 + 0.46 cosβk. Moreover, a
steady-state correction is necessary to achieve correct steady-state pressure reduction,
which is

p2 = p1 − εZ0q (4.271)

where it is assumed that q1 = q2 = q. To obtain this steady-state result with a truncated
approximation it is sufficient to insert bNB for B in Za where

bN =

8
N−1X

k=1,3,...

σk
ω2k

−1 (4.272)
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Γ2 Zs(s)/Z0 Za(s)/Z0

(Ts)2 2
Ts +

PN
k=2,4,...

4σkTs
(Ts)2+(kπ)2

PN−1
k=1,3,...

4σkTs
(Ts)2+(kπ)2

T 2s (s +B) 2
Ts +

PN
k=2,4,...

4σkT (s+B)

(Ts)2+BT 2s+(kπ)2
PN−1

k=1,3,...
4σkT (s+bNB)

(Ts)2+BT 2s+(kπ)2

(Ts)
2 1

N(r
√

s
ν )

2
Ts +

PN
k=2,4,...

4σkT (s+B)

(Ts)2+BkT 2s+ω2k

PN−1
k=1,3,...

4σkT (s+bNB)

(Ts)2+BkT 2s+ω2k

Table 4.1: Rational approximations of infinite dimensional transfer function with three
different friction models.

The rational truncated models are summarized in the following Table 4.1. SIMULINK
models are available on the web (Mäkinen et al. 2000).
The constants of the models are given by

T =
L

c
, B =

8ν0
r20

, Bk =
1

2

√
kπB +

B

8
, ω2k = kπ − Bk

2
(4.273)

σk =
sinβk
βk

, βk =
ωsk

N + 1
, bN =

8
N−1X

k=1,3,...

σk
ω2k

−1 (4.274)

Numerical values for a transmission line is L = 20 m, ρ = 870 kg/m3, c = 1400 m/s,
ν0 = 8 × 10−5 m2/s and r0 = 6 × 10−3 m. This corresponds to a propagation time of
T = L/c = 14 ms.

4.6 Lumped parameter model of hydraulic line

4.6.1 Introduction

The hydraulic transmission line has been described by distributed parameter models,
which are models that are formulated by partial differential equations. Transfer functions
that describe distributed parameter models of transmission lines are irrational with terms
like coshTs, sinhTs, tanhTs and exp (−Ts). We recall that transfer functions with
irrational terms are called infinite dimensional as they can be expressed by a series
expansion in the complex variable s with an infinite number of terms. For analysis and
control design it may be desirable to obtain finite-dimensional models of transmission
lines. This can be done by some numerical discretization scheme or by truncating a
series expansion of an irrational model. In this section we will follow a different path.
We will reformulate the model by describing the physics of the system with a lumped
parameter model by describing the transmission line as a series of control volumes of
finite size instead of using infinitesimal control volumes. This type of model is based
on the same assumptions that are used in the Helmholtz resonator model, and we will
therefore briefly present the Helmholtz resonator, which is the physical system in fluid
flow that is analog to a mass-spring-damper system in flexible mechanical systems.
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4.6.2 Helmholtz resonator model

A Helmholtz resonator consists of a volume V that is connected to a pipe of length h
and cross section A (Figure 12.4). To develop the mathematical model of the system the
following assumptions are made:

1. The velocity of the fluid in the volume is sufficiently small to assume that the
pressure p is the same over the volume.

2. The compressibility effects in the pipe are negligible, so that the volumetric flow q
is the same along the pipe.

This means that the Helmholtz resonator is modeled by a pipe with incompressible
fluid flow that is connected to a volume with compressibility effects. The mass balance
of the volume is

V

β
ṗ = q (4.275)

while the momentum balance of the pipe is

hρ0q̇ = −Ap (4.276)

where the inlet pressure of the pipe has been set to zero. By differentiating the mass
balance (4.275) with respect to time and inserting the momentum equation (4.276) the
harmonic oscillator

p̈ + ω2Hp = 0 (4.277)

is obtained, where

ω2H =
Aβ

V hρ0
=

Ac20
V h

(4.278)

is the Helmholtz frequency. Here c20 = β/ρ0 is the sonic speed corresponding to the
constant density ρ0.

4.6.3 Model formulation

In this section a chain of Helmholtz resonators will be used to model a hydraulic trans-
mission line. Consider a hydraulic transmission line of length L and cross section A. The
model is developed by connecting Helmholtz resonators where the model of Helmholtz
resonator i is established by a mass balance

Ah

β
ṗi = qi−1 − qi (4.279)

for a volume Vh = hA with pressure pi. Here qi−1 is the volumetric flow into the volume,
qi is the volumetric flow out of the volume, and β = c20ρ0 is the bulk modulus. In
addition, the model includes a momentum balance

hρ0q̇i−1 = A(pi−1 − pi)− Fh (4.280)

for an incompressible fluid with density ρ0 in a pipe of length h with volumetric flow
qi−1. Here F is the friction force per unit length. This gives the following model for
Helmholtz resonator i:
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A hydraulic transmission line can be modeled by a chain of N Helmholtz resonators with
model

ṗi =
c2ρ0
Ah

(qi−1 − qi) (4.281)

q̇i−1 =
A

hρ0
(pi−1 − pi)− F

ρ0
(4.282)

Note that when h tends to zero, then the model will converge to the transmission line
model

∂p

∂t
= −c

2ρ0
A

∂q

∂x
(4.283)

∂q

∂t
= −A

ρ0

∂p

∂x
− F

ρ0
(4.284)

which equivalent to the transmission line model (4.144, 4.145). This means that the
lumped parameter model converges to the partial differential equation model when h
tends to zero.
The model (4.281, 4.282) describes a two-port with input variables qi and pi−1 and

output variables qi−1 and pi. This means that this is a model in hybrid form. We
denote the port variables of the transmission line at x = 0 as pin and qin, while the port
variables at the line end are x = L are pout and qout.Depending on which of the port
variables that are selected for inputs and outputs the model will be in admittance form,
impedance form, or hybrid form. Equations for these three cases will be presented in the
next sections.

4.6.4 Admittance model

If the input variables to the model are the pressures pin and pout, then the transmission
line can be modeled with an admittance model. The Helmholtz resonator model (4.144,
4.145) is in hybrid form, and because of this an extra pipe of length h and volumetric flow
qN must be connected to the outlet of a chain of N Helmholtz resonators i = 1, . . . ,N .
This is shown in Figure 4.16 for N = 3. The model has N volumes so that volume i

V1 V2 V3
p1 p2

p3

h hhh

q0 q1 q2 q3

Figure 4.16: A chain of interconnected Helmholtz resonators with ducts of length h
representing a transmission line in the admittance form.

is centered at xi = ih for i = 1, . . . , N , and there are (N + 1) pipes where pipe i is
centered at xi+1/2 = (i + 1/2)h for i = 0, . . . , N as shown in Figure 4.17. We note that
V = (N +1)Vh and L = (N +1)h, so that the number of volumes N will tend to infinity
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V1 V2 V3
p1 p2

p3

h 2h 3h 4h0

q3q2q1q0

Figure 4.17: Spatial discretization of a transmission line with pressure inputs at both
sides to get a description in the form of a chain of Helmholtz resonators.

when h tends to zero. The model is

ṗi =
c2ρ0
Ah

(qi−1 − qi) , i = 1, . . . ,N (4.285)

q̇i−1 =
A

hρ0
(pi−1 − pi)− F

ρ0
, i = 1, . . . , N + 1 (4.286)

p0 = pin, pN+1 = pout (4.287)

4.6.5 Impedance model

Suppose that the input variables at the line ends are the volumetric flows qin and qout. In
this case the model has N volumes, but the pipe of the first resonator must be removed
to have the right input variable. This means that volume 1 is at the start of the line
and volume N is at the end of the line. Volume i is centered at xi−1/2 = (i− 1/2)h for
i = 1, . . . , N , and is connected with pipes of length h and cross section A. There are
N − 1 pipes, where pipe i is centered at xi = ih for i = 1, . . . ,N − 1. We note that
V = NVh and L = Nh. The model is

ṗi =
c2ρ0
Ah

(qi−1 − qi) , i = 1, . . . ,N (4.288)

q̇i−1 =
A

hρ0
(pi−1 − pi)− F

ρ0
, i = 2, . . . , N (4.289)

q0 = qin, qN = qout (4.290)

4.6.6 Hybrid model

Suppose that the input variables to the transmission line model at the inlet side is the
pressures pin, and that the input variable at the outlet side is qout. Then the model is
in hybrid form. The Helmholtz resonator model (4.144, 4.145) is also in hybrid form,
and because of this the transmission line can be represented by a chain of N Helmholtz
resonators i = 1, . . . ,N with model

ṗi =
c2ρ0
Ah

(qi−1 − qi) , i = 1, . . . ,N (4.291)

q̇i−1 =
A

hρ0
(pi−1 − pi)− F

ρ0
, i = 1, . . . , N (4.292)

p0 = pin, qN = qout (4.293)
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In this case volume i will be centered at xi = ih for i = 1, . . . ,N , and there are N
pipes where pipe i is centered at xi+1/2 = (i+ 1/2)h for i = 0, . . . ,N − 1. We note that
V = (N + 1/2)Vh and L = (N + 1/2)h.

4.6.7 Natural frequencies

We may think of each Helmholtz resonator as a two-port with port variables qi−1 and
pi−1 for port 1 and port variables qi and pi on port 2. Note that qipi has the physical
dimension power. The system can be seen as a system with input variables qi and pi−1and
output variables equal to the states qi−1 and pi. The hybrid transfer function model is

µ
qi−1(s)
pi(s)

¶
=


A

hρ0ω
2
H

s

1+ s2

ω2
H

− 1

1+ s2

ω2
H

1

1+ s2

ω2
H

hρ0
A

s

1+ s2

ω2
H

µ pi−1(s)
−qi(s)

¶
(4.294)

where the Helmholtz frequency ωH is given by

ω2H =
Ac2

Vhh
⇒ ωH =

c

h
(4.295)

Through the discretization we have introduced Helmholtz resonator i with oscillatory
poles at s = ±jωH .

Example 67 Consider a transmission line with both ends closed. This means that the
inlet and outlet flow are given as inputs, so that an impedance model should be used.
With two volumes, that is, with L = 2h, the dynamics of the model are given by

ṗ1 = −c
2ρ0
Ah

q (4.296)

ṗ2 =
c2ρ0
Ah

q (4.297)

q̇ =
A

ρ0h
(p1 − p2) (4.298)

Laplace transformation of the model, and insertion of the pressure equations in the mass
flow equation leads to µ

s2 + 2
c2

h2

¶
q(s) = 0 (4.299)

This system has undamped natural frequency

ω0 =
√

2
c

h
= 2
√

2
c

L
= 2.82

c

L
(4.300)

while the exact value for the first resonance of the partial differential equation model is
found from the period T1 = 2L/c, which gives

ω1 =
2π

T1
= π

c

L
= 3.14

c

L
(4.301)

This means that the resonance frequency of this simplified model is about 11% lower than
the exact resonance frequency.
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Example 68 For N = 3 volumes we have L = 3h, and the state space model of the
impedance model is

Aṗi = ω2H (hρ0qi−1 − hρ0qi) , i = 1, 2, 3 (4.302)

hρ0q̇i−1 = (Api−1 −Api), i = 2, 3 (4.303)

d

dt


Ap1
hρ0q1
Ap2
hρ0q2
Ap3

 =


0 −ω2H 0 0 0
1 0 −1 0 0
0 ω2H 0 −ω2H 0
0 0 1 0 −1
0 0 0 ω2H 0




Ap1
hρ0q1
Ap2
hρ0q2
Ap3

 (4.304)

The resonance frequencies of the system matrix are

ωH =
c

h
= 3

c

L
and

√
3ωH =

3
√

3c

L
= 5.2

c

L
(4.305)

while the first and second resonance of the exact model are

ω1 = π
c

L
= 3.14

c

L
and ω2 = 2π

c

L
= 6.28

c

L
(4.306)

Example 69 The input flow is zero and the outlet flow is zero, then a hybrid model
should be used. With N = 1, then L = 3h/2, and the model is

d

dt

µ
Ap1
hρ0q1

¶
=

µ
0 −ω2H
1 0

¶µ
Ap1
hρ0q1

¶
(4.307)

The resonance is at
ω1 =

3

2

c

L
= 1.5

c

L
(4.308)

while the exact value for the first resonance is

ω =
π

2

c

L
= 1.57

c

L
(4.309)

4.7 Object oriented simulation models

4.7.1 Introduction

The final section of the chapter will present examples on how subsystem models can
be connected to a model, and how subsystem models may be added or changed without
causing extensive work. This will be done using subsystem models that are interconnected
with effort and flow variables.

4.7.2 Pump controlled hydraulic motor

Pump controlled hydraulic motors are used in applications where high power is required
as the power efficiency may be as high as 90% for such systems. Such systems are used
in vehicles and in cranes for heavy lifting operations.
We consider the system shown in Figure 4.18 which depicts an arrangement which

is called a hydrostatic gear or hydraulic gear . The system has a pump with a variable
displacement, which is driven by a motor with constant speed. The pump is connected
to a motor which may have a fixed or variable displacement. The speed and direction of
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p m

 p m

Electric 
motor

p 1

p 2

m

Figure 4.18: Pump controlled hydraulic motor with variable displacement in the pump
and the motor. The arrangement is known as a hydrostatic gear.

rotation of the rotor can then be controlled with the displacement of the pump which is
varied by the stroke angle φp of the pump. The stroke of the pump is controlled with a
small servomechanism, which may use a valve controlled hydraulic motor or an electrical
actuator.
The dynamic model of the pump is given by (4.73—4.75). This is also the case for the

hydraulic motor. In this type of system the high pressure side with pressure p1 will be
driving the motor, while the pressure p2 of the return pipe from the motor to the pump
will be zero. Therefore, only the mass balances of the high pressure side are included in
the model. Then the model for the pump is

V1p
β

ṗ1p = Dpωp − Cipp1p − Cepp1p − q1p (4.310)

Jpω̇p = −Bpωp −Dpp1p + Tem (4.311)

where Dp is the pump displacement, ωp is the angular velocity of the pump, Vip is the
volume of chamber 1 of the pump, Cip and Cep are leakage coefficients, Jp is the inertia of
the pump, Tem is the torque from the electrical motor, and Bm is the friction coefficient
of the pump. The model for the hydraulic motor is

V1m
β

ṗ1m = −Dmωm − Cimp1m − Cemp1m + q1m (4.312)

Jmω̇m = −Bmωm +Dmp1m − TL (4.313)

where Vim is the volume of chamber 1 of the motor, Cim and Cem are leakage coefficients,
and Bm is the friction coefficient of the motor. The displacement of the pump and motor
are assumed to be given by

Dp = kpφp (4.314)

Dm = kmφm (4.315)

where φp is the stroke angle of pump, φm is the stroke angle of motor, and kp and km
are displacement coefficients.
In contrast to the model of the valve controlled motor it is not possible to connect

the outputs of the pump model to the inputs of the hydraulic motor and vice versa. The
reason for this is the model are interconnected by imposing the conditions q1 = q1p = q1m
and p1 = p1p = p1m. However, q1 will then be input to both models, and p1 will be output
from both models. The solution to this problem is to combine the two mass balances
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(4.310) and (4.312) by adding them. This gives the model

V1
β
ṗ1 = −Dmωm +Dpωp − C1p1 (4.316)

Jpω̇p = Tem −Bpωp −Dpp1 (4.317)

Jmω̇m = −Bmωm +Dmp1 − TL (4.318)

whereV1 = V1p + V1m, Cit = Cip + Cim and C1 = Cit + Cep + Cem.

Example 70 Suppose that the motor displacement Dm and the pump speed ωp are con-
stants, and that the pump displacement is Dp = kpφp where the stroke angle φp of the
pump is the control input. Then the model is

V1
β
ṗ1 = −Dmωm − C1p1 + kpωpφp (4.319)

Jmω̇m = −Bmωm +Dmp1 − TL (4.320)

Example 71 If the pump and the hydraulic motor are connected with a transmission
line on the high pressure side, then there will be independent mass balances for the pump
and the motor. The high pressure port of the pump would then have pressure pp and flow
qp and the high pressure port of the motor would have pressure pm and flow qm. The
models of the pump and the motor would be

V1p
β

ṗ1p = Dpωp − Cipp1p − Cepp1p − q1p (4.321)

Jpω̇p = −Bpωp −Dpp1p + Tem (4.322)

and

V1m
β

ṗ1m = −Dmωm − Cimp1m − Cemp1m + q1m (4.323)

Jmω̇m = −Bmωm +Dmp1m − TL (4.324)

These model have flows as inputs and pressures as outputs. The transmission line model
of the high pressure line would be an admittance modelµ

q1p(s)
q1m(s)

¶
=

1

Zc

µ
coshΓ
sinhΓ − 1

sinhΓ
1

sinhΓ − coshΓsinhΓ

¶µ
p1p(s)
p1m(s)

¶
(4.325)

with the pressures p1p and p1m as inputs and the flows q1p and q1m as outputs. The
admittance model is irrational due to the transcendental functions coshΓ and sinhΓ.
Rational approximation of this irrational model must be used to develop a simulation
model.

Example 72 A load with inertia J1 and angular velocity ω1 with elastic transmission
can be connected to the motor by formulating the load with a port with the motor speed
ωm as the input variable, and the load torque TL as the output variable. This is done by
the load model

J1ω̇1 = TL − T1 (4.326)

θ̇1 = ω1 (4.327)

TL = D1 (ωm − ω1) +K1 (θm − θ1) (4.328)
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We may add on any number of additional degrees of freedom as two-ports

Jiω̇i = Ti−1 − Ti (4.329)

θ̇i = ωi (4.330)

Ti = Di (ωi−1 − ωi) +Ki (θi−1 − θi) (4.331)

with port variables Ti−1 and ωi−1 at the input and Ti and ωi at the output.

Example 73 Consider the connection of a load with inertia J1 with a stiff connection
to the motor so that the load has the same shaft speed as the motor. Then there would
not be an extra state because of the load, and the load is included in the model by adding
the load inertia to the motor inertia in the equation of motion for the motor shaft, which
gives

(Jm + J1) ω̇m = −Bmωm +Dmpm − TL (4.332)

4.7.3 Cylinder with balance valve

Hydraulics for heavy lifting with a crane will often be implemented with a hydraulic
cylinder with a single-rod piston. To prevent problems with hanging loads the cylinder
may be connected to a balance valve on the lifting side of the piston. In this section
this type of system will be controlled with a valve. To establish a object oriented model
we first define the ports of the components, and then the ports will be connected, and
finally we present the models for each of the components.
The inlet port of the cylinder has pressure p1 and flow q1 into the chamber, the outlet

port has pressure p2 and flow q2 out of the chamber. The balance valve has input port
pressure pBV 1 and flow qBV into the valve, and outlet port with pressure pBV 2 and flow
qBV out of the valve. The control valve has one port A with pressure pA and flow qA
out of the valve, and one port B with pressure pB and flow qB into the valve. The pipes
from the control valve to the motor and balance valve are denoted A and B. The volume
of pipe A is VA and the volume of pipe B is VB. The inlet of pipe A has pressure pA and
flow qA1 into the pipe, and the outlet port has pressure pA and flow qA2 out of the pipe.
The inlet of pipe B has pressure pB and flow qA1 into the pipe, and the outlet port has
pressure pA and flow qA2 out of the pipe.
The control valve port A is connected to pipe A, and the valve port B is connected

to pipe B. Pipe A is connected to the inlet port of the balance valve so that pBV 1 = pA,
and pipe B is connected to the outlet port of the motor so that pB = p2. The outlet
port of the balance valve is connected to the inlet port of the motor so that pBV 2 = p1
and qBV = q1.
The flows qA and qB are found from the orifice equations

qa = CdAa(xv)
q

2
ρ (ps − pA)

qb = CdAb(xv)
q

2
ρ (ps − pB)

qc = CdAc(xv)
q

2
ρ (pA − pr)

qd = CdAd(xv)
q

2
ρ (pB − pr)

(4.333)

and
qA = qa − qc, qB = qd − qb (4.334)

where xv is an input to the model.
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The pressures pA is found from the pipe model that is given by the mass balance

VA
β
ṗA = qA − q1 (4.335)

Note that there is no model for pipe B because pipe B is connected to the outlet chamber
of the motor so that pB = p2. Instead, the volume of pipe B is included in the chamber
volume of chamber 2 in the motor.
The volumetric flow q1 is found from the flow characteristic of the the balance valve,

which is

q1 =

 Cdxbv1b
q

2
ρ (p1 − pA) pA > p1

−CdAc

q
2
ρ (pA − p1) p1 < pA

(4.336)

where the spool position of the balance valve is

xbv1 =
Ar

K
[p1 − p01 +Rp2 − pA (R + 1)] , 0 ≤ xbv1 ≤ xbv1,max

The piston moves in the vertical direction, and the position of the piston is denoted
by xp which is positive in the upwards direction. The cylinder has one chamber with area
A1, pressure p1 and volume V1 = V10+A1xp. The other chamber has area A2 = A1−Ar

where Ar is the area of the rod, pressure p2 and volume V2 = V20 − A2xp. The model
for the cylinder is then

V10 +A1xp
β

ṗ1 = −Cim(p1 − p2)− Cemp1 −A1ẋp + q1 (4.337)

VB + V20 −A2xp
β

ṗ2 = −Cim(p2 − p1)− Cemp2 +A2ẋp − q2 (4.338)

mtẍp = −Bpẋp +A1p1 −A2p2 − FL (4.339)

where FL is an input to the model.

Example 74 If a balance valve had been added at the outlet port of the motor, then
pressure pB would have to be computed from a line model

VB
β
ṗB = q2 − qB (4.340)

and the mass balance of chamber 2 of the motor would have been

V20 −A2xp
β

ṗ2 = −Cim(p2 − p1)− Cemp2 +A2ẋp − q2 (4.341)

The flow q2 would then be found from the balance valve characteristic of the balance valve
at port 2 as

q2 =

 −Cdxbv2b
q

2
ρ (p2 − pB) pB > p2

CdAc

q
2
ρ (pB − p2) p2 < pB

(4.342)

where the spool position of the balance valve is

xbv2 =
Ar

K
[p2 − p02 +Rp1 − pB (R + 1)] , 0 ≤ xbv2 ≤ xbv2,max
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Chapter 5

Friction

5.1 Introduction

5.1.1 Background

Friction is the tangential reaction force between two surfaces in contact. The friction
force is dependent on a number of factors, such as contact geometry, properties of the
surface materials, displacement, relative velocity and lubrications. Friction is a highly
complex phenomenon, composed of several physical phenomena in combination. As a
result of this, models of friction are to a large extent empirical, which means that the
models are constructed in order to reproduce effects observed in experiments. On the
other hand, some of the dynamic friction models aim at modelling the physics behind
the phenomenon.
A macroscopic smooth surface is far from smooth when viewed at a microscopical

scale. The small features of the surface are called asperities. When two surfaces are
brought into contact, the true contact occur between the asperities in what is called
asperity junctions. An example of this is shown in Figure 5.1. In engineering materials,
the slope of the asperities are typical in the range 5◦ − 10◦, and the width is typical
10 µm. When two bodies in contact are brought into relative motion by an external
force, the asperities will behave like springs, and there will be an elastic deformation of
the asperities. This motion is referred to as pre-sliding displacement or the Dahl effect .

Asperities

Asperity
junctions

Figure 5.1: The asperities and junctions of two bodies in contact, viewed at a microscop-
ical scale

191
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The tangential force Ft(x) can in this regime be approximated by

Ft(x) = −ktx (5.1)

where kt is the stiffness of the contact and x is the relative displacement.
By increasing the external force the asperities will undergo plastic, irreversible defor-

mation and then rupture. The force needed to break the junctions is referred to as the
break-away force Fb, and the phenomena itself is called break-away. The stiffness kt can
be found from

kt =
Fb
xb

(5.2)

where xb is the break-away displacement. Before beak-away the system is said to stick,
while after break-away the system is said to slip, and the term stick-slip friction is used
to characterize the phenomenon.

5.2 Static friction models

Static friction models present the friction force as a function of velocity. This function
can be characterized by the following for regimes:

I. Static friction Elastic deformation of the asperities, the Dahl effect.

II. Boundary lubrication For very low velocities, no fluid lubrication occur, and the
friction is dominated by shear forces in the solid boundary film.

III. Partial fluid lubrication The Stribeck effect

IV. Full fluid lubrication A lubricant film thicker than the size of the asperities is
maintained, and no solid contact occurs. The friction is purely viscous.

The resulting map is referred to as the generalized Stribeck curve, which is shown in
Figure 5.2. Static friction models will represent these regimes to a varying extent. A
selection of static friction models that are commonly used is shown in Figure 5.3.

5.2.1 Models for the individual phenomena

Coulomb friction

The classical model of friction where the friction force is proportional to load, opposes the
motion, and is independent of contact area is known as Coulomb friction. The friction
force in the Coulomb model is given by

Ff = Fcsgn(v), v 6= 0 (5.3)

where the Coulomb force Fc is given by

Fc = µFN (5.4)

Here µ is the friction coefficient and FN is the load. Equation (5.4) can be derived as
follows. It is assumed that there is no contamination, such as lubrication, of the contact
surfaces. The friction is then referred to as dry friction. In this context friction can
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Figure 5.2: The generalized Stribeck curve, showing friction as a function of velocity for
low velocities, (Armstrong-Hélouvry et al. 1994).

v

F F F

F F F

v v

v v v

a) b) c)

d) e) f)

Figure 5.3: Static friction models: a) Colomb friction b) Coulomb+stiction c)
Coulomb+stiction+viscous d) Stribeck effect e) Hess and Soom; Armstrong f) Karnopp
model
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be defined as the shear strength of the asperity junction areas, and the friction force is
proportional to the true area of contact Ac

Ff = Acfs (5.5)

where fs is the shear force per unit area, a constant material property. The true area of
contact Ac can be found from

Ac =
FN
py

(5.6)

where FN is the load, and py is the yield pressure, a constant material property. Com-
bining (5.6) with (5.5) gives

Ff =
FN
py

fs = µFN (5.7)

where the friction coefficient µ is found as µ = fs/py, and thus (5.4) holds. From
the derivation, it is seen that Ac is cancelled out of the expression, and so friction is
independent of contact area.
According to Armstrong-Hélouvry et al. (1994), Fc is also dependent on lubricant

viscosity and contact geometry. The nature of Coulomb friction was known to Leonardo
Da Vinci, and his results were further developed by Coulomb. The friction force given by
(5.3) is not necessary symmetric in v, that is, Ff may take different values for different
directions of the velocity.

Static friction

Static friction is also known as stiction and models the fact that in some cases the friction
force is larger in magnitude for zero velocity than for a non-zero velocity. According to
the stiction model the system sticks if the velocity is zero and |Ff | < Fs, and it breaks
away if |Ff | = Fs where Fs > Fc is the stiction force, which is larger in magnitude than
the Coulomb force Fc.
During a pre-sliding displacement, some motion is possible even when a mechanism

is stuck in static friction. If the applied force returns to zero, the position returns to its
initial value, possibly after a transient of pre-sliding displacement.

Viscous friction

Viscous friction is present in fluid lubricated contacts between solids. The concept of vis-
cous friction was first introduced by Reynolds(1886). A viscous friction model takes into
account that due to hydrodynamic effects, the friction force depends on the magnitude
of the velocity, and not only its direction. The usual linear model is given by

Ffv = Fvv (5.8)

where the viscous friction is proportional to velocity. The constant of proportionality Fv
depends on lubricant viscosity, loading and contact geometry. Generally, viscous friction
exhibits a non-linear behavior, and a nonlinear version of (5.8) is

Ffv = Fv |v|δv sgn(v) (5.9)

where 0 < δv ≤ 1 is a constant.
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F

v

Figure 5.4: Frictional lag

Decreasing viscous friction: The Stribeck effect

Decreasing viscous friction is also known as Stribeck friction or the Stribeck effect , and
was first described in Stribeck (1902). The Stribeck effect has its background in partial
fluid lubrication. In this case some of the load is carried by the fluid film created by the
lubricant, and some by elastic and plastic deformation of the asperities. The fluid film
thickness increases with velocity, and the resulting tangential force decreases since the
shear forces of the film are smaller than the shear forces of the asperities. Several static
models have been proposed for the Stribeck effect. Armstrong-Hélouvry (1990) propose
to use

Ff =
h
Fc + (Fs − Fc)e

−(v/vs)2
i
sgn(v), v 6= 0 (5.10)

where Fs is the static friction, Fc is the Coulomb friction and vs is denoted the char-
acteristic velocity of the Stribeck friction. Equation (5.10) will model Coulomb friction,
stiction and the Stribeck effect. The model is not defined for zero velocity, but |Ff |→ |Fc|
when the velocity tends to zero. Hess and Soom (1990) propose the expression

Ff =

"
Fc +

(Fs − Fc)

1 + (v/vs)
2

#
sgn(v), v 6= 0 (5.11)

for modeling the same effect. It is important to notice that models such as (5.10) or (5.11)
are not based on the physics of the phenomenon, but is rather a curve fit to experimental
data as shown in Figures 5.3 d) and f).

Other friction related phenomena

In the friction experiments of Hess and Soom (1990) it was observed that friction force
was lower for decreasing velocities than for increasing. This is a hysteresis effect, and is
referred to as frictional lag, or frictional memory, see Figure 5.4. Moreover, the break-
away force has been found to depend on the rate of change of externally applied force.
Larger rates gives smaller break-away force.

5.2.2 Combination of individual models

The static models presented above can be combined to produce models that take several
of these phenomena into account. For instance, the most commonly used model in
engineering, which is the Coulomb+viscous friction model can be found by adding (5.3)
and (5.8) together to form

F = Fcsgn (v) + Fvv (5.12)



196 CHAPTER 5. FRICTION

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Velocity v

Fr
ic

tio
n 

fo
rc

e 
F

Fc

Fs Fv

Figure 5.5: An example of a friction map

The Stribeck effect can also be included using (5.11), which gives (Hess and Soom 1990)

F =

Ã
Fc +

(Fs − Fc)

1 + (v/vs)
2

!
sgn(v) + Fvv (5.13)

A plot of the Friction curve given by (5.13) is shown in Figure 5.5

5.2.3 Problems with the static models

There are two main problems connected to the use of static friction models for simulation
and control applications:

1. They are dependent on the detection of zero velocity, as the model rely on switching
at zero velocity.

2. They do not describe all observed dynamic effects, such as pre-sliding displacement,
varying break-away force and frictional lag..

The zero velocity problem can be handled by a static model known as the Karnopp
model, Karnopp (1985), where a zero velocity interval, |v| < η is used. Outside this
interval,that is for |v| ≥ η, friction force is the usual function of velocity, but within the
interval, the velocity is considered to be zero and friction is a function of other forces in
the system:

Ff (v, F ) =

½
Ff (v) , |v| ≥ η
Ff (F ) , |v| < η

(5.14)

where F represents the sum of other forces in the system and η > 0 is the small constant
defining the Karnopp zero interval. This is advantageous in simulations, but the zero
interval does not agree with real friction, and the model strongly depends on the rest of
the system through Ff (F ). A plot of the static Karnopp model is shown in Figure 5.3 f).
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A friction model known as Armstrong’s 7-parameter model Armstrong-Hélouvry et al.
(1994) is capable of modelling some of the phenomena not included in the classical static
models. The model consists of two equations, one for sticking and one for sliding:

F (x) = σ0x, (5.15)

when sticking, and

F =

Ã
Fc + Fs(γ, td)

1

1 + (v(t− τ l)/vs)
2

!
sgn(v) + Fvv (5.16)

where

Fs(γ, td) = Fs,a +

µ
Fs,∞ − Fs,a

td
td + γ

¶
(5.17)

when sliding. Fs,a is the Stribeck friction at the end of the previous sliding period and td
is the dwell time, the time in stick. Although the Armstrong 7-parameter model describes
more phenomena than the classical models, it still requires switching between different
equations. The problems with static friction models in connection with simulation and
control systems design has led to the use of dynamic friction models for high precision
friction modeling.

5.2.4 Problems with signum terms at zero velocity

In static friction models the friction term will typically include a term which more or
less looks like the Coulomb friction model Ff = Fcsgn(v). This model is not defined at
zero velocity, however, it is not unusual that the model is extended to be valid at zero
velocity using the model

Fcsgn(v) =

 −Fc, v < 0
0 v = 0
Fc, 0 < v

(5.18)

This is e.g. done in the Simulink block for Coulomb and viscous friction. It is not difficult
to see that this model does not reflect the physics of the problem. To makes this clear
we consider a mass m with position x, velocity v = ẋ and an active force Fa acting on
the mass. The friction force is Ff , and Newton’s law gives

mv̇ = Fa − Ff (5.19)

Now, suppose that v = 0. If the friction force is given by Ff = Fcsgn(v) as defined
by 5.18, then Ff = 0 for v = 0, and the system will not stick, but rather accelerate
according to mv̇ = Fa. If Fa is positive and nonzero, then the velocity becomes positive,
and the friction force will at the next time step be Ff = −Fc. If Fa < Fc this will cause
a reversal of the acceleration, and at the next step the velocity may have changed sign
so that Ff = Fc. It is clear that this will give strong oscillations in the system, and that
these oscillations have nothing to do with the physics of the system. In a simulation
with fixed time-step, there will be strong oscillations in the numerical solution, whereas
a simulation with variable time-step will more or less stop as the time step will be made
very small to in order to reach the specified accuracy.
The conclusion to this discussion is that models that contain a signum term like the

one in (5.18) will not give results that agree with the physics of the problem at zero
velocity. Moreover, serious problems are introduced in simulations.
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5.2.5 Karnopp’s model of Coulomb friction

Karnopp’s friction model extends the basic Coulomb friction model for dry friction to be
valid also for zero velocity. It is straightforward to extend this model to include stiction
and the Stribeck effect. Karnopp’s model can be explained by considering a mass m with
velocity v that is pushed on a flat surface with a force Fa. The friction force on the mass
is Ff so that the equation of motion is given by (5.19) According to the Coulomb friction
model the friction force Ff is of magnitude Fc in the opposite direction of the velocity
as long as the velocity is nonzero. This may be modelled as

mv̇ =

½
Fa + Fc, v < 0
Fa − Fc, v > 0

(5.20)

In this formulation the friction force is a function of the velocity. Note, however, that
this model is undefined for zero velocity, so there is a need for refining the model. This is
done in Karnopp’s model by observing that the physical behavior of the system at zero
velocity is that the velocity remains equal to zero as long as the force Fa is less than Fc
in magnitude. This can be written

mv̇ = 0, v = 0 and |Fa| ≤ Fc (5.21)

Combining this with the equation of motion we see that Ff = Fa when v = 0 and
|Fa| ≤ Fc. Thus, for zero velocity, the friction force is a function of the force acting on
the mass. Define the saturation function sat(x, S) so that sat(x, S) = x when |x| ≤ S
and sat(x, S) = Ssgn(x) when |x| ≥ S.

The Karnopp friction model for Coulomb friction is given by

Ff =

½
sat(Fa, Fc) when v = 0
Fcsgn(v) else

(5.22)

Note that the computational input of the Karnopp model at the input port is Fa
when v = 0 and |Fa| ≤ Fc, and that the computational input changes to v when the
condition does no longer hold.

5.2.6 More on Karnopp’s friction model

The main contribution of Karnopp’s friction model is the handling of the sticking phe-
nomenon at zero speed. This can also be applied to other friction models with signum
terms. The model (5.10) which includes sticking and the Stribeck effect can be modeled
with Karnopp’s method with the friction force

Ff =

(
sat(Fa, Fc) when v = 0h
Fc + (Fs − Fc)e

−(v/vs)2
i
sgn(v) else

(5.23)

where Fa is the applied force and v is the velocity.
In simulations with Karnopp’s model there must be a switch between the two regimes

in (5.22) or (5.23). This requires some method for detecting that the velocity is zero.
Some simulation systems with variable-step integration methods will have event-detection
mechanisms that can be used for this purpose. This type of event detection is included
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in MATLAB and Simulink. This method is used in friction models in Modelica, where
the computational inputs are switched at zero velocity.
Alternatively, a dead-zone around zero velocity can be used where the velocity is

treated as is it were zero in the computation of the friction force. Then the friction
model (5.22 will be modified to

Ff =

½
sat(Fa, Fc) when |v| ≤ δ
Fcsgn(v) else

(5.24)

where the magnitude δ of the dead-zone will have to be selected depending on the size
of the time-step, and on the maximum acceleration that can be expected in the system.
The model (5.24) is straightforward to implement in MATLAB and Simulink. If the
friction model is used in an observer in a control system , then the time-step will have to
be fixed, and a dead-zone must be used. It is clear that the introduction of a dead-zone
will be an approximation that will introduce some error. However, the performance of
this solution is vastly superior to the naive implementation in (5.18) of the signum term,
and Karnopp’s model should be the standard way of modeling friction unless dynamic
phenomena like pre-sliding and frictional hysteresis are the dominant physical effects.

5.2.7 Passivity of static models

Friction in its very nature is a dissipative phenomenon as the friction force cause dis-
sipation of energy whenever the velocity is nonzero. An exception to this is elastic
deformation in the pre-sliding region where energy is stored as in a spring, and the sys-
tem will still be passive although energy is not dissipated. Because of this a friction
model should be passive in the sense that the system with velocity as input and friction
force as output should be passive to reflect the physics of the system. In this section we
establish the passivity properties of the static friction models.
For any of the static friction models presented above, the friction force Ff (v) is a

sector nonlinearity, that is Ff (v) satisfies

Ff (v) ∈ sector(k1, k2)⇐⇒ k1v
2 < Ff (v)v < k2v

2 (5.25)

A plot of the static model (5.13) is shown in Figure 5.5, and as can be seen Ff (v) is
located in the first and third quadrants, that is Ff (v) ∈ sector[0,∞). Moreover, by
studying Figure 5.5, it can be seen that

Ff (v) ∈ sector[k1,∞),where 0 < k1 ≤ Fv (5.26)

Calculating the power Ff (v)v for a static friction model where Ff (v) satisfies (5.26), and
integrating, we get Z T

0

Ff (v)vdt >

Z T

0

k1v
2dt,where 0 < k1 ≤ Fv (5.27)

It follows from (5.27), that the system with input v and output Ff is passive. This
result can be generalized to any sector nonlinearity. Karnopp’s model is identical to the
static models except at zero velocity. Therefore the integral

R T
0
Ff (v)vdt will be the

same as for the static methods. This implies that Karnopp’s model is passive. When the
dead-zone is included passivity cannot be established.
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5.3 Dynamic friction models

5.3.1 Introduction

There are two problems connected to the use of static friction models for simulation and
control applications. First, static models are dependent on the detection of zero velocity,
as the models rely on switching between different models at zero velocity. Second, static
models do not describe dynamic effects such as pre-sliding displacement, varying break
away force and frictional lag. Because of this, dynamic modes of friction have been
proposed.

5.3.2 The Dahl model

The model of Dahl (1968) was developed for the purpose of simulating control systems
with friction. A dynamic friction model can be developed by differentiating the friction
force with respect to time:

dF

dt
=

∂F

∂t
+

∂F

∂x

dx

dt
(5.28)

Then if ∂F/∂t = 0, the expression

dF

dt
=

dF

dx

dx

dt
(5.29)

is found. For small displacements the friction is determined by the pre-sliding elastic
deformation of the asperities. This can be modeled as a linear spring:

x¿ 1⇒ |F | = |σx| ¿ Fc (5.30)

with σ being the spring stiffness. For large displacements, the model should behave like
a Coulomb model. Dahl (1976) found that a model that satisfies this is given by

dF

dx
= σ

¯̄̄̄
1− F

Fc
sgn

dx

dt

¯̄̄̄α
sgn

µ
1− F

Fc
sgn

dx

dt

¶
= σ

µ
1− F

Fc
sgn

dx

dt

¶α
sgnα+1

µ
1− F

Fc
sgn

dx

dt

¶
(5.31)

By using the fact that F < Fc it follows that sgn
³
1− F

Fc
sgndx

dt

´
> 0, and (5.31) simplifies

to
dF

dx
= σ

µ
1− F

Fc
sgn

dx

dt

¶α
(5.32)

The constant α depends on the material of the solid, α ≥ 1 describe ductile type mate-
rials, while α < 1 describes brittle type materials. Applications of the model, however,
typically employ α = 1, so that

dF

dx
= σ

µ
1− F

Fc
sgn

dx

dt

¶
(5.33)

It follows from (5.33) that in steady state

Fss = Fcsgn
dx

dt
= Fcsgn(v) (5.34)
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which can be compared to (5.3). The Dahl model includes the phenomena Coulomb
friction and pre-sliding displacement. From (5.33) it is seen that for small displacements
the friction force can be approximated by F ≈ σx, which is the model of a linear spring
with σ being the spring stiffness. For large displacements the friction for can be approx-
imated by F ≈ Fc as for a static Coulomb model. However, as the model (5.33) is rate
independent, it is not capable of describing such phenomena as Stribeck-effect.
Combination of (5.29) and (5.33) then leads to the following result

The Dahl friction model is given by the dynamic model

dF

dt
= σ

µ
v − |v| F

Fc

¶
(5.35)

The Dahl model can be written in the form

dF

dt
= σ

|v|
Fc

(Ff − F ) (5.36)

where Ff = Fcsgn(v). This resembles a low pass filter where the computed friction force
F tracks the Coulomb friction Fcsgn(v) with a pole at |v|/Fc which corresponds to a time
constant T = Fc/|v|. The pole of the low pass filter tends to zero when the velocity tends
to zero, and this is advantageous in simulation as the apparent gain around zero is small
in spite of the step due to the signum function. However, this advantage does not come
for free. The low gain of the model at low speeds may create problems in the modeling of
the sticking regime. In particular, if the system (5.19) is excited by an oscillatory force
Fa where |Fa| < Fc, then the system may drift if the friction force Ff is modelled with
the Dahl model, although sticking would be expected from the physics of the system.
To conclude, the Dahl model is very simple to implement compared to Karnopp’s

model as there is no switching in the Dahl model. Moreover, there are no problems with
oscillations around zero velocity with Dahl’s model. However, the model may give drift
in the sticking region, so for models where correct sticking behavior is important it is
recommended to use Karnopp’s model.

Example 75 It is interesting to note that the differential equation in (5.33) can be solved
explicitly. Assuming Fc to be a constant and considering only forward motion, that is
ẋ > 0, we find by integrating (5.33) thatZ

dF

σ
³
1− F

Fc

´ =

Z
dx

This gives

−Fc
σ

ln

µ
σ − σ

Fc
F

¶
= x + C0 (5.37)

where C 0 is a constant of integration, and where it has been assumed that F < Fc. Solving
for F we find that

F = Fc − FcC
00

σ
e−

σ
Fc

x

where C00 is another constant. Finally, by using the fact that F (0) = 0, we find thatC 00 =
σ, and consequently Dahl’s friction model for forward speed can be written in the form

F = Fc

³
1− e−

σ
Fc

x
´

(5.38)
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Figure 5.6: The Dahl friction model for positive and negative velocity.

By doing the same calculations for ẋ < 0, we find that

F = Fcsgn(v)
³
1− e−

σ
Fc

xsign(v)
´

(5.39)

which is shown for Fc = 2 and σ = 0.5 in Figure 5.6.

5.3.3 Passivity of the Dahl model

For dynamic Dahl model the friction force is given by

dF

dt
= σ0

µ
v − F |v|

Fc

¶
, Fc > 0

we consider the storage function

V =
F 2

2σ0

The time derivative along the solutions of the system is

V̇ =
1

σ0
FḞ = Fv − F 2 |v|

Fc
(5.40)

It is seen that for the Dahl model the system with input v and output F is passive.

5.3.4 The Bristle and LuGre model

The Bristle model to friction was introduced by (Haessig, Jr. and Friedland 1991). The
basic assumption behind the Bristle friction model is that asperity junctions can be
modeled of elastic bristles as shown in Figure 5.7. As the surfaces move relative to each
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v

z

Figure 5.7: The asperity junctions of two bodies in contact are modeled as elastic bristles.
For simplicity, only the upper body is moving in this figure, and the bristles of the lower
body are assumed rigid.

other the strain in the bond increases and the bristles acts as springs giving rise to the
friction force. The force is given by

F =
NX
i=1

σ0 (xi − bi) (5.41)

where N is the number of bristles, σ0 is the stiffness of the bristles, xi is the relative
position of the bristle and bi is the location where a bond was formed. In simulations, a
bond will snap when |xi − bi| = δs, and then a new will be formed at a random location
relative to the previous location. The complexity of this model increases with N . The
stiffness of the bristles σ0 can be made velocity dependent. An interesting property of
this model is that it attempts to capture the random nature of friction. However, it is
inefficient in simulations due to its complexity. Also it may give rise to oscillatory motion
in stick due to the lack of damping. The LuGre (Lund-Grenoble ) model (Canudas de
Wit, Olsson, Åström and Lischinsky 1995) is based on the same idea as the bristle
model, but the friction force is generated by a dynamic equation reminiscent of the Dahl
model describing the average deflection of the bristles, thereby reducing the complexity
introduced by the sum in (5.41).

The LuGre dynamic friction model is given by the dynamic system

ż = v − σ0
|v|
g(v)

z (5.42)

where the function g(v) is selected to be

σ0g(v) = Fc + (Fs − Fc)e
−(v/vs)2 (5.43)

to account for stiction and the Stribeck effect as in (5.10). The friction force is given by

F = σ0z + σ1ż + σ2v. (5.44)



204 CHAPTER 5. FRICTION

The following property of the model is noted: It is seen from (5.42) that the model
for z can be written

ż =
|v|
g(v)

[g(v)sgn(v)− σ0z] (5.45)

From this formulation it is seen that if the initial value of z satisfies |σ0z(0)| ≤ gmax,
where gmax is the maximum value of g(v), then the absolute value of the state z(t) is
upper bounded according to

|σ0z(t)| ≤ gmax (5.46)

It is also noted that
Fc ≤ σ0g(v) ≤ Fs (5.47)

It is seen that the stationary solution of (5.42) is

zss = g(v)sgn(v). (5.48)

This shows that the therm σ2v in (5.44) will tend to represent stiction and the Stribeck
effect, while σ2v term will represent viscous friction. The is characterized by the six
parameters σ0, σ1, σ2, vs, Fs and Fc. By comparing the LuGre model with the Dahl
model as given by (5.35) it is clear that the LuGre model is a generalization of the Dahl
model, where the Dahl model appears in the case that σ0z = F , σ1 = σ2 = 0 and
g(v) = Fc. The LuGre model has the potential of being more accurate than the Dahl
model as it includes the Stribeck effect, and as it may represent frictional lag. As with
the Dahl model the LuGre model may drift in the sticking region.

5.3.5 Passivity of the LuGre model

To find out if the model is passive from velocity v to friction force F we follow the
procedure of (Barabanov and Ortega 2000) and investigate the integralZ T

0

vFdt =

Z T

0

σ0vzdt +

Z T

0

v

µ
σ1

dz

dt
+ σ2v

¶
dt (5.49)

The first term on the right side corresponds to the Dahl part of the LuGre model. We
find that this term is not problematic asZ T

0

σ0vzdt =

Z T

0

σ0z

µ
ż + σ0

|v|
g(v)

z

¶
dt

=
σ0
2

£
z2(T )− z2(0)

¤
+

Z T

0

z2σ0
|v|
g(v)

dt

≥ −σ0
2
z2(0) (5.50)

The second term on the right side of (5.49) is somewhat more involved. We find thatZ T

0

v

µ
σ1

dz

dt
+ σ2v

¶
dt =

Z T

0

v

µ
(σ1 + σ2) v − σ1

|v|
g(v)

σ0z

¶
dt (5.51)

Using (5.46) we find thatZ T

0

v

µ
σ1

dz

dt
+ σ2v

¶
dt ≥

Z T

0

v2
µ

(σ1 + σ2)− σ1
gmax
gmin

¶
dt (5.52)
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This implies that the LuGre model is passive from v to F if

(σ1 + σ2)− σ1
gmax
gmin

≥ 0⇒ σ1 ≤ σ2
gmin

gmax − gmin
(5.53)

Insertion of the maximum and minimum values of g according to (5.47) leads to the
conclusion that the LuGre model is passive if

σ1 ≤ σ2
Fc

Fs − Fc
(5.54)

In (Barabanov and Ortega 2000) it was shown that this is a necessary and sufficient
condition for passivity from v to F .

5.3.6 The Elasto-Plastic model

The LuGre model does not render true stiction. Therefore a new dynamic friction model
was proposed in (Dupont, Hayward, Armstrong and Altpeter 2002) with the aim of
having a model that accounts for both true stiction and pre-sliding. The model is a
generalization of the LuGre model. The model is written

ż = v

µ
1− α(z, v)

σ0sgn(v)

g(v)
z

¶i
(5.55)

F = σ0z + σ1
dz

dt
+ σ2v (5.56)

and the term α(z, v), which is the new feature of the model when compared to LuGre,
is used to render true stiction. The piecewise continuous function α(z, v) is defined as

α(z, v) =


 0 |z| ≤ zb

0 < α < 1 zb < |z| < zmax(v)
1 |z| ≥ zmax(v)

, sgn(v) = sgn(z)

0 , sgn(v) 6= sgn(z)

, (5.57)

where

0 < zb < zmax(v) =
g(v)

σ0
,∀v ∈ R. (5.58)

An example of the term α(z, v) is

α(z, v) =




0 |z| ≤ zb

1
2 sin

µ
π
z−
³
zmax+zb

2

´
zmax−zb

¶
+ 1

2 zb < |z| < zmax(v)

1 |z| ≥ zmax(v)

, sgn(v) = sgn(z)

0 , sgn(v) 6= sgn(z)

In the Elasto-Plastic model, the body displacement

x = z + w.

is decomposed into its elastic and plastic (inelastic) components z and w. Stiction cor-
responds to the existence of a breakaway displacement zb > 0 such that for |z| ≤ zb all
motion of the friction interface consists entirely of elastic displacement. In this context,
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elastic displacement z corresponds to pre-sliding displacement and plastic (inelastic) dis-
placement w corresponds to sliding displacement. The choice of α(z, v) = 0, |z| ≤ zb
in (5.57), directly implies that the Elasto-Plastic model has a true stiction phase. The
Elasto-Plastic model is relatively complicated to implement. Therefore it is recommended
to use Karnopp’s model if the objective is to have a model with true stiction, and accurate
modeling of pre-sliding is not important, which normally will be the case. However, for
problems of very high accuracy where pre-sliding is the dominant frictional phenomenon
the Elasto-Plastic model can be used.

5.3.7 Passivity of the Elasto-Plastic model

As the Elasto-Plastic model differs from the LuGre model only in the inclusion of the
term α(z, v) in (5.55), the passivity analysis of the LuGre applies. It follows that the
system with input v and output F will be passive provided that

σ1 ≤ σ2
Fc

Fs − Fc
(5.59)
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Chapter 6

Rigid body kinematics

6.1 Introduction

Rigid body dynamics is important for a wide range of control applications, and is essential
in robot control, ship control, the control of aircraft and satellites, and vehicle control
in automotive systems. The field of rigid body dynamics is old and is very rich in
results. Important results date back to Newton in the 17th century, Euler in the 18th
century and Lagrange, Hamilton and Rodrigues in the 19th century. Because of the
development in control applications like robotics, aerospace, and the development in
numerical simulation, the selection of topics and method to be presented in rigid body
dynamics has developed quite a lot the last two decades, and this text attempts to reflect
this change. The material is based on general texts like (Kane and Levinson 1985) and
(Robertson and Schwertassek 1988), texts on spacecraft dynamics like (Kane, Likins and
Levinson 1983) and (Hughes 1986), and robotics books like (Spong and Vidyasagar 1989)
and (Sciavicco and Siciliano 2000).

6.2 Vectors

6.2.1 Vector description

Forces, torques, velocities and accelerations are well-known entities that can be described
by vectors. A vector �u can be described by its magnitude |�u| and its direction. Note that

x1
a1

a2

a3

x2

x3

Figure 6.1: The coordinate frame a.

209
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n

u

v



Figure 6.2: Vectors �u, �v and �n.

this description of a vector does not rely on the definition of any coordinate frame. In
this respect the description may be said to be coordinate-free. Alternatively, a Cartesian
coordinate frame can be introduced, and the vector can be described in terms of its
components in the Cartesian coordinate frame. Let the Cartesian coordinate frame a
be defined by three orthogonal unit vectors �a1, �a2 and �a3 that are unit vectors along
the x1, x2, x3 axes of a (Figure 6.1). Then the vector �u can be expressed as a linear
combination of the orthogonal unit vectors �a1, �a2 and �a3 by

�u = u1�a1 + u2�a2 + u3�a3 (6.1)

where
ui = �u · �ai, i ∈ {1, 2, 3} (6.2)

are the unique components or coordinates of �u in a. A related description of the vector is
the coordinate vector form where the coordinates of the vector are written as a column
vector

u =

 u1
u2
u3

 (6.3)

6.2.2 The scalar product

The scalar product between two vectors �u and �v is given in the coordinate-free description
by

�u · �v = |�u||�v| cos θ (6.4)

where θ is the angle between the two vectors (Figure 6.2). With reference to the frame
a we may then represent the vectors �u and �v by their coordinate vectors

u =

 u1
u2
u3

 , v =

 v1
v2
v3

 (6.5)

where ui = �u · �ai and vi = �v · �ai. The scalar product in terms of coordinate vectors is

�u · �v = (u1�a1 + u2�a2 + u3�a3) · (v1�a1 + v2�a2 + v3�a3)

= u1v1 + u2v2 + u3v3

= uTv

where it is used that �ai ·�aj = δij which is equal to unity when i = j and zero otherwise.
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The scalar product can be written in the three alternative forms

�u · �v =
3X

i=1

uivi = uTv (6.6)

6.2.3 The vector cross product

The vector cross product is given in the coordinate-free form by

�u× �v = �n|�u||�v| sin θ (6.7)

where 0 ≤ θ ≤ π and �n is a unit vector that is orthogonal to both �u and �v and defined
so that (�u,�v, �n) forms a right-hand system (Figure 6.2).
With reference to a Cartesian frame a the vector cross product can be evaluated from

�w = �u× �v =

¯̄̄̄
¯̄ �a1 �a2 �a3
u1 u2 u3
v1 v2 v3

¯̄̄̄
¯̄ (6.8)

In component form this may alternatively be expressed by introducing the permutation
symbol

εijk =

 1 when i, j, k is a cyclic permutation
−1 when i, j, k is not a cyclic permutation
0 when i = j, i = k or j = k

(6.9)

Here, as the indices {i, j, k} is a cyclic permutation if they are equal to {1, 2, 3}, {2, 3, 1}
or {3, 1, 2}, and not a cyclic permutation if they are {1, 3, 2}, {2, 1, 3} or {3, 2, 1}. It is
noted that the definition implies that

εijk = −εjik = −εikj (6.10)

εijk = εjki = εkij (6.11)

Then the components of �w = �u× �v are given by

wi =
3X

j=1

3X
k=1

εijkujvk (6.12)

and the vector may be written

�w =
3X
i=1

3X
j=1

3X
k=1

εijk�aiujvk (6.13)

In coordinate vector notation we introduce the skew-symmetric form of the coordinate
vector u defined by

u× :=

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 (6.14)

Then the vector cross product can be written in coordinate vector form as

w = u×v =

 u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1
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We sum up this result with the following three equivalent representations of the vector
cross product:

The vector cross product has the following three equivalent representations:

�w = �u× �v ⇔ wi =
3X

i=1

3X
j=1

3X
k=1

εijkujvk ⇔ w = u×v (6.15)

Example 76 Orthogonal unit vectors �a1,�a2,�a3 satisfy

�ai · �aj = δij =

½
1, when i = j
0, when i 6= j

(6.16)

and

�a1 × �a2 = �a3, �a1 × �a3 = −�a2 (6.17)

�a2 × �a3 = �a1, �a2 × �a1 = −�a3 (6.18)

�a3 × �a1 = �a2, �a3 × �a2 = −�a1 (6.19)

Example 77 The relation between the components of the skew symmetric form u×and
the vector form of u can be expressed in terms of the permutation symbol as¡

u×
¢
ik

= εijkuj (6.20)

uj =
1

2
εijk

¡
u×
¢
ik

(6.21)

Example 78 For three arbitrary vectors �a,�b,�c the vector cross product satisfies

�a× (�b× �c) = �b�a · �c− �a ·�b�c (6.22)

This can be shown by calculation of the components on both sides. Let a, b, and c be the
coordinate representations of �a, �b and �c in some coordinate frame. The coordinate form
of (6.22) is

a×b×c = baT c− aTbc = (baT − aTbI)c (6.23)

which implies
a×b× = baT − aTbI (6.24)

In particular we note that
a×a× = aaT − aTaI. (6.25)

Example 79 From (6.25) it follows that

a×a×a× = a×
¡
aaT − aTaI

¢
= − ¡aTa

¢
a× (6.26)

where it is used that a×a = 0. In particular, if k is a unit vector, then kTk = 1, and

k×k×k
×

= −k× (6.27)
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Example 80 Let �a, �b and �c be three arbitrary vectors. The Jacobi identity is written

�a× (�b× �c) +�b× (�c× �a) + �c× (�a×�b) = �0 (6.28)

This identity is established from (6.22) which gives

�b�a · �c− �a ·�b�c+ �c�b · �a−�b · �c�a + �a�c ·�b− �c · �a�b = �0 (6.29)

The coordinate form of the Jacobi identity is

a×b×c + b×c×a + c×a×b = 0 (6.30)

Example 81 The Jacobi identity implies that

(�a×�b)× �c = �a× (�b× �c)−�b× (�a× �c) (6.31)

In coordinate form this is written

(a×b)×c = a×b×c− b×a×c (6.32)

which implies that
(a×b)× = a×b× − b×a× (6.33)

Example 82 The following problem is investigated: To what extent can the vector �v be
determined when

�w = �u× �v (6.34)

and �w and �u are given? In coordinate form this is written

w = u×v (6.35)

The skew symmetric matrix u× is singular, which is obvious from the identity �u× �u = �0
which implies that u×u = 0. This means that it is not possible to solve for v. However,
it is possible to find two equations for �v. First, it is clear that �w · �v = 0, which means
that �v is in the plane orthogonal to �w. Second, it is found that

�w =
�w

|�w| sin θ|�u||�v|⇒ |�v| = |�w|
|�u| sin θ (6.36)

This shows that if the angle θ between �u and �v is selected to be some value, then the
length of �v is given by (6.36).

6.3 Dyadics

6.3.1 Introduction

The idea of using vectors in mathematical modelling of physical systems is well known.
Also the use of column vectors to represent vectors is easy to accept. In analogy with
this it turns out that certain matrices can be the representation of physical quantities
described by pairs of vectors. Such matrices play an important role in rigid body dy-
namics and fluid mechanics, and it is worthwhile to invest some time in developing the
required formalism.
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6.3.2 Introductory example: The inertia dyadic

The angular momentum of a rigid body about its center of mass, which will be discussed
in great detail in Section 7.3.2, can be written in coordinate-free form as a vector �h, or it
may be written in terms of its coordinates as a column vector h or the generic component
hi, where

�h =
3X

i=1

hi�ai, h =

 h1
h2
h3

 (6.37)

Likewise the angular velocity can be represented by a vector �ω, by a column vector ω,
or by the generic component ωi, where

�ω =
3X
i=1

ωi�ai, ω =

 ω1
ω2
ω3

 (6.38)

A standard result in rigid body dynamics (Section 7.3.2) is that the angular momentum
can be expressed by the angular velocity according to the two alternative formulations

h = Mω, hi =
3X

j=1

mijωj (6.39)

where M = {mij} is the inertia matrix of the rigid body about its center of mass. The
first formulation gives the relation between the column vectors h and ω, and the other
formulation presents the relation between the generic components hi and ωj . At this
stage one might wonder: Is there a corresponding equation for the relation between �h
and �ω in coordinate-free form? This turns out to be the case, but to be able to do this
we need to introduce the concept of a dyadic, which is the sum of pairs of vectors. We
define the inertia dyadic by

�M :=
3X

i=1

3X
j=1

mij�ai�aj (6.40)

Note that �ai�aj is a pair of vectors which should not be confused with the scalar product
�ai · �aj . Consider the following calculation:

�M · �ω =
3X
i=1

3X
j=1

mij�ai�aj ·
3X

k=1

ωk�ak

=
3X
i=1

3X
j=1

3X
k=1

mij�ai (�aj · ωk�ak)

=
3X
i=1

3X
j=1

mijωj�ai (6.41)

Here we have used the result �aj ·�ak = δjk. Comparing with (6.37) and (6.39) we see that
this implies that

�h = �M · �ω (6.42)

which is the relation between �h and �ω in vector notation. This result is equivalent to the
expressions in (6.39). We note that the dyadic �M represents the same physical quantity
as the inertial matrix M and the components mij . We conclude that:
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The angular momentum vector �h can be expressed by the angular velocity vector �ω with
the three equivalent formulations

�h = �M · �ω ⇔ h = Mω ⇔ hi =
3X

j=1

mijωj (6.43)

where �M is the inertia dyadic and M is the inertia matrix, which is the matrix represen-
tation of the inertia dyadic.

6.3.3 Matrix representation of dyadics

We define the dyadic �D to be a linear combination of pairs of vectors �ai�aj given by

�D =
3X

i=1

3X
j=1

dij�ai�aj (6.44)

where
dij = �ai · �D · �aj (6.45)

are the components of the dyadic �D in frame a. The matrix

D = {dij} (6.46)

is said to be the the matrix representation of the dyadic �D in frame a. Scalar premul-
tiplication with a vector, that is the scalar product of the vector �u with the dyadic �D
gives a vector according to

�w = �u · �D =
3X

k=1

uk�ak ·
3X
i=1

3X
j=1

dij�ai�aj

=
3X

i=1

3X
j=1

dijui�aj (6.47)

Scalar postmultiplication with a vector, which is the scalar product of a dyadic with a
vector gives the vector

�z = �D · �u =
3X

i=1

3X
j=1

dij�ai�aj ·
3X

k=1

uk�ak (6.48)

=
3X
i=1

3X
j=1

dijuj�ai (6.49)

We define the column vectors w = (w1, w2, w3)
T and z = (z1, z2, z3)

T corresponding to
the vectors �w and �z. We may then write the equivalent expressions

�w = �u · �D ⇔ wT = uTD (6.50)

�z = �D · �u ⇔ z = Du (6.51)
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The identity dyadic is defined by

�I :=
3X

i=1

3X
j=1

δij�ai�aj = �a1�a1 + �a2�a2 + �a3�a3 (6.52)

where δij is equal to unity when i = j, and zero otherwise. This implies that for any
vector �u

�I · �u = �u · �I = �u (6.53)

and for any dyadic �D we have
�I · �D = �D · �I = �D (6.54)

The equivalent matrix form of these equations are

Iu =
¡
uT I

¢T
= u (6.55)

ID = DI = D (6.56)

Example 83 Let �ω be a vector and let �M be a dyadic. Define the scalar

K =
1

2
�ω · �M · �ω (6.57)

which is defined independently of any coordinate frame. Let �ω be given in the a frame by
�ω = ω1�a1 + ω2�a2 + ω3�a3, and let the dyadic be given by

�M =
3X

i=1

3X
j=1

mij�ai�aj. (6.58)

Then the quadratic form is found to be

K =
1

2

3X
i=1

3X
j=1

ωiωjmij (6.59)

The corresponding representation in matrix form is given by

K =
1

2
ωTMω (6.60)

where M = {mij} is the matrix representation of the dyadic �M .

Example 84 Consider the dyadic �K := �k�k. Let �w be an arbitrary vector. Then

�w · �K = (�w · �k)�k and �K · �w = �k(�k · �w) (6.61)

The coordinate form is

wTK = wTkkT and Kw = kkTw (6.62)

It follows that the matrix form of �K = �k�k is

K = kkT (6.63)
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Example 85 The dyadic form of the vector cross product is

�u× �v = �u× · �v = �u · �v× (6.64)

where

�u× =
3X
i=1

3X
j=1

3X
k=1

εijkuj�ai�ak (6.65)

is the dyadic form of the skew symmetric form u×, and

�v× =
3X
i=1

3X
j=1

3X
k=1

εijkvj�ai�ak (6.66)

We may then check that

�u× · �v =
3X
i=1

3X
j=1

3X
k=1

εijkuj�ai�ak ·
3X

p=1

vp�ap =
3X
i=1

3X
j=1

3X
k=1

εijk�aiujvk = �u× �v (6.67)

�u · �v× =
3X

p=1

up�ap ·
3X

i=1

3X
j=1

3X
k=1

εijkvj�ai�ak =
3X
i=1

3X
j=1

3X
k=1

εijk�akuivj (6.68)

=
3X
i=1

3X
j=1

3X
k=1

εkij�akuivj =
3X

i=1

3X
j=1

3X
k=1

εijk�aiujvk = �u× �v (6.69)

The skew symmetric form used in the coordinate vector form is consistent with (6.64) as

u×v =− v×u =
¡
v×
¢T

u =
¡
uTv×

¢T
(6.70)

This shows that the matrix representation of cross product dyadic �u× is the skew sym-
metric form u×.

Example 86 The dyadic form of the triple cross product (6.22) is

�a× ·�b× · �c =
h
�b�a− (�a ·�b�I)

i
· �c (6.71)

and it follows that
�a× ·�b× = �b�a− �a ·�b�I (6.72)

In particular, we note that
�a× · �a× = �a�a− �a · �a�I (6.73)

Example 87 The triple scalar product satisfies³
�d× �a

´
· �w = �d · (�a× �w)

for any vectors �d, �a and �w, and it follows from (6.71) that³
�d× �a

´
·
³
�b× �c

´
= �d ·

³
�a×

³
�b× �c

´´
= �d ·

³
�a · �c�I − �c�a

´
·�b (6.74)

The same result could have been obtained using³
�d× �a

´
·
³
�b× �c

´
= −

³
�d× �a

´
·
³
�c×�b

´
= −�d · �a× · �c× ·�b = −�d · ¡�a× · �c×¢ ·�b (6.75)

In the development of the kinetic energy for a rigid body the following special case will be
used:

(�ω × �r) · (�ω × �r) = �ω ·
³
�r · �r�I − �r�r

´
· �ω = −�ω · ¡�r× · �r×¢ · �ω (6.76)
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Figure 6.3: Frames a and b.

6.4 The rotation matrix

6.4.1 Coordinate transformations for vectors

It was shown that a vector can be described in terms of its component in a coordinate
frame a with orthogonal unit vectors �a1,�a2,�a3. Dynamic models for use in robotics, car
dynamics, aerospace, marine systems, and navigation typically involve several Cartesian
frames, so that a vector may have to be described in more than one frame. To investigate
this we introduce a second coordinate frame b with orthogonal unit vectors�b1,�b2,�b3 along
the axes. A vector �v may then be represented with respect to any of the systems a and
b. We use the notation

�v =
3X

i=1

vai �ai and �v =
3X
i=1

vbi
�bi (6.77)

where
vai = �v · �ai (6.78)

are the coordinates of �v in a, and
vbi = �v ·�bi (6.79)

are the coordinates of �v in b. To distinguish the column vectors of coordinates in frame
a from the column vector of coordinates in frame b we write

va =

 va1
va2
va3

 and vb =

 vb1
vb2
vb3

 (6.80)

where superscript a denotes that the vector is given by the the coordinates in a, and the
superscript b denotes that the vector is given by the coordinates in b.
To find the relation between the coordinate vectors va and vb in frames a and b the

following calculation is used:

vai = �v · �ai = (vb1
�b1 + vb2

�b2 + vb3
�b3) · �ai

=
3X

j=1

vbj

³
�ai ·�bj

´
(6.81)

This leads to the following result:
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The coordinate transformation from frame b to frame a is given by

va = Ra
bv

b (6.82)

where
Ra
b = {�ai ·�bj} (6.83)

is called the rotation matrix from a to b. The elements rij = �ai ·�bj of the rotation matrix
Ra
b are called the direction cosines.

We see that the rotation matrix from a to b transforms a coordinate vector in b to
a coordinate vector in a. Because of this the matrix may also be called the coordinate
transformation matrix from b to a.

6.4.2 Properties of the rotation matrix

The rotation matrix has a number of useful properties that will be discussed in this
section. First it is noted that the rotation matrix from b to a can be found in the same
way as the rotation matrix from a to b by simply interchanging a and b in the expressions.
This gives

Rb
a = {�bi · �aj} (6.84)

For all vb we have
vb = Rb

av
a = Rb

aR
a
bv

b (6.85)

This implies that
Rb
aR

a
b = I, (6.86)

and it follows that
Rb
a = (Ra

b )
−1 (6.87)

A comparison of the elements in the matrices in (6.83) and (6.84) leads to the conclusion
that Rb

a = (Ra
b )
T . Combining these results we arrive at the first result:

The rotation matrix is orthogonal and satisfies

Rb
a = (Ra

b )
−1

= (Ra
b )
T (6.88)

Consider a vector �p with coordinate vector pa in frame a. Define the vector �q defined
by its coordinate vector

qa = Ra
bp

a (6.89)

Note that the vector �q is defined by the vector �p and the rotation matrix Ra
b . The

coordinate vector qb in b is according to the usual coordinate transformation rule

qb = Rb
aq

a = Rb
aR

a
bp

a = pa (6.90)

which means that the coordinates of �q in b are equal to the coordinates of �p in a. This
is the second result: The rotation matrix from a to b rotates the vector �p to the vector
�q so that qb = pa.
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The rotation matrix Ra
b from a to b has two interpretations:

1. Let the vector �v have coordinate vector vb in b and coordinate vector va in a. Then
the rotation matrix Ra

b transforms the coordinate vector in b to the coordinate
vector in a according to

va = Ra
bv

b (6.91)

In this equation Ra
b acts as a coordinate transformation matrix.

2. The vector �p with coordinate vector pa in a is rotated to the vector �q with coordi-
nate vector qb = pa by

qa = Ra
bp

a (6.92)

In this equation Ra
b acts as a rotation matrix.

As a special case of this the rotation matrix rotates the orthogonal unit vectors
�a1,�a2,�a3 in a to the orthogonal unit vectors �b1,�b2,�b3 in b which is seen from

aa1 = bb1 =

 1
0
0

 , aa2 = bb2 =

 0
1
0

 and aa3 = bb3 =

 0
0
1

 (6.93)

Moreover, from bai = Ra
ba

a
i it follows that the columns of the rotation matrix are the

coordinate vectors bai of �bi in frame a, that is

Ra
b =

¡
ba1 ba2 ba3

¢
(6.94)

which is the third result.
The determinant of the rotation matrix Ra

b is found by direct calculation to be

detRa
b = r11(r22r33 − r32r23) + r21(r32r13 − r12r33) + r31(r12r23 − r22r13)

= (ba1)
T
h
(ba2)

× ba3

i
= (ba1)

T ba1 = 1

where it is used that (ba2)
× ba3 = ba1 , and that ba1 is a unit vector. We have then shown

the fourth result: The rotation matrix has a determinant equal to unity, that is

detRa
b = 1 (6.95)

Finally, the set SO(3) is defined. We have established that the rotation matrix
is orthogonal and has a determinant equal to unity. The set of all matrices that are
orthogonal and with a determinant equal to unity is denoted by SO(3), that is,

SO(3) = {R|R ∈ R3×3, RTR = I and detR = 1} (6.96)

Here R3×3 is the set of all 3 × 3 matrices with real elements. A matrix R is a rotation
matrix if and only if it is an element of the set SO(3).

6.4.3 Composite rotations

The rotation from frame a to a frame c may be described a a composite rotation made
up by a rotation from a to b, and then a rotation from b to c. The transformation of vc
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b3 a3
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Figure 6.4: A rotation by an angle φ around �a1.

to b and to a is given by

vb = Rb
cv

c

va = Ra
cv

c

Combining these two equations we get

va = Ra
bv

b = Ra
bR

b
cv

c

This shows that:

The rotation matrix of a composite rotation is the product of the rotation matrices:

Ra
c = Ra

bR
b
c

This shows that the rotation matrix for the composite rotation Ra
c is simply the

product of the rotation matrices Ra
b from a to b and Rb

c from b to c. It is straightforward
to extend this result to the composite rotation of three or more rotations. In the case of
three rotations we have

Ra
d = Ra

bR
b
cR

c
d (6.97)

6.4.4 Simple rotations

A rotation about a fixed axis is called a simple rotation. We will here derive the rotation
matrices corresponding to simple rotations about the x, y and z axes. Consider a rotation
by an angle φ about the xa axis from a frame a to a frame b. The resulting rotation
matrix is denoted Rx(φ). In the same way we define Ry(θ) to be the rotation by an
angle θ about the y axis, and Rz(ψ) to be the rotation by an angel ψ about the z axis.
For the rotation Rx(φ) we see from Figure 6.4 that �a1 = �b1, so that �a1 ·�b1 = 1, while

�a1 ·�b2 = �a1 ·�b3 = �a2 ·�b1 = �a3 ·�b1 = 0 (6.98)

�a2 ·�b2 = cosφ, �a3 ·�b3 = cosφ (6.99)

�a3 ·�b2 = sinφ, �a2 ·�b3 = − sinφ (6.100)
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In the same way we can find the elements of the matrices Ry(θ) and Rz(ψ). This results
in

Rx(φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (6.101)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (6.102)

Rz(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (6.103)

6.4.5 Coordinate transformations for dyadics

A coordinate vector can be transformed from a frame a to a frame b through multipli-
cation with the rotation matrix. An important property of dyadics is that the matrix
representation transform from frame a to frame b with a similarity transformation using
the rotation matrix. The dyadic �D can be expressed in frames a and b by

�D =
3X
i=1

3X
j=1

daij�ai�aj =
3X

p=1

3X
q=1

dbpq
�bp�bq (6.104)

where daij are the components in frame a and dbpq are the components in frame b. The
matrix representation in the two frames are denoted

Da = {daij}, Db = {dbij} (6.105)

Let the vector �z be given by
�z = �D · �u (6.106)

Then, in frames a and b this may be written in matrix form as

za = Daua, zb = Dbub (6.107)

We then find that

Daua = za = Ra
bz

b = Ra
bD

bub = Ra
bD

bRb
au

a (6.108)

and, since ua is arbitrary, this implies that

The matrix representation of a dyadic transforms by a similarity transform with the
rotation matrix according to

Da = Ra
bD

bRb
a (6.109)

Example 88 In rigid body dynamics a frame b with orthogonal unit vectors �b1,�b2,�b3 is
fixed in the rigid body. Then the inertia dyadic can be written

�M =
3X
i=1

3X
j=1

mb
ij
�bi�bj (6.110)
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and the corresponding matrix representation is

Mb =
©
mb
ij

ª
(6.111)

An important result in rigid body dynamics is that when frame b is fixed in the rigid body,
and therefore moves with the rigid boy, then Mb is a constant matrix. In contrast to this,
the matrix representation Ma in a stationary coordinate frame a will be given by

Ma = Ra
bM

bRb
a (6.112)

Example 89 The relation between the skew symmetric forms of a vector is given by¡
ub
¢×

vb = wb = Rb
aw

a = Rb
a (ua)

×
va = Rb

a (ua)
×

Ra
bv

b (6.113)

which implies that ¡
ub
¢×

= Rb
a (ua)

×
Ra
b (6.114)

that is, the skew symmetric form of the vector ua transforms to frame b by a similarity
transformation. This is a consequence of the fact that (ua)× is the matrix representation
of the dyadic �u×.

6.4.6 Homogeneous transformation matrices

By now we are familiar with the notion of a rotation matrix which specifies the orien-
tation of a coordinate frame with respect to some other frame. To extend our set of
mathematical tools we introduce the concept of a homogeneous transformation matrix
which is a matrix that describes the position and orientation of a coordinate frame with
respect to a reference frame. To be precise we consider a frame a and a frame b, and let
Ra
b be the rotation matrix from a to b, while raab is the position in a coordinates of the

origin of frame b relative to the origin of frame a.

The position and orientation of frame b relative to frame a is given by the homogeneous
transformation matrix

Ta
b=

µ
Ra
b raab

0T 1

¶
∈ SE(3) (6.115)

Here the set SE(3) is the Special Euclidean Group of dimension 3 defined by

SE(3) =

½
T | T =

µ
R r
0T 1

¶
, R ∈ SO(3), r ∈ R3

¾
(6.116)

The inverse of Ta
b is found by matrix inversion to be

(Ta
b )
−1 =

µ
(Ra

b )
T − (Ra

b )
T raab

0T 1

¶
=

µ
Rb
a rbba

0T 1

¶
= Tb

a (6.117)

This means that

(Ta
b )
−1 = Tb

a (6.118)
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Composite homogenous transformation matrices give

Ta
bT

b
c =

µ
Ra
b raab

0T 1

¶µ
Rb
c rbbc

0T 1

¶
=

µ
Ra
bR

b
c raab + Ra

br
b
bc

0T 1

¶
=

µ
Ra
c raac

0T 1

¶
= Ta

c (6.119)

We conclude that
Ta
c = Ta

bT
b
c (6.120)

Example 90 In the description of robotic manipulators, a coordinate frame is fixed to
each link of the arm. The manipulator is made up by rigid bodies called links that are
connected by joints. Each joint is assumed to have one degree of freedom that is either a
translation or a rotation. In a typical manipulator design with rotary joints we may think
of link 1 as the torso that is connected to the upper arm (link 2) by a shoulder joint with a
horizontal axis of rotation. The upper arm is in turn connected to the lower arm (link 3)
by an elbow joint. The lower arm is connected with the robot hand (joint 6) trough three
rotary joints that form the robotic wrist. In general, the base frame 0 is fixed to the floor,
frame 1 is fixed to the first link, frame 2 to the second link and so on, and for a six link
manipulator frame 6 is fixed to the robot hand. The position and orientation of frame
i+ 1 relative to frame i can then be specified in terms of a homogeneous transformation
matrix

Ti
i+1 =

µ
Ri
i+1 rii,i+1
0T 1

¶
(6.121)

and the position and orientation of the hand is given by

T0
6 =

µ
R0
6 r006

0T 1

¶
(6.122)

which is computed from
T0
6 = T0

1T
1
2 . . .T

5
6. (6.123)

In the Denavit-Hartenberg convention the transformation from frame i to frame i + 1 is
given by the Denavit-Hartenberg parameters αi, ai, di, θi according to

Ti
i+1 =

µ
Rz (θi) 0

0T 1

¶µ
I aie1 + die3

0T 1

¶µ
Rx (αi) 0

0T 1

¶
=

µ
Rz (θi)Rx (αi) aiRz (θi) e1 + die3

0T 1

¶
(6.124)

where e1 = (1, 0, 0)
T and e3 = (0, 0, 1)

T . The joint variable is di for translational joints
and θi for rotational joints.

6.5 Euler angles

6.5.1 Introduction

A rotation matrix describes the orientation of a frame b with respect to a frame a.
The rotation matrix is a 3 × 3 matrix with nine elements. The orthogonality of the
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Figure 6.5: Roll-pitch-yaw Euler angles.

matrix gives six constraints on the elements of the matrix, so that there are only three
independent parameters that describes the rotation matrix. Therefore, it is of great
interest to investigate if it is possible to find three parameters that give a parameterization
of the rotation matrix.
A widely used set of parameters for the rotation matrix is the Euler angles. In this

description the rotation matrix is given as a composite rotation of selected combinations
of rotations about the x, y and z axes. There are many possible permutations of x, y and
z rotations, and a description of this is given in (Kane et al. 1983). Here we will present
the two sets of Euler angles that are the most often seen, namely the roll-pitch-yaw
angles, and the classical Euler angles.

6.5.2 Roll-pitch-yaw

The Euler angles of the roll-pitch yaw type are commonly used to describe the motion of
rigid bodies that move freely, like aeroplanes, spacecraft, ships and underwater vehicles.
The rotation from a to b is described as a rotation ψ about the za axis, then a rotation θ
about the current (rotated) y axis, and finally a rotation φ about the current (rotated)
x axis as shown in Figure 6.5. The resulting rotation matrix is

Ra
b = Rz(ψ)Ry(θ)Rx(φ) (6.125)

This formulation is very useful as it makes it possible to describe the rotation of
e.g. an airplane as a sequence of a roll rotation about the longitudinal axis of the plane,
then a pitch rotation about a lateral axis of the plane, and finally a yaw rotation about
the vertical axis of the plane. Obviously, it is easier to interpret this sequence of simple
rotations angle than a rotation matrix.
To derive and remember the expression (6.125) it is convenient to use the rotation

matrix interpretation of the simple rotations Rz(ψ), Ry(θ) and Rx(φ). In this interpre-
tation the rotation from a to b is in the same sequence as the matrices are written in
(6.125), namely, first Rz(ψ), then Ry(θ), and finally Rx(φ). Note that in a coordinate
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Figure 6.6: Classical Euler angles.

transformation interpretation the matrix Ra
b transforms a vector vb to a vector va ac-

cording to va = Ra
bv

b = Rz(ψ)Ry(θ)Rx(φ)vb. Then the vector vb is first transformed
by Rx(φ), then by Ry(θ) and finally by Rz(ψ).

6.5.3 Classical Euler angles

The classical Euler angles are used to describe the rotation of rigid bodies that are
connected to a fixed base by three joints. Typically this involves robotic wrist joints,
platforms stabilized by gyroscopes in inertial navigation, and pointing devices. In this
description the rotation consists of a rotation ψ about the za axis, then a rotation θ
about the current (rotated) y axis, and finally a rotation φ about the current (rotated)
z axis as shown in Figure 6.6. The resulting rotation matrix is

Ra
b = Rz(ψ)Ry(θ)Rz(φ) (6.126)

6.6 Angle-axis description of rotation

6.6.1 Introduction

In the previous section it was shown that the rotation matrix can be represented by
Euler angles, which are very useful in some applications. In particular this is the case
for a robotic wrist joint where the hand is connected to the arm through three rotational
joints. Also in ship dynamics it is convenient to describe the rotation of the ship in
terms of the Euler angles roll, pitch and yaw. Likewise airplane dynamics rely on a
characterization based on the roll angle, the pitch angle and the sideslip angle, which are
the Euler angles from the wind frame to the airplane frame. The motivation for this is
that the forces acting on the plane are functions of these Euler angles. However, in many
other applications involving rotation there is no clear physical motivation for introducing
Euler angles. The use of Euler angles in the equations of motion may then introduce
complicated expressions with inherent singularities. There are alternative descriptions
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of rotation that avoid these problems, and that are well suited for simulation as well as
for controller design and analysis. On background of this it may be argued that Euler
angles have been over-emphasized in the dynamics literature. In the following we will
study the angle-axis parametrization of the rotation, which is a very useful tool in the
development of kinematic models and equations of motion for use in control systems.

6.6.2 Angle-axis parameters

A rotation matrix Ra
b is orthogonal with determinant equal to unity. It can be shown

(Angeles 1988), (McCarthy 2000) that this implies that one of the eigenvalues to the
matrix is equal to one, and that the corresponding unit eigenvector k satisfies

Ra
bk = k (6.127)

This purely algebraic result can be given a geometric interpretation which is the basis for
the angle-axis parameterization of the rotation matrix Ra

b . The geometric interpretation
that will be used is that the eigenvector k is the coordinate vector of a unit vector �k,
where �k is defined by its coordinate vector

ka = k (6.128)

in frame a. The transformation rule

ka = Ra
bk

b (6.129)

then implies that
ka = kb = k (6.130)

which means that �k has the same coordinates in frames a and b. It is therefore possible
to describe the rotation from a to b as a simple rotation by an angle θ about the vector
�k which is fixed in both a and b. On background of this (θ,�k) is called the angle-axis
parameterization of the rotation matrix Ra

b . Note that this gives four parameters and
one constraint equation, namely the angle θ plus the three coordinates of the unit vector
�k, and the constraint equation �k · �k = 1.

6.6.3 Derivation of rotation dyadic

We will here derive the expression for the rotation matrix given by the angle θ and the
vector �k. The derivation is taken from (Kane et al. 1983). It was shown in Section 6.4.2
that the rotation matrixRa

b rotates a vector �p in a to a vector �q in b so that the coordinates
of �p in a are equal to the coordinates of �q in b. This result is used to find an expression
for the rotation matrix Ra

b in terms of θ and �k. We will do this by deriving an expression
where �q is given by �p, θ and �k. To simplify the derivation two additional frames c and d
are used where Ra

c = Rb
d.

Consider two frames c and d that initially coincide. Let �c1,�c2,�c3 be the orthogonal
unit vectors in c, and let �d1, �d2, �d3 be the orthogonal unit vectors in d. The frames are
selected so that �c3 = �d3 = �k. Frame d is obtained by rotating frame c by an angle θ
about �k as shown in Figure 6.7. Let the vector �p be a fixed vector in frame c, and let the
vector �q be a fixed vector in frame d so that �p and �q coincide before the rotation. Then
it is possible to express �q after the rotation by �p, θ and �k.
The vectors �p and �q can be written

�p = x�c1 + y�c2 + z�k (6.131)
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Figure 6.7: Rotation of the vector �p by an angle θ around the �k vector.

and
�q = x�d1 + y�d2 + z�k (6.132)

The unit vectors �d1 and �d2 can be written

�d1 = cos θ�c1 + sin θ�c2 (6.133)
�d2 = − sin θ�c1 + cos θ�c2 (6.134)

and insertion into (6.132) gives

�q = (x cos θ − y sin θ)�c1 + (x sin θ + y cos θ)�c2 + z�k (6.135)

Consider the calculation

cos θ�p+ sin θ�k × �p+ (1− cos θ)�k�k · �p
= cos θ(x�c1 + y�c2 + z�k)− sin θ(−x�c2 + y�c1) + (1− cos θ)z�k

= (x cos θ − y sin θ)�c1 + (x sin θ + y cos θ)�c2 + z�k (6.136)

where it is used that �c1×�k = −�c2, �c2×�k = �c1, and that �p·�k = z. It follows by comparison
with (6.135) that

�q = cos θ�p+ sin θ�k × �p+ (1− cos θ)�k�k · �p
=

³
cos θ�I + sin θ�k× + (1− cos θ)�k�k

´
· �p (6.137)

6.6.4 The rotation dyadic

The rotation of the vector �p to the vector �q as given by (6.137) can be written in the
dyadic form

�q = �Rk,θ · �p (6.138)
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where
�Rk,θ = cos θ�I + sin θ�k× + (1− cos θ)�k�k (6.139)

is the rotation dyadic of the angle-axis description. Now, recall that �q is obtained by
rotating �p according to qa = Rb

ap
a, which in combination with (6.138) implies that the

rotation matrix Rb
a is the matrix representation of the rotation dyadic �Rk,θ in a. This

leads to the result

The rotation matrix Ra
b can be described as a rotation by an angle θ about a unit vector

�k where Ra
b is given by

Ra
b = cos θI + sin θ(ka)× + (1− cos θ)ka(ka)T (6.140)

This is the angle-axis parameterization of the rotation matrix.

Using the standard transformation rule and the identities (ka)×ka = 0 and (ka)Tka =
1 gives

ka = Ra
bk

b = kb (6.141)

which shows that the rotation vector �k has the same coordinates in a and b.

Example 91 Inserting ka = (kx ky kz)
T we get

Ra
b =

 k2xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ
kxkyvθ + kzsθ k2yvθ + cθ kykzvθ − kxsθ
kxkzvθ − kysθ kykzvθ + kxsθ k2zvθ + cθ

 (6.142)

where the notation sθ = sin θ, cθ = cos θ and vθ = 1−cθ is used to simplify the expression.
Example 92 Suppose that the rotation axis is given by �k = �a3, which means that ka =
(0, 0, 1)T . Then the matrix representation of �Rk,θ in a is

Ra
b =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 = Rz,θ (6.143)

which is to be expected as this is a rotation by an angle θ about the z axis.

Example 93 As �Rk,θ is a dyadic and �k = �c3, it follows from the transformation rule
(6.109) that

Ra
b = Ra

cRz,θR
c
a (6.144)

6.6.5 Rotation matrix

We use the notation Rk,θ = Ra
b and k = ka so that the rotation matrix is written

Rk,θ := cos θI + k× sin θ + kkT (1− cos θ) (6.145)

An alternative expression is found by inserting the identity

k×k× = kkT − kTkI = kkT − I. (6.146)

which gives
Rk,θ = I + k× sin θ + k×k×(1− cos θ) (6.147)

The inverse to the rotation matrix is

(Ra
b )
T = Rb

a = Rk,−θ. (6.148)
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Example 94 The derivative of Rk,θ with respect to θ is found from (6.147) to be

dRk,θ

dθ
= k× cos θ + k×k× sin θ (6.149)

Using (6.27) we find that

k×Rk,θ = k× + k×k× sin θ − k×(1− cos θ) (6.150)

and we may conclude that
d

dθ
Rk,θ = k×Rk,θ (6.151)

Example 95 It is known that the differential equation d
dtx = Ax has the solution x(t) =

x(0) exp(At) when A is a constant matrix. When k is a constant vector the solution of
(6.151) is found in the same way to be

Rk,θ = exp[k×θ] (6.152)

as Rk,θ(θ = 0) = I.

Example 96 The matrix exponential exp(A) for a quadratic matrix A is defined by

exp(A) = I + A +
1

2!
A2 +

1

3!
A3 . . . (6.153)

The result (6.152) can be derived directly from (6.147). First we use (6.27) to establish
the identity

(k×)2n+1 = (−1)nk× (6.154)

by induction. This is done by noting that (6.27) implies that (6.154) is true for n = 1,
and moreover, for n = 1, 2, . . . we have

(k×)2n+1 = (−1)nk× ⇒ (k×)2(n+1)+1 = (−1)nk×(k×)2 = (−1)n(−1)k×. (6.155)

Then we may evaluate exp[k×θ] directly from the definition (6.153), and find that

exp[k×θ] = I + k×θ + (k×)2
θ2

2!
+ (k×)3

θ3

3!
+ (k×)4

θ4

4!
+ (k×)5

θ5

5!
+ (k×)6

θ6

6!
. . .

= I + k×[θ + k×
θ2

2!
] + (k×)3[

θ3

3!
+ k×

θ4

4!
] + (k×)5[

θ5

5!
+ k×

θ6

6!
] . . .

= I + k×[θ + k×
θ2

2!
]− k×[

θ3

3!
+ k×

θ4

4!
] + k×[

θ5

5!
+ k×

θ6

6!
] . . .

= I + k×[θ − θ3

3!
+

θ5

5!
. . .]− (k)2 [

θ2

2!
− θ4

4!
+

θ6

6!
. . .]

= I + k× sin θ +
¡
k×
¢2

(1− cos θ) (6.156)

This shows in view of (6.147) that

Rk,θ = exp[k×θ] (6.157)

which is in agreement with the previously derived result (6.152).
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6.7 Euler parameters

6.7.1 Definition

The Euler parameters were introduced by Euler in 1770, and are essentially the same as
the unit quaternions that were devised by Hamilton in on October 16, 1843, and which
involved the definition of a complex number with one real part and three imaginary parts.
The Euler parameters have no singularities, and give rational expressions for the rotation
matrix as opposed to the angle/axis parameters, which lead to trigonometric terms in
the expressions for the rotation matrix. The Euler parameters are of particular use in the
numerical simulation of rotation, and in stability analysis of attitude control systems.
The Euler parameters are defined in terms of the angle-axis parameters θ and �k, and

are given by the scalar η and the vector �� defined by

η = cos
θ

2
, �� = �k sin

θ

2
(6.158)

In coordinate form this is written

η = cos
θ

2
, ² = k sin

θ

2
(6.159)

We note that

η2 +�� ·�� = η2 + ²T ² = cos2
θ

2
+ sin2

θ

2
= 1 (6.160)

Insertion of the trigonometric identities

sin θ = 2 sin
θ

2
cos

θ

2
(6.161)

cos θ = cos2
θ

2
− sin2

θ

2
= 2 cos2

θ

2
− 1 = 1− 2 sin2

θ

2
(6.162)

into (6.145) makes it possible to express the rotation matrix Rk,θ in terms of the Euler
parameters Rk,θ = Re(η, ²), where

Re(η, ²) = (η2 − ²T ²)I + 2²²T + 2η²× (6.163)

= (2η2 − 1)I + 2²²T + 2η²× (6.164)

= (1− 2²T ²)I + 2²²T + 2η²× (6.165)

Here it is used that η2 = cos2 θ
2 , ²

T ² = sin2 θ
2 and sin θ

2 cos θ
2k

× = η²×. From (6.165)
and (6.146) an alternative form of the rotation matrix is found.

The rotation matrix is given by the corresponding Euler parameters according to

Re(η, ²) = I + 2η²× + 2²×²× (6.166)

A given rotation will correspond to two sets of Euler parameters (η, �) and (−η,−�) with
opposite signs as

Re(−η,−²) = Re(η, ²) (6.167)

The inverse of Re(η, �) given by

Re(η, ²)
T = Re(η,−²) (6.168)

corresponds to the Euler parameters (η,−�).
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Example 97 From (6.165) and (6.160) we find that

TraceR = 3(η2 − ²T ²) + 2²T ² = 4η2 − 1 (6.169)

6.7.2 Quaternions

The vector

p =

µ
η
²

¶
(6.170)

of Euler parameters can be treated as a unit quaternion vector. This makes it possible
to introduce a wealth of techniques and analysis tool from the theory of quaternions.
In the following, the necessary background on quaternions will be presented, and this
will be specialized to unit quaternions representing a rotation matrix through its Euler
parameters.
A quaternion is represented by a vector

q =

µ
α
β

¶
(6.171)

of dimension 4 where α is the scalar part and β = (β1, β2, β3)
T is the vector part.

The quaternion product between two quaternion vectors q1 = (α1 βT1 )T and q2 =
(α2 βT2 )T in R4 is defined byµ

α1
β1

¶
⊗
µ

α2
β2

¶
=

µ
α1α2 − βT1 β2

α1β2 + α2β1 + β×1 β2

¶
(6.172)

where α1, α2 ∈ R and β1,β2 ∈ R3.

Example 98 The commutator of the quaternion product is given byµ
α1
β1

¶
⊗
µ

α2
β2

¶
−
µ

α2
β2

¶
⊗
µ

α1
β1

¶
= 2

µ
0
β1

¶
⊗
µ

0
β2

¶
(6.173)

where it is used that β×1 β2 = −β×2 β1.

Example 99 Define the matrices

F(q) =

µ
α −βT
β αI + β×

¶
∈ R4×4 (6.174)

E(q) =

µ
α −βT
β αI− β×

¶
∈ R4×4 (6.175)

The matrix F(q) represents quaternion pre-multiplication with q in the sense that for
any u ∈ R4

q⊗ u = F(q)u (6.176)

while E(q) represents quaternion post-multiplication with q in the sense that

u⊗ q = E(q)u (6.177)
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Example 100 The concept of quaternions was introduced by Hamilton who got the idea
on the 16th of October 1843 while he was walking with his wife to the Royal Irish Academy
(der Waerden 1976). In Hamilton’s formulation the quaternion was written

q = α+ iβ1 + jβ2 + kβ3 (6.178)

where i, j and k are imaginary units satisfying

i2 = j2 = k2 = −1 (6.179)

ij = −ji = k, jk = −kj = i, ki = −ik = j (6.180)

It is interesting to see that the quaternion is actually an extension of complex numbers
z = a + ib where i2 = −1. The complex numbers form a division algebra, which means
that if z1 and z2 are complex numbers, then the sum z1 + z2, the difference z1 − z2,
and the product z1z2 are complex numbers, and likewise z1/z2 is a complex number if
z2 6= 0. In addition, the magnitudes or moduli satisfy |z| = |z1||z2|, which is referred to
as the law of the moduli. Hamilton had for a long time attempted to extend the theory
of complex numbers to triplets a + ib + jc where i and j are imaginary units, but he
was unable to achieve a division algebra that satisfy the law of the moduli. Hamilton’s
great idea was then to introduce one more complex unit, which resulted in the quaternion
a+ ib+jc+dk, which lead to a division algebra where the law of the moduli was satisfied.
It is now established that this is possible for dimensions 1, 2, 4 and 8, so the attempt
to do this for triplets could not have succeeded. Hamilton’s formulation of the product
of quaternions is based on the rules for the imaginary units i, j and k. In this setting
the quaternion vectors q1 = (α1, β11, β12, β13)

T and q2 = (α2, β21, β22, β23)
T can be

represented by the quaternion numbers (Samson, Borgne and Espiau 1991)

q1 = α1 + iβ11 + jβ12 + kβ13 (6.181)

q2 = α2 + iβ21 + jβ22 + kβ23 (6.182)

Then the product of q1 and q2 is found to be

q1q2 = (α1 + iβ11 + jβ12 + kβ13) (α2 + iβ21 + jβ22 + kβ23)

= α1α2 − β11β21 − β12β22 − β13β23
+i (α1β21 + α2β11 + β12β23 − β13β22)

+j (α1β22 + α2β12 + β13β21 − β11β23)

+k (α1β23 + α2β13 + β11β22 − β12β21) (6.183)

We see that this product of quaternion numbers satisfy

q = q1q2 (6.184)

where
q = α+ iβ1 + jβ2 + kβ3 (6.185)

corresponds to the quaternion vector q = q1 ⊗ q2 as defined in (6.172).

6.7.3 Unit quaternions

A unit quaternion

p =

µ
η
²

¶
(6.186)
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is a quaternion with unit length, that is, a quaternion that satisfies

pTp = η2 + ²T ² = 1 (6.187)

We see that if η and ² are Euler parameters, then p is a unit quaternion corresponding
to the rotation matrix Rη,�. The unit quaternion corresponding to R−1η,� = Rη,−� is the
inverse unit quaternion p̄ defined by

p̄ =

µ
η
−²

¶
(6.188)

The unit quaternion corresponding to the identity matrix R1,0 = I is the identity quater-
nion pid defined by

pid =

µ
1
0

¶
(6.189)

6.7.4 The quaternion product for unit quaternions

The quaternion product of two unit quaternions p1 and p2 is a unit quaternion

p := p1 ⊗ p2 =

µ
η1η2 − ²T1 ²2

η1²2 + η2²1 + ²×1 ²2

¶
(6.190)

This is shown by direct computation of pTp which gives

pTp = η21η
2
2 − 2η1η2²

T
1 ²2 + (²T1 ²2)

2 + η21²
T
2 ²2 + 2η1η2²

T
2 ²1 + η22²

T
1 ²1 − ²T2 ²×1 ²×1 ²2

= (η21 + ²T1 ²1)(η
2
2 + ²T2 ²2) = 1

where it is used that ²×1 ²2 is orthogonal to ²1 and ²2, ²
×
1 ²

×
1 = ²1²

T
1 −²T1 ²1I, η21+²T1 ²1 = 1

and η22 + ²T2 ²1 = 1.
It is straightforward to check that the quaternion product of p and the inverse p̄ is

the identity quaternion, that is,

p⊗ p̄ = p̄⊗ p = pid (6.191)

This follows from

p⊗ p̄ =

µ
η
²

¶
⊗
µ

η
−²

¶
=

µ
η2 + ²T ²

η²− η²− ²×²
¶

=

µ
1
0

¶
= pid (6.192)

In the same way it can be shown that p̄⊗ p = pid.
We may also verify that

p⊗ pid = pid ⊗ p = p (6.193)

Example 101 The unit quaternion satisfies

ṗ⊗ p̄ =

µ
η̇
²̇

¶
⊗
µ

η
−²

¶
=

µ
0

−η̇²+ η²̇+ ²×²̇

¶
(6.194)

where we have used

η̇η + ²̇T ² =
1

2

d

dt

¡
η2 + ²T ²

¢
= 0 (6.195)

This result is used in the derivation of the kinematic differential equation for unit quater-
nions.

Example 102 The time derivative of the inverse unit quaternion is found from

p⊗ p̄ = pid ⇒ ṗ⊗ p̄ + p⊗ ˙̄p = 0 (6.196)

which implies
˙̄p = −p̄⊗ ṗ⊗ p̄ (6.197)
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6.7.5 Rotation by the quaternion product

Let R := Re(η, ²) be the rotation matrix corresponding to the Euler parameters η and
². Let v ∈R3 be an arbitrary vector. We are already familiar with the notion that Rv
is either the coordinate vector of the vector v in some other frame, or it is a rotation of
the vector v.
The transformationRv can be achieved with the Euler parameters and the quaternion

product according to µ
0

Rv

¶
=

µ
η
²

¶
⊗
µ

0
v

¶
⊗
µ

η
−²

¶
(6.198)

This is shown by direct computation of the quaternion products:µ
η
²

¶
⊗
µ

0
v

¶
⊗
µ

η
−²

¶
=

µ
η²Tv − η²Tv− ²T ²×v

η2v + 2η²×v + ²²Tv + ²×²×v

¶
=

µ
0

(I + 2η²× + 2²×²×)v

¶
=

µ
0

Rv

¶
(6.199)

where we have used (²×)2 = ²²T − ²T ²I and η2 + ²T ² = 1.
We will now see how composite rotations can be expressed in terms of unit quater-

nions. Let
R1 = Re(η1, ²1) and R2 = Re(η2, ²2) (6.200)

and let
R = R1R2 = Re(η, ²). (6.201)

be the composite rotation where p = (η ²T )T , p1 = (η1 ²
T
1 )T and p2 = (η2 ²

T
2 )T .

Let u be an arbitrary vector, and define v := R2u and w := R1v = Ru. Thenµ
0
v

¶
= p2 ⊗

µ
0
u

¶
⊗ p2 (6.202)µ

0
w

¶
= p1 ⊗

µ
0
v

¶
⊗ p1 = p1 ⊗ p2 ⊗

µ
0
u

¶
⊗ p2 ⊗ p1 (6.203)

At the same time we have w = R1R2u = Ru which givesµ
0
w

¶
= p⊗

µ
0
u

¶
⊗ p (6.204)

Comparing these results we find that the Euler parameters η, ² corresponding to the
composite rotation R is given by

p = p1 ⊗ p2 (6.205)

which can also be written

η = η1η2 − ²T1 ²2 (6.206)

² = η1²2 + η2²1 + ²×1 ²2 (6.207)
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Example 103 We see that
RRT = I (6.208)

is consistent with
p⊗ p̄ = pid (6.209)

Moreover,
RI = IR = R (6.210)

is seen to be consistent with

p⊗ pid = pid ⊗ p = pid (6.211)

Example 104 Let F(·) and E(·) be the matrices corresponding to pre-multiplication and
post-multiplication, respectively, as defined in (6.174) and (6.175) Thenµ

0
Rv

¶
= p⊗

µ
0
v

¶
⊗ p̄ (6.212)

can be written µ
0

Rv

¶
= F(p)

µ
0
v

¶
⊗ p̄ = F(p)E(p̄)

µ
0
v

¶
(6.213)

This leads to one more formula for the rotation matrix:

R =
¡ −² ηI + ²×

¢ ¡ −² ηI− ²× ¢T
(6.214)

6.7.6 Euler parameters from the rotation matrix

The problem to be solved in this section is how to find the Euler parameters η, ² when
the rotation matrix R = {rij} is given. This is done using a method due to Shepperd
(Shepperd 1978).
The rotation matrix is given in terms of the Euler parameters by (6.165):

R = Re(η, ²) =

 η2 + �21 − �22 − �23 2(�1�2 − η�3) 2(�1�3 + η�2)
2(�1�2 + η�3) η2 − �21 + �22 − �23 2(�2�3 − η�1)
2(�1�3 − η�2) 2(�2�3 + η�1) η2 − �21 − �22 + �23

 (6.215)

In addition, η2 + �21 + �22 + �23 = 1. The following notation is introduced to simplify the
algorithms:

z =


z0
z1
z2
z3

 := 2


η
�1
�2
�3

 (6.216)

T := r11 + r22 + r33 = TraceR (6.217)

and
r00 := T (6.218)

This gives the symmetric set of equations

z20 = 1 + 2r00 − T (6.219)

z21 = 1 + 2r11 − T (6.220)

z22 = 1 + 2r22 − T (6.221)

z23 = 1 + 2r33 − T (6.222)
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that appear from the diagonal elements of R, while the off-diagonal terms give the
equations

z0z1 = r32 − r23 z2z3 = r32 + r23 (6.223)

z0z2 = r13 − r31 z3z1 = r13 + r31 (6.224)

z0z3 = r21 − r12 z1z2 = r21 + r12 (6.225)

The algorithm is as follows:

1. Find the largest element in {r00, r11, r22, r33}. This element is denoted rii.

2. Compute
|zi| =

p
1 + 2rii − T (6.226)

3. Determine the sign of zi from some criterion, like continuity of solution, or η > 0.

4. Find the remaining zj from the three equations out of (6.223—6.225) that have as
the left side zjzi for all j 6= i. For example, if z0 was found under step 2 and 3,
then the remaining zj are found from

z1 = (r32 − r23)/z0 (6.227)

z2 = (r13 − r31)/z0 (6.228)

z3 = (r21 − r12)/z0 (6.229)

5. Compute η = z0/2 and �i = zi/2.

Note that this algorithm avoids division by zero as the division is done with the zi
that has the largest absolute value.

6.7.7 The Euler rotation vector

The Euler rotation vector
e = k sin θ ∈ R3 (6.230)

is defined from the angle-axis parameters (k,θ) . From (6.145) it is seen that the rotation
matrix Rk,θ and its transpose RT

k,θ are given by

Rk,θ = e× + cos θI + kkT (1− cos θ) (6.231)

RT
k,θ = −e× + cos θI + kkT (1− cos θ) (6.232)

which implies that

e× =
1

2

¡
Rk,θ −RT

k,θ

¢
(6.233)

From this we see that if Rk,θ = {rij}, then the Euler rotation vector can be found from

e =
1

2

 r32 − r23
r13 − r31
r21 − r12

 (6.234)

We note that if Rk,θ = Ra
b , then

e = ea = eb (6.235)

as Rk,θk = k.
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Example 105 In robot control the desired orientation of the robot hand may be specified
to be

Rd =
¡

nd sd ad
¢ ∈ SO(3) (6.236)

Suppose that the actual orientation of the robot hand is

R =
¡

n s a
¢ ∈ SO(3) (6.237)

where n is the normal vector, s is the slide vector and a is the approach vector of the
hand (Spong and Vidyasagar 1989), (Sciavicco and Siciliano 2000). Then the deviation
of R from Rd is given by the rotation matrix eR = {r̃ij} which is defined byeR := RRT

d ⇒ R = eRRd (6.238)

The component form of this equation is

r̃ij = nindj + sisdj + aiadj (6.239)

If an angle-axis parameters of eR are
³ek,θ̃´ and ee = eksinθ̃ is the associated Euler rotation

vector, then (6.234) gives

ee =
1

2

 r̃32 − r̃23
r̃13 − r̃31
r̃21 − r̃12


=

1

2

 n3nd2 − n2nd3
n1nd3 − n3nd1
n2nd1 − n1nd2

+
1

2

 s3sd2 − s2sd3
s1sd3 − s3sd1
s2sd1 − s1sd2

+
1

2

 a3ad2 − a2ad3
a1ad3 − a3ad1
a2ad1 − a1ad2


Using the definition of the vector cross product the Euler rotation vector ee corresponding
to the deviation eR can be written

ee =
1

2
(n×d n + s×d s + a×d a) (6.240)

6.7.8 Euler-Rodrigues parameters

The Euler-Rodrigues parameters are defined by (Hughes 1986)

ρ = k tan
θ

2
(6.241)

This can be expressed in terms of the Euler parameters according to

ρ =
²

η
(6.242)

It is evident that the Euler-Rodrigues parameters are undefined when η = 0 ⇔ θ =
π + 2kπ where k ∈ {. . .− 1, 0, 1 . . .}.
The derivations that follows use the relation

1 = η2 + ²T ² = η2(1 + ρTρ) (6.243)

which implies

η2 =
1

1 + ρTρ
(6.244)
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Then
R = I +

2

1 + ρTρ
[ρ× + ρ×ρ×] (6.245)

is found from (6.166). We note that there are no trigonometric terms in (6.245).
The Euler-Rodrigues parameters can be found from the rotation matrix using

ρ =
²

η
=

e

2η2
=

1

TraceR + 1

 r32 − r23
r13 − r31
r21 − r12

 (6.246)

where (6.234) and (6.169) are used.
Next we will derive Cayley’s formula (Angeles 1988) from equation (6.245). To do

this we need some algebraic manipulations. First we observe that ρ×ρ× = ρρT − ρTρI
implies that

ρ×ρ×ρ× = − ¡ρTρ¢ρ× (6.247)

Using this result and (6.245) we find that

R
¡
I− ρ×¢ =

·
I +

2

1 + ρTρ

¡
ρ× + ρ×ρ×

¢¸ ¡
I− ρ×¢ = I + ρ× (6.248)

This leads to the following result:

The rotation matrix can be given by Cayley’s formula

R =
¡
I + ρ×

¢ ¡
I− ρ×¢−1 (6.249)

where ρ is the vector of Euler-Rodrigues parameters corresponding to R.

The Cayley transformation cay(u) ∈ SO(3) maps a three-dimensional vector u into
a rotation matrix according to

cay(u) : =

·
I +

1

2
u×
¸ ·

I− 1

2
u×
¸−1
∈ SO(3) (6.250)

This transformation is used in numerical integrators in attitude problems (Lewis and
Simo 1994). In particular it is well suited for the implementation of the implicit mid-
point rule for the integration of the rotation matrix. We note that

R = cay (2ρ) (6.251)

and that
cay(kθ) ≈ Rk,θ, θ small (6.252)

6.8 Angular velocity

6.8.1 Introduction

If the position vector r is given in an inertial frame, then the velocity vector v = ṙ
is known to be the rate of change of the position vector r. In the same way we would
like to have some physical entity that describes the rate of change of a rotation matrix
Ra
b . This is not quite as simple as for the case of position and velocity. However, the
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rotation matrix can be described by three independent variables, and this indicates that
there might be some entity that represents the time derivative of the rotation matrix
using three parameters. We will in the following analyze this problem, and arrive at the
definition of the angular velocity vector �ω, which represents the time derivative of the
rotation matrix.

6.8.2 Definition

The rotation matrix Ra
b is orthogonal and satisfies

Ra
b (R

a
b )
T = I (6.253)

Time differentiation of the matrix product gives

d

dt

£
Ra
b (R

a
b )
T
¤

= Ṙa
b (R

a
b )
T + Ra

b (Ṙ
a
b )
T = 0 (6.254)

From this equation it is seen that the matrix Ṙa
b (R

a
b )
T is skew symmetric. Now, any skew

symmetric 3×3 matrix can be seen as the skew symmetric form of a column vector. This
means that it is possible to define a vector so that its skew symmetric form is equal to
Ṙa
b (R

a
b )
T . It is quite remarkable that this vector can be given a physical interpretation,

and that it is of fundamental importance in dynamics.

Let the vector �ωab be defined by requiring that its coordinate form ωa
ab in frame a satisfies

(ωa
ab)

× = Ṙa
b (R

a
b )
T (6.255)

The vector �ωab is said to be the angular velocity vector of frame b relative to frame a.

A kinematic differential equation for the rotation matrix Ra
b appears from the defini-

tion of the angular velocity by post-multiplication of (6.255) with Ra
b . Moreover, using

the coordinate transformation rule (ωa
ab)

× = Ra
b (ω

b
ab)

×Rb
a for the skew symmetric form

of a vector an alternative formulation of the kinematic differential equation is found.

The kinematic differential equation of the rotation matrix is given by the two alternative
forms

Ṙa
b = (ωa

ab)
×Ra

b (6.256)

Ṙa
b = Ra

b (ω
b
ab)

× (6.257)

6.8.3 Simple rotations

Using the rotation matrices Rx(φ), Ry(θ) and Rz (ψ) of the simple rotations about the
x, y and z axes, we define the angular velocitiesh

ωx(φ̇)
i×

: = Ṙx(φ)RT
x (φ) (6.258)h

ωy(θ̇)
i×

: = Ṙy(θ)R
T
y (θ) (6.259)h

ωz(ψ̇)
i×

: = Ṙz(ψ)RT
z (ψ) (6.260)
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From the definitions it is clear that ωx(φ̇) is the angular velocity of a rotation by an
angular rate φ̇ about the x axis, ωy(θ̇) is the angular velocity of a rotation by an angular
rate θ̇ about the y axis, and ωz(ψ̇) is the angular velocity of a rotation by an angular
rate ψ̇ about the z axis. From (6.101) we find thath

ωx(φ̇)
i×

= φ̇

 0 0 0
0 − sinφ − cosφ
0 cosφ − sinφ

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (6.261)

=

 0 0 0

0 0 −φ̇
0 φ̇ 0

 (6.262)

In the same way we may compute
h
ωy(θ̇)

i×
and

h
ωz(ψ̇)

i×
. This results in

ωx(φ̇) =

 φ̇
0
0

 , ωy(θ̇) =

 0

θ̇
0

 , and ωz(ψ̇) =

 0
0

ψ̇

 (6.263)

Consider the angle-axis parameterization when k = ka is a constant vector and

Ra
b = Rk,θ = I + k× sin θ + k×k×(1− cos θ) (6.264)

Then the angular velocity is

(ωa
ab)

× = θ̇
¡
k× cos θ + k×k× sin θ

¢ ¡
I− k× sin θ + k×k×(1− cos θ)

¢
= θ̇

£
k× cos θ + k×k× sin θ − k×k× cos θ sin θ + k× sin2 θ

−k×
¡
cos θ − cos2 θ

¢
+ k×k× cos θ sin θ − k×k× sin θ

¤
= θ̇k× (6.265)

This shows that:

For a simple rotation, the angular velocity vector �ωab is along the axis of rotation �k, and
is given by

�ωab = θ̇�k (6.266)

This gives an intuitively appealing interpretation of the angular velocity. If the axis
of rotation is not constant, then the expressions become somewhat more involved.

6.8.4 Composite rotations

Consider the composite rotation Ra
d = Ra

bR
b
cR

c
d. The time derivative of R

a
d is, according

to the product rule,
Ṙa
d = Ṙa

bR
b
cR

c
d + Ra

bṘ
b
cR

c
d + Ra

bR
b
cṘ

c
d (6.267)

and the transpose is (Ra
d)
T = (Rc

d)
T ¡Rb

c

¢T
(Ra

b )
T . Then the angular velocity of the

composite rotation is

(ωa
ad)

× = Ṙa
d (Ra

d)
T

=
³
Ṙa
bR

b
cR

c
d + Ra

b Ṙ
b
cR

c
d + Ra

bR
b
cṘ

c
d

´
(Rc

d)
T ¡

Rb
c

¢T
(Ra

b )
T

= Ṙa
b (Ra

b )
T

+ Ra
bṘ

b
c

¡
Rb
c

¢T
(Ra

b )
T

+ Ra
cṘ

c
d (Rc

d)
T

(Ra
c )
T

= (ωa
ab)

× + Ra
b (ω

b
bc)

× (Ra
b )
T + Ra

c (ω
c
cd)

× (Ra
c )
T

= (ωa
ab)

× + (ωa
bc)

× + (ωa
cd)

× (6.268)
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This implies that the angular velocities �ωab, �ωbc and �ωcd can be added vectorially.

The angular velocity of the composite rotation matrix Ra
d = Ra

bR
b
cR

c
d is the sum of the

angular velocities according to

�ωad = �ωab + �ωbc + �ωcd (6.269)

Example 106 In a gimbal system for inertial navigation the rotation matrix from the
vehicle frame b to the instrumented platform frame p will be

Rb
p = Rz(ψ)Ry(θ)Rx(φ) (6.270)

which corresponds to the angular velocity vector

ωb
bp = ωz(ψ̇) + Rz(ψ)ωy(θ̇) + Rz(ψ)Ry(θ)ωx(φ̇) (6.271)

6.8.5 Differentiation of coordinate vectors

A coordinate vector is differentiated with respect to time by differentiating the compo-
nents of the vector with respect to time:

u̇a :=
d

dt
(ua) =

d

dt

 ua1
ua2
ua3

 =

 u̇a1
u̇a2
u̇a3

 (6.272)

The relation between the time derivative in frame a and the time derivative in frame
b is found by differentiating the equation

ua = Ra
bu

b (6.273)

which gives
u̇a = Ra

b u̇
b + Ṙa

bu
b (6.274)

Insertion of Ṙa
b = Ra

b (ω
b
ab)

× gives the relation

u̇a = Ra
b

£
u̇b + (ωb

ab)
×ub

¤
(6.275)

6.8.6 Differentiation of vectors

Differentiation of a vector �u must be done with reference to some reference frame. The
time derivative of the vector �u = ua1�a1 + ua2�a2 + ua3�a3 referenced to frame a is defined by

ad

dt
�u := u̇a1�a1 + u̇a2�a2 + u̇a3�a3 (6.276)

where the leading superscript a on the time differentiation operator denotes that the
differentiation is taken with reference to frame a. The time derivative referenced to
frame b is

bd

dt
�u = u̇b1

�b1 + u̇b2
�b2 + u̇b3

�b3 (6.277)
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where it is assumed that �u = ub1
�b1 + ub2

�b2 + ub3
�b3. The corresponding column vector

representation is

u̇a =

 u̇a1
u̇a2
u̇a3

 , u̇b =

 u̇b1
u̇b2
u̇b3

 (6.278)

From (6.275) we find that

ad

dt
�u =

bd

dt
�u + �ωab × �u (6.279)

where
ad

dt
�u = u̇a1�a1 + u̇a2�a2 + u̇a3�a3 (6.280)

bd

dt
�u = u̇b1

�b1 + u̇b2
�b2 + u̇b3

�b3 (6.281)

Example 107 In the same way partial differentiation with respect to some variable q in
frame a and b is defined by

a∂�u

∂q
: =

∂ua1
∂q

�a1 +
∂ua2
∂q

�a2 +
∂ua3
∂q

�a3 (6.282)

b∂�u

∂q
: =

∂ub1
∂q

�b1 +
∂ub2
∂q

�b2 +
∂ub3
∂q

�b3 (6.283)

Example 108 An alternative definition of the angular velocity vector is used in (Kane
and Levinson 1985):

�ωab = �b1

Ã
ad�b2
dt

·�b3
!

+�b2

Ã
ad�b3
dt

·�b1
!

+�b3

Ã
ad�b1
dt

·�b2
!

(6.284)

Here �b1,�b2,�b3 are the orthogonal unit vectors of the frame b. We will now show that this
is in agreement by our definition (6.255). From (6.94) we have

Ra
b =

¡
ba1 ba2 ba3

¢
(6.285)

and from the definition of ωb
ab in (6.255) we get

(ωb
ab)

× = RT Ṙ =

 0 baT1 ḃa2 baT1 ḃa3
baT2 ḃa1 0 baT2 ḃa3
baT3 ḃa1 baT3 ḃa2 0

 (6.286)

Before proceeding we show that this matrix is skew symmetric. We note that ba1, ba2
and ba3 are orthogonal. Then baT1 ba2 = 0 and d

dt (b
aT
1 ba2) = ḃaT1 ba2 + baT1 ḃa2 = 0, which

implies that ba1
T ḃa2 = −baT2 ḃa1. In the same way it is found that baT2 ḃa3 = −baT3 ḃa2 and

baT3 ḃa1 = −baT1 ḃa3, and the right side in (6.286) is seen to be skew symmetric. We write
ωb
ab in its vector form, and express the scalar products in terms of coordinate-free vectors
to get

ωb
ab =

 baT3 ḃa2
baT1 ḃa3
baT2 ḃa1

 =

 �b3 · ad�b2dt
�b1 · ad�b3dt
�b2 · ad�b1dt

 (6.287)
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We see that this is indeed the coordinate form of the definition (6.284) of (Kane and
Levinson 1985).

6.9 Kinematic differential equations

6.9.1 Introduction

A model describing the rotation of a rigid body can be separated into the equation of mo-
tion, which is a differential equation for the angular velocity, and a kinematic differential
equation which gives the time derivative of some parameterization of the rotation matrix
as a function of the angular velocity. From a modeling perspective it is interesting to
note that kinematic differential equations are exact models with no uncertainty and no
approximations involved. In the following we will derive kinematic differential equations
for the different parametrizations of rotation that have been presented in the previous
sections.

6.9.2 Attitude deviation

We consider the problem where the rotation of a rigid body is to be controlled. This will
be the case in the attitude control of a satellite, or in the control of a robotic hand. Let
the frame a define a reference orientation, let the frame b be a frame fixed in the body.
Then the rotation matrix R := Ra

b will describe the orientation of the body. Suppose
that it is specified that the desired rotation of the body is given by a rotation matrix
Rd. The question is then how to represent the control deviation between the actual
value R and the desired value Rd. In a typical control setting we control some output
vector y to its desired value yd, and the control deviation ey = y − yd is simply obtained
by subtraction. In the case of rotation matrices it does not make sense to subtract Rd

from R as the result would not be a rotation matrix. Instead the deviation between the
two rotation matrices is described by the rotation matrix eRa ∈ SO(3) defined by

eRa := RRT
d ⇒ R = eRaRd (6.288)

We see that the rotation matrix R is described as the composite rotation defined by the
rotation matrices eRa and Rd. To make this clear we introduce the intermediate frame c
so that eRa = Ra

c , Rd = Rc
b (6.289)

and

d

dt
eRa = Ṙa

c = (ωa
ac)

×Ra
c (6.290)

Ṙd = Ṙc
b = Rc

b(ω
b
cb)

× (6.291)

Then, if we define the angular velocity vectors

ωa = ωa
ab, eωa := ωa

ac, ωb
d := ωb

cb (6.292)

we find that the kinematic differential equations for R, eRa and Rd are given by

Ṙ = (ωa)×R,
d

dt
eRa = (eωa)× eRa, Ṙd = Rd(ω

b
d)
× (6.293)
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It follows from
ωa
ab = ωa

ac + ωa
cb (6.294)

that eωa = ωa−ωa
d, and we may sum up that the kinematic differential equations for the

attitude deviation is

eRa := RRT
d (6.295)

eωa = ωa − ωa
d (6.296)

d

dt
eRa = (eωa)× eRa (6.297)

We define an alternative representation of the deviation between the two rotations
using the rotation matrix eRb ∈ SO(3) defined by

eRb := RT
d R ⇒ R = Rd

eRb (6.298)

The desired angular velocity ωa
d is in this case defined by

Ṙd = (ωa
d)
×Rd (6.299)

Then, by introducing an intermediate frame as in the case above, we find that the kine-
matic differential equations referred to the b frame is

eRb := RT
d R (6.300)

eωb = ωb − ωb
d (6.301)

d

dt
eRb = eRb(eωb)× (6.302)

6.9.3 Homogeneous transformation matrices

The time derivative of the homogeneous transformation matrix

Ta
b =

µ
Ra
b raab

0T 1

¶
∈ SE(3) (6.303)

is found to be

Ṫa
b =

µ
Ra
b (ω

b
ab)

× ṙaab
0T 0

¶
=

µ
Ra
b raab

0T 1

¶µ
(ωb

ab)
× vbab

0T 0

¶
= Ta

b

µ
(ωb

ab)
× vbab

0T 0

¶
(6.304)

We see that the time derivative of a homogeneous transformation matrix has certain
similarities with the time derivative of a rotation matrix as expressed in (6.257). This
similarity becomes more evident if we introduce the vector

w =

µ
vbab
ωb
ab

¶
(6.305)
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which is the twist vector in the b frame. The twist vector w is a six-dimensional vector
containing the velocity and the angular velocity. In analogy with the angular velocity
ωb
ab and its matrix form

¡
ωb
ab

¢×
, the twist vector w has a matrix form in the set se(3)

which is

ŵ =

µ
(ωb

ab)
× vbab

0T 0

¶
∈ se(3) (6.306)

The time derivative of the homogeneous transformation matrix is given by

Ṫa
b = Ta

b ŵ (6.307)

This topic is treated in great detail in (Murray, Li and Sastry 1994).

Example 109 The transformation rule for a twist vector is not as straightforward as for
the angular velocity vector. This is seen in the time derivative of Ta

b when it expressed
in the a frame:

Ṫa
b =

µ
(ωa

ab)
×Ra

b vaab
0T 0

¶
=

µ
(ωa

ab)
× vaab − (ωa

ab)
×raab

0T 0

¶µ
Ra
b raab

0T 1

¶
(6.308)

The physical interpretation of the velocity term vaab−(ωa
ab)

×raab is not as obvious as when
the coordinates of the b frame is used. A geometric interpretation is given in (Murray
et al. 1994).

6.9.4 Euler angles

When Euler angles are used the rotation matrixRa
d from frame a to frame d is a composite

rotation involving three simple rotations. In the roll-pitch-yaw case the simple rotations
are

Ra
b = Rz(ψ), Rb

c = Ry(θ) and Rc
d = Rx(φ) (6.309)

We see that the angular velocities associated with the simple rotations are

ωa
ab =

 0
0

ψ̇

 , ωb
bc =

 0

θ̇
0

 and ωc
cd =

 φ̇
0
0

 (6.310)

From (6.269) we have that the angular velocity of d relative to a is the sum of the angular
velocities resulting from each of the three simple rotations due to ψ, θ and φ:

�ωad = �ωab + �ωbc + �ωcd (6.311)

In the a frame this gives:

ωa
ad =

 0
0

ψ̇

+ Rz,ψ

 0

θ̇
0

+ Rz,ψRy,θ

 φ̇
0
0


=

 − sinψθ̇ + cosψ cos θφ̇

cosψθ̇ + sinψ cos θφ̇

ψ̇ − sin θφ̇

 (6.312)
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In the d frame we find

ωd
ad = Rx,−φRy,−θ

 0
0

ψ̇

+ Rx,−φ

 0

θ̇
0

+

 φ̇
0
0

 (6.313)

=

 − sin θψ̇ + φ̇

sinφ cos θψ̇ + cosφθ̇

cosφ cos θψ̇ − sinφθ̇

 (6.314)

Define the vector φ = (φ, θ, ψ)
T . We can then write

ωa
ad = Ea(φ)φ̇ =

 cosψ cos θ − sinψ 0
sinψ cos θ cosψ 0
− sin θ 0 1

 φ̇ (6.315)

and

ωd
ad = Ed(φ)φ̇ =

 1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

 φ̇. (6.316)

We note that det[Ea(φ)] = det[Ed(φ)] = cos θ which implies that the matrices are
singular for cos θ = 0.
We can solve for φ̇, and find that

φ̇ = Ea(φ)−1ωa
ad =

1

cos θ

 cosψ sinψ 0
− sinψ cos θ cosψ cos θ 0

cosψ sin θ sinψ sin θ cos θ

ωa
ad (6.317)

and

φ̇ = Ed(φ)−1ωd
ad=

1

cos θ

 cos θ sinφ sin θ cosφ sin θ
0 cosφ cos θ − sinφ cos θ
0 sinφ cosφ

ωd
ad (6.318)

Let �ai be the orthogonal unit vectors of the a frame, �bi be the unit vectors of the b
frame, and let �ci be the orthogonal unit vectors of the c frame. Then the roll-pitch-yaw
description gives the angular velocity �ωad as a sum of an angular velocity �ωab along �a3,
an angular velocity �ωbc along �b2, and an angular velocity �ωcd along �c1. The physical
interpretation of the singularity of Ea(φ) and Ed(φ) at cos θ = 0 is due to the fact that
when cos θ = 0, then the rotation vectors �a3 and �c1 align so that both �ωab and �ωcd are
along the �a3 vector while �ωbc is along the �b2 vector. This means that it is not possible
to describe an angular velocity along �a3 × �b2 when cos θ = 0. This is the Euler-angle
singularity , which is a singularity due to the mathematical representation of the rotation
matrix.

6.9.5 Euler parameters

In this section we will derive the kinematic differential equations for the Euler parameters.
These differential equations give the time derivatives of the Euler parameters as functions
of the angular velocity. We let R := Ra

b and ω := ωab so that Ṙ = (ωa)×R. Moreover
we let R = Re(η, ²) and p = (η ²T )T . We then have

Ṙ = (ωa)×R = R(ωb)× (6.319)
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The derivation is based on the coordinate transformation rule using the quaternion
product. For an arbitrary vector u ∈ R3 we haveµ

0
Ru

¶
= p⊗

µ
0
u

¶
⊗ p̄ (6.320)

We take the time derivative of both sides and getµ
0

Ṙu

¶
+

µ
0

Ru̇

¶
= ṗ⊗

µ
0
u

¶
⊗ p̄ + p⊗

µ
0
u̇

¶
⊗ p̄ + p⊗

µ
0
u

¶
⊗ ˙̄p (6.321)

Then, because the transformation rule in (6.320) is valid for any vector it is also valid
for u̇. This implies thatµ

0

Ṙu

¶
= ṗ⊗

µ
0
u

¶
⊗ p̄ + p⊗

µ
0
u

¶
⊗ ˙̄p

= ṗ⊗ p̄⊗ p⊗
µ

0
u

¶
⊗ p̄− p⊗

µ
0
u

¶
⊗ p̄⊗ ṗ⊗ p̄

= (ṗ⊗ p̄)⊗
µ

0
Ru

¶
−
µ

0
Ru

¶
⊗ (ṗ⊗ p̄)

= 2

µ
0

(η²̇− η̇²+ ²×²̇)×Ru

¶
(6.322)

where we have used (6.197), (6.191), (6.193), (6.194) and (6.173). From Ṙ = (ωa)×R
we have µ

0

Ṙu

¶
=

µ
0

(ωa)×Ru

¶
(6.323)

Comparing this with (6.322) we find that the angular velocity ωa is given by

ωa = 2[η²̇− η̇²+ ²×²̇] (6.324)

From (6.194) it is seen that this can be written in quaternion form, and this leads to the
result

The angular velocity is given in frames a and b byµ
0
ωa

¶
= 2ṗ⊗ p̄,

µ
0
ωb

¶
= 2p̄⊗ ṗ (6.325)

and the kinematic differential equation for the quaternion vector is

ṗ =
1

2

µ
0
ωa

¶
⊗ p, ṗ =

1

2
p⊗

µ
0
ωb

¶
(6.326)

Here the transformation rule (6.320) has been used, and the kinematic differential
equations appear by postmultiplication with p for the expression in the a frame, and by
premultiplication with p for the expression in the b frame.
The component form of these last four equations gives the result

ωb = 2[η²̇− η̇²− ²×²̇] (6.327)

ωa = 2[η²̇− η̇²+ ²×²̇] (6.328)
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η̇ = −1

2
²Tωb (6.329)

²̇ =
1

2
[ηI + ²×]ωb (6.330)

and

η̇ = −1

2
²Tωa (6.331)

²̇ =
1

2
[ηI− ²×]ωa (6.332)

Example 110 From (6.174), (6.175) and (6.329—6.332) it is seen that the kinematic
differential equations can be written in vector form as

ṗ =
1

2

µ
0 − (ωa)

T

ωa (ωa)
×

¶
p =

1

2

Ã
0 − ¡ωb

¢T
ωb − ¡ωb

¢×
!

p (6.333)

or

ṗ =
1

2

µ
η −²T
² ηI + ²×

¶µ
0
ωa

¶
=

1

2

µ
η −²T
² ηI− ²×

¶µ
0
ωa

¶
(6.334)

6.9.6 Normalization for numerical integration

From (6.334) it is seen that

d

dt

¡
pTp

¢
= pT

µ
η −²T
² ηI + ²×

¶µ
0
ωa

¶
= 0 (6.335)

This shows that if p is initialized as a unit vector, then it will remain a unit vector, as
should be expected. Numerical integration of the quaternion vector p from the kinematic
differential equation will introduce numerical errors that will cause the length of p to
deviate from unity. To compensate for such errors a normalization term is added to the
kinematic differential equation. This can be done with the following modification of the
kinematic differential equation, which should be used in numerical integration:

ṗ =
1

2

µ
η −²T
² ηI + ²×

¶µ
0
ωa

¶
+

λ

2
(1− pTp)p (6.336)

Here λ is a positive gain. Then

d

dt

¡
pTp

¢
=

λ

2
(1− pTp)pTp (6.337)

We see that this will give the desired result as pTp will increase whenever pTp <
1, and pTp will decrease whenever pTp > 1. When pTp = 1 the usual kinematic
differential equations are recovered. Linearization about pTp = 1 gives ė = −λe where
e = 1−pTp. This means that the normalization converges with a time constant T = λ−1.
A Simulink toolbox has implemented this algorithm with λ = 100, which means that the
normalization converges with a time constant of 0.01 s.
Another alternative is to normalize directly after each time step using the normaliza-

tion assignment
p : =

pp
pTp

(6.338)
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6.9.7 Euler rotation

As sin θ = 2 sin θ
2 cos θ

2 , it is seen that e = k sin θ can be expressed by the Euler parame-
ters according to

e = 2η². (6.339)

The kinematic differential equation is then found from

ė = 2(η̇²+ η²̇). (6.340)

This gives

ė = [η2I− ²²T − η²×]ωa (6.341)

= [η2I− ²²T + η²×]ωb (6.342)

where (6.331) and (6.332) are used.
Alternative expressions are found from

R = (2η2 − 1)I + 2²²T + 2η²× (6.343)

and
RT = (2η2 − 1)I + 2²²T − 2η²× (6.344)

which leads to

ė =
1

2
[Trace(R)I−R]ωa (6.345)

ė =
1

2
[Trace(RT )I−RT ]ωb (6.346)

where we have used that 4η2 − 1 = Trace(R).
Note that for θ = 0 we have

ė|θ=0 = ωa = ωb (6.347)

6.9.8 Euler-Rodrigues parameters

The kinematic differential equation is derived from

ρ̇ =
d

dt

²

η
=

η²̇− η̇²

η2
(6.348)

which gives

ρ̇ =
1

2
[I + ρ× + ρρT ]ωb. (6.349)

An equation for the angular velocity is found from

ρ×ρ̇ =
1

η
²×

η²̇− η̇²

η2
=

1

η2
²×²̇ (6.350)

as ²×² = 0. From (6.327) it is seen that

ωb = 2η2
µ
η²̇− η̇²

η2
− 1

η2
²×²̇

¶
(6.351)

Insertion of (6.244), (6.348) and (6.350) gives

ωb =
2

1 + ρTρ
[I− ρ×]ρ̇ (6.352)
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Example 111 Equation (6.245) can be written

R =
1

1 + ρTρ
[2I + 2ρ× + 2ρρT − (1 + ρTρ)I] (6.353)

which implies that

I + ρ× + ρρT =
1 + ρTρ

2
(R + I) (6.354)

Then (6.349) can be written

ρ̇ =
1 + ρTρ

4
(R + I)ωb (6.355)

We recall from (6.169) that
TraceR + 1 = 4η2 (6.356)

and, using (6.244), we arrive at

ρ̇ =
1

TraceR + 1
(R + I)ωb (6.357)

6.9.9 Passivity of kinematic differential equations

In translational dynamics the integration from velocity v = ẋ to position x is a passive
dynamic system. In fact, the function Vx = 1

2x
Tx ≥ 0 has time derivative

V̇x =
∂Vx
∂x

ẋ = xTv (6.358)

so that the system with input v and output x is clearly passive. It is interesting to
investigate if similar results can be established for rotational dynamics.
The starting point for such an investigation (Egeland and Godhavn 1994) is the

differential equation

η̇ = −1

2
²Tω (6.359)

where |η| = ¯̄
cos θ

2

¯̄ ≤ 1. Define

V� = 2 (1− η) ≥ 0 (6.360)

The time derivative for solutions of the kinematic differential equations of the Euler
parameters is

V̇� = −2η̇ = ²Tω (6.361)

It follows that the kinematic system with input ω and output ² is passive.
At this stage it is not very difficult to extend this result to other kinematic represen-

tations based on the Euler parameters. First we note that if we multiply the equation
for η̇ by η, we get

ηη̇ = −1

2
η²Tω = −1

4
eTω (6.362)

where e = 2η² is the Euler rotation vector. We are then lead to the function

Ve = 2
¡
1− η2

¢ ≥ 0 (6.363)



252 CHAPTER 6. RIGID BODY KINEMATICS

which has time derivative
V̇e = −4ηη̇ = eTω (6.364)

and we have shown that the kinematic system with input ω and output e is passive.
Finally we note that

η̇

η
= −1

2

²

η

T
ω =− 1

2
ρTω (6.365)

Define
Vρ = −2 ln |η| ≥ 0, η 6= 0 (6.366)

which is defined for all η except for η = 0 where also ρ is undefined. Then

V̇ρ = −2
η̇

η
= ρTω (6.367)

and it is seen that the kinematic system with input ω and output ρ is passive.

Example 112 It is interesting to note that

²T ²+ (1− η)2 = ²T ²+ η2 − 2η + 1 = 2 (1− η) = V� (6.368)

and that
2²T ² = 2

¡
1− η2

¢
= Ve (6.369)

Example 113 Consider a system with equation of motion

Mω̇ + ω×Mω = τ (6.370)

where M is a constant, symmetric and positive definite matrix, and where the input is
selected to be

τ = −Kdω − kp² (6.371)

where Kd is a constant, symmetric and positive definite matrix, and kp is a positive
constant. The energy function

V =
1

2
ωTMω + 2kp (1− η) ≥ 0 (6.372)

has time derivative

V̇ = ωT
¡−ω×Mω −Kdω − kp�

¢
+ kp²

Tω

= −ωTKdω (6.373)

along the solutions of the system. This means that the energy of the system decreases
whenever ω 6= 0. For further details see (Wen and Kreutz-Delgado 1991), where a cross-
term was added to the energy function, and (Egeland and Godhavn 1994).

6.9.10 Angle-axis representation

The kinematic differential equations for the angle θ and the unit vector k in the angle
axis representation of the rotation matrix are derived in this section. The derivation is
based on differentiation of the Euler parameters. To find the equation for θ̇ we observe
that

−1

2
sin

µ
θ

2

¶
θ̇ = η̇ = −1

2
²Tω =− 1

2
sin

µ
θ

2

¶
kTω
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Whenever sin (θ/2) 6= 0, this implies

θ̇ = kTω (6.374)

To find the equation for k̇ we note that

²̇ =

µ
d

dt
sin

θ

2

¶
k+sin

θ

2
k̇ =

1

2
cos

µ
θ

2

¶
θ̇k+sin

θ

2
k̇

Combining this with the kinematic differential equations of the Euler parameters, we get

1

2

£
ηI + ²×

¤
ω =

1

2
cos

µ
θ

2

¶
θ̇k+sin

θ

2
k̇

which gives

2 sin
θ

2
k̇ = η

³
I− kkT

´
ω + ²×ω

= cos
θ

2

³
I− kkT

´
ω+sin

θ

2
k×ω

Then the kinematic differential equation for k is found using k×k× = kkT−I. Whenever
sin (θ/2) 6= 0 the result is

k̇ =
1

2

·
k×−k×k× cot

θ

2

¸
ω (6.375)

The equations (6.374) and (6.375) have a singularity at θ = 0, which is in agreement
with the fact that k is undefined for a zero rotation θ = 0.

6.10 The Serret-Frenet frame

6.10.1 Kinematics

f1

f2

f3

C

Figure 6.8: The Serret-Frenet frame for a curve C.

In aerospace, automotive steering and ship control the desired trajectory of the system
may be given as a curve in a fixed frame i. The control deviations from the desired curve
to the actual configuration of the system can then be calculated in the Serret-Frenet
frame f . This frame has axes along the tangent, the normal and the binormal of the
curve as shown in Figure 6.8. We will develop the equations for this frame in this section.
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We let the curve C be given by �r (s) where s is the length along the curve. We define
the unit tangent

�f1 =
id�r

ds
(6.376)

The principal unit normal of the curve is defined by the unit vector

�f2 =
1

κ

id�f1
ds

(6.377)

where

κ =

¯̄̄̄
¯ id�f1ds

¯̄̄̄
¯ =

¯̄̄̄
id2�r

ds2

¯̄̄̄
(6.378)

is the curvature of the curve. Finally the unit binormal vector is defined by the unit
vector

�f3 = �f1 × �f2 (6.379)

so that �f1, �f2, �f3 forms a set of orthogonal unit vectors. The plane defined by �f1 and �f2
is called the osculating plane, the plane defined by �f2 and �f3 called the normal plane,
while the plane defined by �f3 and �f1 is called the rectifying plane.
From �f3 · �f3 = 1 it follows that

0 =
d

ds

³
�f3 · �f3

´
= 2

id�f3
ds

· �f3 (6.380)

while (6.377) and �f3 · �f2 = 0 implies that

�f3 ·
id�f1
ds

= �f3 · κ�f2 = 0 (6.381)

Then, from �f3 · �f1 = 0 it follows that

0 =
d

ds

³
�f3 · �f1

´
=

id�f3
ds

· �f1 + �f3 · κ�f2 =
id�f3
ds

· �f1 (6.382)

From (6.380) and (6.382) it is seen that id�f3/ds is along �f2. This makes it possible to
write

id�f3
ds

= τ �f2 (6.383)

where

τ = �f2 ·
id�f3
ds

(6.384)

is the torsion of the curve. From �f2 = �f3 × �f1 we find that

id�f2
ds

=
id�f3
ds

× �f1 + �f3 ×
id�f1
ds

= τ �f2 × �f1 + �f3 × κ�f2 = −τ �f3 − κ�f1 (6.385)

The angular velocity �ωif of the Serret-Frenet frame f relative to the frame i is seen from
(6.284) to be

�ωif =

Ã
�f3 ·

id�f2
dt

!
�f1 +

Ã
�f1 ·

id�f3
dt

!
�f2 +

Ã
�f2 ·

id�f1
dt

!
�f3 = ṡ

³
τ �f1 + κ�f3

´
(6.386)

To sum up the results of this section:
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The unit vectors �f1, �f2, �f3 of the Serret-Frenet frame satisfies the kinematic differential
equations

id�f1
ds

= κ�f2,
id�f2
ds

= −κ�f1 − τ �f3,
id�f3
ds

= −τ �f2 (6.387)

where κ is the curvature and τ is the torsion of the curve. The angular velocity �ωif of
the Serret-Frenet frame f relative to the frame i, and the velocity �vf of the origin of
frame f are given by

�ωif = ṡ
³
τ �f1 + κ�f3

´
, �vf = ṡ �f1 (6.388)

6.10.2 Control deviation

Suppose that a curve is to be followed by some body b, and that the origin of the Serret-
Frenet frame f is placed so that the origin of the body-fixed frame b has position

�rbf = y �f2 + z �f3 (6.389)

or in other words, the frame f is placed so that the origin of frame b is in the normal
plane of f . Then the velocity of the origin of b is

�vb = �vf +
id

dt
�rbf

= �vf +
fd

dt
�rbf + �ωif × �rbf (6.390)

which in coordinate form in frame f gives

vfb =

 ṡ
0
0

+

 0
ẏ
ż

+

 0 −ṡκ 0
ṡκ 0 −ṡτ
0 ṡτ 0

 0
y
z

 (6.391)

This gives the following relation between the time derivatives ṡ, ẏ, ż of the parameters
s, y, z and the body velocity vbb  ṡ− ṡκy

ẏ − ṡτz
ż + ṡτy

 = Rf
bv

b
b (6.392)

while the relative angular velocity between the frames b and f is given by

ωf
bf = ωf

if − ωf
ib =

 ṡτ
0
ṡκ

−Rf
bω

b
ib (6.393)

6.11 Navigational kinematics

6.11.1 Introduction

Navigation systems rely on GPS navigation using satellite signals, and on the use of in-
ertial navigation (Titterton and Weston 1997), (Farell and Barth 1999). In inertial nav-
igation the position and rotation of a ship, aeroplane or some other vehicle is computed
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using measurements from gyroscopes and accelerometers. The accelerometers measure
the acceleration, and the gyroscopes measure the angular velocity ω of the gyroscopes
so the the rotation matrix R of the accelerometers can be computed by integration of
the kinematic differential equation Ṙ = Rω× provided that the initial rotation of the
accelerometers is known. In this section the kinematics of inertial navigation is presented.

6.11.2 Coordinate frames

Stella Polaris

Aries Point

 ie

x i

 ie t

xe

y i
ye

Figure 6.9: The earth-centered star-fixed frame i and the earth-centered earth-fixed frame
e.

The frame i is star-fixed and earth-centered, and is considered to be an inertial frame
where Newton’s law is valid. The frame i has its origin in the center of the earth, and has
axes (xi, yi, zi) that point towards certain fixed stars. In particular, the zi axis points
towards Stella Polaris, while the xi axis is pointing towards the Aries point in the Vernal
Equinox direction. The earth-fixed frame is denoted by e, and has its origin in the center
of the earth, and has axes (xe, ye, ze) that rotate with the earth. The ze axis points
towards Stella Polaris through the North Pole. Frames i and e are shown in Figure 6.9.
The locally horizontal frame or geographic frame is denoted n. This frame has its origin
at some point with latitude L and longitude l at the surface of the earth, and has axes
(N,E,D) pointing north, east and down as shown in Figure 6.10. A spherical earth with
radius re is assumed. In high precision system the earth is described by an ellipsoid, but
to avoid a too complicated presentation this will not be done here.
The rotation of the earth frame e relative to the inertial frame i is given by the

rotation matrix

Ri
e = R(z, ωiet)
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xe l

N
E

D
L

ye

ze

Figure 6.10: The local horizontal frame n with axes N,E,D pointing north, east and
down.

where the angular velocity is

ωi
ie = ωe

ie =

 0
0
ωie


The scalar ωie corresponds to 360◦ in 24 hours, which gives ωie = 7. 27× 10−5 rad/s.
The rotation from the inertial frame i to the geographic frame n is given by

Ri
n = R(z, λ)R

h
y,−

³
L+

π

2

´i
=

 − sinL cosλ − sinλ − cosL cosλ
− sinL sinλ cosλ − cosL sinλ

cosL 0 − sinL


where λ = l + ωiet. The angular velocity of frame n is

ωi
in =

 0
0

λ̇

+ R(z, λ)

 0

−L̇
0

 =

 L̇ sinλ

−L̇ cosλ

λ̇


or in the geographic frame

ωn
in =

 0

−L̇
0

+ R(y, 90◦)R(y, L)

 0
0

λ̇

 =

 λ̇ cosL

−L̇
−λ̇ sinL
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6.11.3 Acceleration

An accelerometer measures the specific force

�f =
id2

dt2
�r − �g0

where �g0 is the acceleration of gravity. The gravitational field �g of the earth is the
combined effect of the acceleration of gravity and the centripetal acceleration due to the
rotation of the earth:

�g = �g0 − �ωie × (�ωie × �r)

The velocity

�v :=
ed

dt
�r =

id

dt
�r − �ωie × �r (6.394)

is defined as the time derivative of the position vector in the earth frame. Note that �v
is not defined as

id
dt�r. In navigation algorithms the time derivative of the velocity �v in

the geographic frame is needed. This is the position vector �r differentiated first in the e
frame and then in the n frame. This gives

nd

dt
�v =

id

dt
�v − �ωin × �v

=
id

dt

µ
id

dt
�r − �ωie × �r

¶
− �ωin × �v

=
id2

dt2
�r −

id

dt
�ωie × �r − �ωie ×

id

dt
�r − �ωin × �v

=
id2

dt2
�r − (�ωie + �ωin)× �v − �ωie × (�ωie × �r)

=
id2

dt2
�r − (2�ωie + �ωen)× �v − �ωie × (�ωie × �r) (6.395)

where it is used that �ωie is constant in the i frame, and that �ωin = �ωie+�ωen. The specific
force �f is therefore

�f =
nd

dt
�v + (2�ωie + �ωen)× �v − �g

In the n frame the velocity vn is found to be given by L, l, h and their derivatives:

vn =

 vN
vE
vD

 =

 (re + h) L̇

(re + h) l̇ cosL

−ḣ


where h is the height above the surface of the earth. The vector of gravity is assumed to
be

gn = (0, 0, g)T

Then

fn =

 fN
fE
fD

 =

 v̇N
v̇E
v̇D

+


³
l̇ + 2ωie

´
vE sinL− L̇vD

−
³
l̇ + 2ωie

´
(vN sinL+ vD cosL)³

l̇ + 2ωie

´
vE cosL+ L̇vN

−
 0

0
g

 (6.396)

As vN , vE vD are function of L, l, h and their derivatives this clearly shows that fn is a
function of L, l, h and their derivatives.
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6.12 Kinematics of a rigid body

6.12.1 Configuration

xi

y i

zi

ro
rp

r

p

o

xb

yb

zb

Figure 6.11: Rigid body b with the fixed frame b and the fixed points o and p.

The configuration of a rigid body defines the position of all points in the rigid body.
For a rigid body the configuration can be specified in terms of the position �ro of one
fixed point in the rigid body, and the rotation matrix Ri

b from a reference frame i to
a body-fixed frame b. Then the position of any point p in the rigid body, which is not
necessarily fixed in the rigid body, is given by

�rp = �ro + �r (6.397)

as shown in Figure 6.11.
Here �r is the vector from o to p with coordinate vector rb in the b frame. This vector

is given in the i frame by
ri = Ri

br
b (6.398)

6.12.2 Velocity

The frame i is assumed to be an inertial frame which is also referred to as a Newtonian
frame. The velocities of o and p are given by

�vo :=
id

dt
�ro, �vp :=

id

dt
�rp (6.399)

From (6.397) and the rule for differentiation in moving frames it is seen that the velocity
of p can be expressed as

�vp = �vo +
bd

dt
�r + �ωib × �r (6.400)

6.12.3 Acceleration

The acceleration vectors are defined by

�ap :=
id2

dt2
�rp, �ao :=

id2

dt2
�ro (6.401)
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while the angular acceleration vector is defined by

�αib :=
id

dt
�ωib =

bd

dt
�ωib (6.402)

where the second equality is a consequence of

id

dt
�ωib =

bd

dt
�ωib + �ωib × �ωib =

bd

dt
�ωib (6.403)

In the formulation of the equations of motion for rigid bodies, we need the following
result:

id2

dt2
�rp =

id2

dt2
�ro +

id

dt

µ
id

dt
�r

¶
=

id2

dt2
�ro +

id

dt

µ
bd

dt
�r + �ωib × �r

¶
=

id2

dt2
�ro +

bd

dt

µ
bd

dt
�r + �ωib × �r

¶
+ �ωib ×

µ
bd

dt
�r + �ωib × �r

¶
=

id2

dt2
�ro +

bd2

dt2
�r + 2�ωib ×

bd

dt
�r +

µ
bd

dt
�ωib

¶
× �r + �ωib × (�ωib × �r) (6.404)

In terms of acceleration, angular acceleration and velocities this is written

�ap|{z}
Acceleration

of p

= �ao|{z}
Acceleration

of o

+
bd2

dt2
�r| {z }

Second derivative

of �r in b

+ 2�ωib ×
bd

dt
�r| {z }

Coriolis

acceleration

+ �αib × �r| {z }
Transversal

acceleration

+ �ωib × (�ωib × �r)| {z }
Centripetal

acceleration

(6.405)

An alternative formulation is obtained by inserting the expression

�ao =
id

dt
�vo =

bd

dt
�vo + �ωib × �vo (6.406)

which gives

�ap =
bd

dt
�vo + �ωib × �vo +

bd2

dt2
�r + 2�ωib ×

bd

dt
�r + �αib × �r + �ωib × (�ωib × �r) (6.407)

Note the difference between the term �ωib × �vo which is related to the velocity of o,
and the Coriolis acceleration 2�ωib× bd

dt�r which is related to the motion of p in the b frame
relative to o.
If the point p is fixed in the body b, then the vector �r is constant in frame b so that

bd

dt
�r = �0⇒

id

dt
�r = �ωib × �r, �r fixed in b (6.408)
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For �vp this gives
�vp = �vo + �ωib × �r, �r fixed in b (6.409)

The acceleration is found to be

�ap = �ao + �αib × �r + �ωib × (�ωib × �r), �r fixed in b (6.410)

We see that in this case there is no Coriolis acceleration. Using (6.406) the acceleration
can be written

�ap =
bd

dt
�vo + �ωib × �vo + �αib × �r + �ωib × (�ωib × �r), �r fixed in b (6.411)

6.13 The center of mass

6.13.1 System of particles

Consider a system of N particles each of mass mk and with position �rk relative to the
origin of the inertial frame i. The center of mass is the point with position �rc defined by

m�rc =
NX
k=1

mk�rk (6.412)

where m =
PN

k=1mk is the sum of the mass of the particles. The velocity �vc and the
acceleration �ac of the center of mass are defined by

m�vc = m
id�rc
dt

=
NX
k=1

mk�vk (6.413)

m�ac = m
id2�rc
dt2

=
NX
k=1

mk�ak (6.414)

6.13.2 Rigid body

The position �rc of the center of mass of a rigid body b is defined by

m�rc =

Z
b

�rpdm (6.415)

where m =
R
b
dm is the mass of the rigid body, and �rp is the position of a mass element

dm which is fixed in frame b. The position of the mass element relative to the center of
mass is given by �r so that

�rp = �rc + �r (6.416)

as shown in Figure 6.12. From the definition of the center of mass we see thatZ
b

�rdm =

Z
b

�rpdm−m�rc = �0 (6.417)

The velocity �vc of the center of mass is given by

m�vc = m
id�rc
dt

=
id

dt

Z
b

�rpdm =

Z
b

id�rp
dt

dm =

Z
b

�vpdm (6.418)

while the acceleration �ac of the center of mass is found in the same way. We conclude
that
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Figure 6.12: Mass element dm relative to the center of mass c.

The motion of the mass center in the rigid body b satisfies the equations

m�rc =

Z
b

�rpdm, m�vc =

Z
b

�vpdm, m�ac =

Z
b

�apdm (6.419)



Chapter 7

Newton-Euler equations of
motion

7.1 Introduction

The development of the equations of motions for rigid bodies and systems of rigid bodies
is the topic of this chapter. The equations of motion are differential equations for the
velocity and angular velocity. The derivations in this chapter are based on Newton’s
law and its extension to rotational dynamics, which is usually attributed to Euler. This
provides the motivation for the term Newton-Euler equation of motion. The derivations
rely on vector operations. The presentation starts with some results on forces and torques
on rigid bodies. Then the basic Newton-Euler equations of motion are presented and used
to derive the equations of motion for the ball-and-beam system, the Furuta pendulum
and the inverted pendulum. Then the principle of virtual work is presented, and its use is
demonstrated for multi-body systems. The use of recursive computations in manipulator
dynamics is also discussed.

7.2 Forces and torques

To derive the equations of motions for rigid bodies we need some results on resultant
forces and moments, which are presented in this section. The material is taken from
(Kane and Levinson 1985).

7.2.1 Resultant force

A force vector �F will have a line of action, which means that the moment of �F about a
point P is �r× �F where �r is the position vector from P to some arbitrary point on the line
of action as shown in Figure 7.1. A vector with a line of action is called a bound vector .

Consider a set S of nF forces �Fj . The resultant force �F
(r)
S of the set S is the vector

�F
(r)
S =

nFX
j=1

�Fj (7.1)

263
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F

r

P

line of action

Figure 7.1: A force �F acting on a rigid body. The line of action of the force is indicated
as a dashed line, and the distance �r from a point P is shown.

while the moment about P of the set S of forces is

�NS/P =

nFX
j=1

�rPj × �Fj (7.2)

where �rPj is the position vector from P to an arbitrary point on the line of action of
�Fj . Note that in this description the resultant �F

(r)
S is a sum of forces, and can not be

considered to be a force with a line of action. Note in particular that the resultant force
does not appear in the expression for the moment �NS/P . The moment �NS/Q about some
other point Q is found from

�NS/Q =

nFX
j=1

�rQj × �Fj =

nFX
j=1

(�rPj + �rQP )× �Fj

=

nFX
j=1

�rPj × �Fj + �rQP ×
nFX
j=1

�Fj (7.3)

The moment �NS/Q of the set S about a point Q is the moment �NS/P of the set S about

the point P plus the moment about Q that would have resulted if the resultant �F (r)S had
line of action through P :

�NS/Q = �NS/P + �rQP × �F
(r)
S (7.4)

This result is straightforward to apply, however, the resultant force does not have a
line of action, so the procedure of pretending that �F

(r)
S has its line of action through

P is not completely satisfying. Therefore we will follow the approach of (Kane and
Levinson 1985) and introduce an equivalent representation with a bound vector and a
torque. To do this it is necessary to introduce the concept of a torque.
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7.2.2 Torque

A couple is a set C of forces with zero resultant force, that is �F
(r)
C = �0. From (7.4) it

is seen that this implies that �NC/P = �NC/Q, which means that the moment of a couple
will be the same about any point, and it is therefore meaningful to define the moment of
the couple without reference to any point.

The torque �TC is defined as the moment of the couple C. The resultant �F
(r)
C of a couple

is by definition zero. Therefore, the moment of the couple C is the same about any point,
which means that

�TC := �NC/P = �NC/Q (7.5)

for arbitrary points Q and P .

Example 114 Consider a couple with two forces �F1 and �F2 that have zero resultant
force, which implies �F2 = −�F1. Define the position vector �r21 between an arbitrary point
on the line of action of �F2 and the line of action of �F1. The torque �T of the couple, which
is the moment of the two forces about an arbitrary point P , is then found from

�T = �r1 × �F1 + �r2 × �F2 = �r1 × �F1 − (�r1 − �r21)× �F1 = �r21 × �F1 (7.6)

We see that the torque does not depend on the selection of the point P .

Example 115 In this example we will derive force and torque expressions for a satellite
with six gas jet actuators and three momentum wheels. The gas jet actuators set up
forces �Fj, and the momentum wheels set up torques �Tj. The resultant force and the total
moment about the center of mass are then

�F (r) =
6X

j=1

�Fj , �Nc =
3X

j=1

�Tj +
6X

j=1

�rj × �Fj (7.7)

In the control of the attitude of the satellite it would make sense to arrange the gas jet
actuators in pairs that produce torques in the form of couples. This is done by requiring
�F1 = −�F4, �F2 = −�F5, �F3 = −�F6, �r1 = −�r4, �r2 = −�r5 and �r3 = −�r6. This implies
that the resultant force is zero, that is, �F (r) = �0. Therefore, the set of forces constitute
a couple, and because of this the moment about the center of mass is actually a torque
�Tc = �Nc given by

�Tc =
3X

j=1

�Tj +
3X

j=1

2�rj × �Fj (7.8)

7.2.3 Equivalent force and torque

Two sets S and Σ of force vectors are said to be equivalent if they have equal resultant
and equal moment about any point. Consider a set S of nF forces with resultant force
�F
(r)
S and moment �NS/P about a point P . An equivalent set Σ of forces can then be
defined with a single force and a torque due to a couple. To do this we let the set Σ to
be the force �FΣ with line of action through the point P , and the torque �TΣ so that

�FΣ = �F
(r)
S , �TΣ = �NS/P (7.9)
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To see that the sets S and Σ will be equivalent we observe that the set Σ will have
resultant �F

(r)
Σ = �FΣ = �F

(r)
S , and the moments about an arbitrary point Q will be equal,

which is confirmed by comparing the expression for �NS/Q in (7.4) with the moment �NΣ/Q,
which is the torque �TΣ plus the moment of �FΣ about Q, that is,

�NΣ/Q = �TΣ + �rQP × �FΣ (7.10)

that result from (7.4).

We conclude that the following sets of forces are equivalent:

1. A set S with resultant �F
(r)
S and with moment �NS/P about P , where the resultant

�F
(r)
S does not have a line of action, and where the moment �NS/Q about a point Q
is found from the rule (7.4).

2. A force �FΣ = �F
(r)
S with line of action through P in combination with a torque

�TΣ = �NS/P . Then the moment about a point Q is found from �FΣ and �TΣ according
to equation (7.10).

The main difference between the two equivalent representations S and Σ is that when
S is used the resultant is not a true force vector as it is not a bound vector, and the
additional rule (7.4) must be used to find the moment about some other point Q. In
contrast to this, when the set Σ is used, the force �FΣ can be treated as a force vector and
the torque �TΣ can be treated as a torque, and hence the usual definition of a moment
about a point can be used to calculate the moment about a point Q.

7.2.4 Forces and torques on a rigid body

A mass force is a force �fdm that acts on a mass element dm = ρdV at position �rp. An
example of this is the gravity force �gdm acting on dm. The resultant gravity force on a
body is

�G =

Z
b

�gdm = m�g (7.11)

The moment of the gravity force about the origin of frame i is

�NG/i =

Z
b

�rp × �gdm =

Z
b

�rpdm× �g = �rc ×m�g = �rc × �G (7.12)

The interpretation of this is that the gravity forces �gdm will set up a moment equal to the
moment of the resultant gravity force �G would give if �G had line of action through the
center of mass. For this reason the center of mass is also called the center of gravity . In
this connection it may be argued that the concept of a center of mass is more fundamental
than a center of gravity which requires the presence of a field of gravity. From (7.4) it
follows that the moment of gravity about the center of mass is zero, that is, �NG/c = �0.
The resultant forces acting on a body b will be

�F
(r)
b = �G +

nFX
j=1

�Fj (7.13)
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where �Fj are nF contact forces acting on the body. The moment on the body b about
its center of mass c is

�Nb/c = �Tb +

nFX
j=1

�rcj × �Fj (7.14)

where �rcj = �rFj − �rc is the vector from the center of mass c to the line of action of the
forces �Fj , and �Tb is the contact torque due to couples acting the body. Typically this
would be motor torques. There is no moment from gravity as the moment is about the
center of mass. The moment about some other point o is found from the rule (7.4), which
gives

�Nb/o = �Nb/c + �rg × �F
(r)
b (7.15)

where

�rg := �roc (7.16)

is the vector from o to the center of mass c.

Equivalent descriptions of the forces and moments on a body b are (Kane and Levinson
1985)

1. The resultant force �F
(r)
b without specification of line of action, the moment �Nb/c

about the center of mass, and, in addition, the rule (7.15) for calculating the
moment about some other point o.

2. The force �Fbc = �F
(r)
b with line of action through the center of mass c in combination

with the torque �Tbc = �Nb/c.

3. The force �Fbo = �F
(r)
b with line of action through the point o in combination with

the torque �Tbo = �Nb/o. Then �Fbo and �Tbo can be found from �Fbc and �Tbc with

�Fbo = �Fbc (7.17)
�Tbo = �Tbc + �rg × �Fbc (7.18)

The resultant force and the moment are represented using Descriptions 2 and 3 is used
in the software package Autolev for multibody simulation based on Kane’s formulation
of the equations of motion.

Example 116 Suppose that Description 2 is used, and that �Fbc and �Tbc are given. Then
the moment on b about a point o is found from

�Nb/o = �Tbc + �rg × �Fbc (7.19)

If Description 3 is used and �Fbo and �Tbo are given, then the moment on b about c is found
from

�Nb/c = �Tbo − �rg × �Fbo (7.20)
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7.2.5 Example: Robotic link

Consider a robot manipulator with 6 rigid bodies, called links, which are connected with
rotary joints. The forces acting on a link k are the contact force �Fk−1,k on link k from
link k − 1, the contact force �Fk+1,k from link k + 1 on link k, and the gravity force �Gk.
The line of action of �Fk−1,k passes through a point of position �rk−1, and the line of action
of �Fk+1,k goes through a point of position �rk. The center of mass has position �rkc . We
note that due to the principle of action and reaction �Fk+1,k = −�Fk,k+1 where �Fk,k+1 is
the force acting on link k + 1 from link k. The torques in the form of couples that act
on the link are the contact torque �Tk−1,k on link k from link k− 1, and the contact force
�Tk+1,k = −�Tk,k+1 from link k + 1 on link k. This gives the following expression for the
resultant forces on link k

�F
(r)
k = �Fk−1,k + �Fk+1,k + �Gk (7.21)

The moment about the center of mass kc with position �rkc is

�Nk/kc = �Tk−1,k + �Tk+1,k + (�rk−1 − �rkc)× �Fk−1,k + (�rk − �rkc)× �Fk+1,k (7.22)

An equivalent description is possible with the force

�Fkc := �F
(r)
k (7.23)

with line of action through the center of mass, and the torque

�Tkc := �Nk/kc (7.24)

To calculate the moment �Nk/k−1 on link k about the point k− 1 with position vector
�rk−1, it is used that the force �Fkc has line of action through c, and the the moment is
found to be the torque �Tkc plus the moment of �Fkc about k − 1, which gives

�Nk/k−1 = �Tkc + (�rkc − �rk−1)× �Fkc

We may check that this makes sense by inserting of the expressions for �Tkc and �Fkc,
which gives

�Nk/k−1 = �Tk−1,k + �Tk+1,k + (�rk − �rk−1)× �Fk+1,k + (�rkc − �rk−1)× �Gk (7.25)

7.3 Newton-Euler equations for rigid bodies

7.3.1 Equations of motion for a system of particles

Consider a system of N particles each of mass mk and with position �rk relative to the
origin of the inertial frame i. By setting up Newton’s law for each particle and summing
up we get the result (Goldstein 1980), (Kane and Levinson 1985)

m�ac = �F (r) (7.26)

where �F (r) is the resultant force on the system of particles, and �ac is the acceleration of
the center of mass.
The angular momentum of particle k about the center of mass is

�hk/c = (�rk − �rc)×mk�vk (7.27)



7.3. NEWTON-EULER EQUATIONS FOR RIGID BODIES 269
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Figure 7.2: Mass point subject to a force �F .

where �vk is the velocity of particle k and �rc is the position of the center of mass. With
reference to frame i, the time derivative of �hk/c is

id

dt
�hk/c = (�vk − �vc)×mk�vk + �rck ×mk�ak

= −�vc ×mk�vk + �rck ×mk�ak (7.28)

Summation over all particles leads to

id

dt
�hc = �Nc (7.29)

where (6.413) and (7.26) is used, and where

�hc =
NX
k=1

�rck ×mk�vk (7.30)

is the angular momentum of the system about the center of mass, and

�Nc =
NX
k=1

�rck × �Fk (7.31)

is the moment of the forces about the center of mass. This means that the time derivative
of the angular momentum about the center of mass is equal to the moment of the forces
about the center of mass.

7.3.2 Equations of motion for a rigid body

This result (7.26, 7.29) in the previous section was derived for a system of N particles.
The result can be generalized to a rigid body b by summing up the equations of motion for
mass elements dm of position �rp, velocity �vp and acceleration �ap. To simplify expressions
the set of forces and torques acting on the rigid body is represented by the equivalent
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set with a force �Fbc with line of action through the center of mass and magnitude equal
to the resultant force, and a torque �Tbc = �Nb/c that equals the moment about the center
of the mass. The equations of motion for a rigid body are then found from (7.26, 7.29)
to be

�Fbc = m�ac (7.32)

�Tbc =
id

dt
�hb/c (7.33)

where
�hb/c =

Z
b

�r × �vpdm (7.34)

is the angular momentum of the body b about the center of mass, and

�r = �rp − �rc (7.35)

is the position of the mass element relative to the center of mass. Using �vp = �vc+�ωib×�r,
this can be written

�hb/c =

Z
b

�rdm× �vc +

Z
b

�r × (�ωib × �r)dm

=

Z
b

�r × (�ωib × �r)dm

= −
Z
b

�r × (�r × �ωib)dm (7.36)

where we have used (6.417). By introducing the dyadic representation of the vector cross
product we may write this in the form

�hb/c = −
Z
b

�r× · (�r× · �ωib)dm = −
Z
b

�r× · �r×dm · �ωib (7.37)

This expression motivates the definition of the inertia dyadic of b about c as

�Mb/c = −
Z
b

�r× · �r×dm (7.38)

The angular momentum about c can then be written

�hb/c = �Mb/c · �ωib (7.39)

Insertion in (7.33) gives

�Tbc =
id

dt

³
�Mb/c · �ωib

´
=

bd

dt
( �Mb/c · �ωib) + �ωib × ( �Mb/c · �ωib) (7.40)

Finally it is used that �Mb/c is constant in b. This leads to the following result:

When referenced to the center of mass the equation of motion for a rigid body can be
written

�Fbc = m�ac (7.41)
�Tbc = �Mb/c · �αib + �ωib × ( �Mb/c · �ωib) (7.42)
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c
rg o

dm
r ŕ

Figure 7.3: Definition of the vectors �r, �r0 and �rg.

7.3.3 Equations of motion about a point

In important applications like ship dynamics and aeroplane dynamics the motion of the
body b is described in terms of translation of a fixed point o which is not the mass center,
and the rotation about the point o. In this case it is convenient to represent the forces
and the moments acting on a rigid body by an equivalent set with a force �Fbo = �Fbc
with line of action through the point o and magnitude equal to the resultant force, and
a torque

�Tbo = �Tbc + �rg × �Fbc (7.43)

where �rg = �rc − �ro is the vector from o to c as shown in Figure 7.3. We mention
the following result before proceeding towards a description where the dynamics are
referenced to a point o:

A mixed formulation of the equations of motion where the force and torque are referenced
to the point o and the acceleration and inertia dyadics are referenced to the mass center
is given by

�Fbo = m�ac (7.44)
�Tbo = �rg ×m�ac + �Mb/c · �αib + �ωib × ( �Mb/c · �ωib) (7.45)

Then the force equation can be referenced to the point o by combining (7.32) and
(6.410). This gives

�Fbo = m [�ao + �αib × �rg + �ωib × (�ωib × �rg)] . (7.46)

The torque equation involves the angular momentum about c, while we would like to
have an expression involving the angular momentum about o, which is given by

�hb/o =

Z
b

�r 0 × �vpdm (7.47)

where

�rp = �ro + �r 0 (7.48)

�vp = �vo + �ωib × �r 0 (7.49)
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Insertion of (7.49) into (7.47) leads to

�hb/o =

Z
b

�r 0dm× �vo +

Z
b

�r 0 × (�ωib × �r 0) dm

=

Z
b

(�rp − �ro) dm× �vo −
Z
b

�r 0 × (�r 0 × �ωib) dm

= �rg ×m�vo + �Mb/o · �ωib (7.50)

where the inertia dyadic �Mb/o of b about o is defined by

�Mb/o = −
Z
b

(�r 0)× · (�r 0)×dm (7.51)

Note that �Mb/o is constant in frame b. Time differentiation with respect to reference to
frame i gives

id

dt
�hb/o = (�vc − �vo)×m�vo + �rg ×m�ao +

bd

dt

³
�Mb/o · �ωib

´
+ �ωib × ( �Mb/o · �ωib)

= �vc ×m�vo + �rg ×m�ao + �Mb/o · �αib + �ωib × ( �Mb/o · �ωib) (7.52)

We may also express the angular momentum about o with the angular momentum
about c by combining (7.34), (7.47) and �r 0 = �r + �rg. This gives

�hb/o =

Z
b

(�r + �rg)× �vpdm = �hb/c +

Z
b

�rg × �vpdm (7.53)

= �hb/c + �rg ×m�vc (7.54)

which implies that
id

dt
�hb/o =

id

dt
�hb/c + �rg ×m�ac − �vo ×m�vc (7.55)

From this equation and (7.52) it follows that

id

dt
�hb/c = �rg ×m (�ao − �ac) + �Mb/o · �αib + �ωib × ( �Mb/o · �ωib) (7.56)

This result in combination with equations (7.32), (7.33) and (7.43) gives

�Tbo = �rg ×m�ao + �Mb/o · �αib + �ωib × ( �Mb/o · �ωib) (7.57)

With reference to a point o the equation of motion for a rigid body can be written

�Fbo = m [�ao + �αib × �rg + �ωib × (�ωib × �rg)] (7.58)
�Tbo = �rg ×m�ao + �Mb/o · �αib + �ωib × ( �Mb/o · �ωib) (7.59)

7.3.4 The inertia dyadic

The inertia dyadic of b about the center of the mass was defined as

�Mb/c = −
Z
b

�r× · �r×dm (7.60)
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From (6.73) the alternative expression

�Mb/c =

Z
b

(�r 2�I − �r�r)dm (7.61)

is found. The dyadic can be evaluated in the b frame and is written

�Mb/c =
3X
i=1

3X
j=1

mb
ij
�bi�bj (7.62)

Example 117 Consider a rigid body with a fixed coordinate frame b with orthogonal unit
vectors �b1, �b2 and �b3 that coincide with the main axes of inertia of the body b. Then the
inertia dyadic is

�Mb/c = m11
�b1�b1 +m22

�b2�b2 +m33
�b3�b3. (7.63)

where m11, m22 and m33 are constants. The angular velocity is written

�ωib = ω1�b1 + ω2�b2 + ω3�b3 (7.64)

where ωi = �ωib ·�bi is the component of �ωib along �bi. The angular momentum is then

�hb/c = (m11
�b1�b1 +m22

�b2�b2 +m33
�b3�b3) · (ω1�b1 + ω2�b2 + ω3�b3). (7.65)

As the unit vectors are orthogonal, it follows that �bi ·�bj = 0 for i 6= j, and �bi ·�bi = 1.
This gives

�hb/c = m11ω1�b1 + m22ω2�b2 +m33ω3�b3 (7.66)

Example 118 The kinetic energy of a rigid body is

K =
1

2

Z
b

�vp · �vpdm. (7.67)

Insertion of �vp = �vc + �ωib × �r gives

K =
1

2
m�vc

2 +
1

2

Z
b

(�ωib × �r) · (�ωib × �r)dm (7.68)

as �vc · �ωib ×
R
b
�rdm = 0. The last term on the right side is simplified using

1

2

Z
b

(�ωib × �r) · (�ωib × �r)dm = −1

2

Z
b

(�ωib × �r) · (�r × �ωib)dm

= −1

2

Z
b

�ωib · �r× · �r× · �ωibdm

= −1

2
�ωib ·

Z
b

�r× · �r×dm · �ωib

=
1

2
�ωib · �Mb/c · �ωib (7.69)

This leads to the following expression for the kinetic energy:

K =
1

2
m�vc

2 +
1

2
�ωib · �Mb/c · �ωib (7.70)
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Example 119 Using (7.49) the kinetic energy is found from the computation

K =
1

2

Z
b

�vp · �vpdm

=
1

2
m�vo · �vo + �vo ·

µ
�ωib ×

Z
b

�r 0dm
¶

+
1

2

Z
b

(�ωib × �r 0) · (�ωib × �r 0)dm

=
1

2
m�vo · �vo + �vo · (�ωib ×m�rg) +

1

2
�ωib · �Mb/o · �ωib (7.71)

to have the form

K =
1

2
m�vo · �vo − �vo ·m�r×g · �ωib +

1

2
�ωib · �Mb/o · �ωib (7.72)

7.3.5 The inertia matrix

The matrix representation of the inertia dyadic �Mb/c in frame b is the inertia matrix

Mb
b/c = −

Z
b

¡
rb
¢× ¡

rb
¢×

dm (7.73)

From (6.25) the more usual expression

Mb
b/c =

Z
b

h¡
rb
¢T

rbI− rb
¡
rb
¢T i

dm (7.74)

is found. The angular momentum of b about c can then be written in column vector
form as

hbb/c = Mb
b/cω

b
ib (7.75)

Equation (7.75) can be transformed to frame i using the transformation rule:

Ri
bh

b
ib = Ri

bM
b
b/cω

b
ib (7.76)

Insertion of ωb
ib = Rb

iω
i
ib gives

hiib = Ri
bM

b
b/cR

b
iω

i
ib (7.77)

Moreover, the inertia dyadic can also be represented by a matrix frame i using

Mi
b/c =

Z
b

h¡
ri
¢T

riI− ri
¡
ri
¢T i

dm (7.78)

which satisfies
hib/c = Mi

b/cω
i
ib (7.79)

Comparison of the two expressions (7.77) and (7.79) leads to the conclusion

Mi
b/c = Ri

bM
b
b/cR

b
i (7.80)

We see that the inertia matrix transforms from frame b to frame i by a similarity
transformation. This is to be expected as it is the matrix representation of a dyadic.
The generic element mb

ij of the dyadic is a second order tensor. Because of this the
inertia matrix is often referred to as the inertia tensor .

Example 120 The kinetic energy as given by (7.70) can be expressed in coordinate form
as

K =
1

2
m
¡
vbc
¢T

vbc +
1

2

¡
ωb
ib

¢T
Mb

b/cω
b
ib (7.81)

The second term is the kinetic energy due to rotation. As the kinetic energy is greater or
equal to zero, it follows that Mb

b/c is a positive definite matrix.
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co

Figure 7.4: Slender beam of length l.

7.3.6 Expressions for the inertia matrix

The inertia matrix is given by

Mb
b/c =

Z
b

£
(rb)2I− rb(rb)T

¤
dm (7.82)

in the body-fixed frame b. Let rb = (x, y, z)T . The the inertia matrix is then found to be

Mb
b/c =

Z
b

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dm (7.83)

Under the assumption that the b frame is fixed in the body b, the inertia matrix Mb
b/c

in the b frame is a constant matrix. In frame i we have Mi
b/c = Ri

b M
b
b/cR

b
i which will

not be constant if frame b is rotating relative to frame i.

7.3.7 The parallel axes theorem

The inertia dyadic about the point o is

�Mb/o = −
Z
b

(�r 0)× · (�r 0)×dm = −
Z
b

(�r + �rg)
× · (�r + �rg)

×dm

= −
Z
b

�r× · �r×dm− �r×g ·
µZ

b

�rdm

¶×
−
µZ

b

�rdm

¶×
· �r×g − �r×g · �r×g

Z
b

dm

Using (6.417) we find the following result:

The inertia dyadic of b about o is related to the inertia dyadic of b about c according to

�Mb/o = �Mb/c −m�rg
×�rg× = �Mb/c +m

h
(�rg · �rg)�I − �rg�rg

i
(7.84)

The corresponding matrix expressions is

Mb
b/o = Mb

b/c −m
¡
rbg
¢× ¡

rbg
¢×

= Mb
b/c +m

£
(rbg)

2I− rbg(r
b
g)
T
¤

(7.85)

This is the parallel axes theorem.

Example 121 A slender beam has length c and mass m. A coordinate frame b is fixed
in the beam with the x axis in the length axis of the beam as shown in Figure 7.4. The
mass element is set to be dm = (m/c)dx. The inertia matrix about the center of mass is

Mb
b/c =

 0 0 0

0 mc2

12 0

0 0 mc2

12

 (7.86)



276 CHAPTER 7. NEWTON-EULER EQUATIONS OF MOTION

The inertia matrix about the endpoint o of the beam is found from the parallel axes
theorem to be

Mb
b/o =

 0 0 0

0 mc2

12 0

0 0 mc2

12

+m

µ
c

2

¶2
I−

 m( c2)
2 0 0

0 0 0
0 0 0

 =

 0 0 0

0 mc2

3 0

0 0 mc2

3


Example 122 The kinetic energy of a rigid body can be expressed with reference to a
point o by

K =
1

2
m
¡
vbc
¢T

vbc +
1

2

¡
ωb
ib

¢T
Mb

b/cω
b
ib

=
1

2
m
¡
vbo + (ωb

ib)
×rbg

¢T ¡
vbo + (ωb

ib)
×rbg

¢
+

1

2

¡
ωb
ib

¢T
Mb

b/cω
b
ib

=
1

2
m
¡
vbc
¢T

vbc +m
¡
vbo
¢T

(rbg)
×Tωb

ib +m
¡
(ωb

ib)
×rbg

¢T
vbo

+
1

2

¡
ωb
ib

¢T ³
Mb

b/c −m
¡
rbg
¢× ¡

rbg
¢×´

ωb
ib

=
1

2

µ
vbo
ωb
ib

¶T Ã
mI m

¡
rbg
¢×T

m
¡
rbg
¢×

Mb
b/o

!µ
vbo
ωb
ib

¶
(7.87)

when the description is referenced to a fixed point o in the body. In the derivation the
rules a×b = −b×a and (a×b)

T
c = (c×b)

T
a are used.

7.3.8 The equations of motion for a rigid body

In this section we will sum up with different versions of the equations of motion for
a rigid body b where the resultant force is �F

(r)
b and the total moment on b about the

center of mass is �Nb/c. First we represent the forces and the moments by the equivalent

representation with a force �Fbc = �F
(r)
b with line of action through the center of mass c

in combination with a torque �Tbc = �Nb/c. The equations of motion are

�Fbc = m�ac (7.88)
�Tbc = �Mb/c · �αib + �ωib × ( �Mb/c · �ωib) (7.89)

In the b frame the coordinate form is written in matrix form as

µ
mI 0
0 Mb

b/c

¶µ
abc
αb
ib

¶
+

Ã
0¡

ωb
ib

¢×
Mb

b/c ω
b
ib

!
=

µ
Fb
bc

Tb
b/c

¶
(7.90)

In view of �ac =
bd
dt�vc + �ωib × �vc the equations of motion can be written

�Fbc = m
bd

dt
�vc +m�ωib × �vc (7.91)

�Tbc = �Mb/c · �αib + �ωib × ( �Mb/c · �ωib) (7.92)

or
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µ
mI 0
0 Mb

b/c

¶µ
v̇bc
αb
ib

¶
+

Ã
m
¡
ωb
ib

¢×
vbc¡

ωb
ib

¢×
Mb

b/c ω
b
ib

!
=

µ
Fb
bc

Tb
bc

¶
(7.93)

The representation of the forces and torques is changed to an equivalent representation
with a force �Fbo = �F

(r)
b with line of action through o in combination with a torque

�Tbo = �Tbc + �rg × �Fbc, where �rg is the vector from o to c. The equations of motion are
then

�Fbo = m[�ao + �αib × �rg + �ωib × (�ωib × �rg)] (7.94)
�Tb/o = �rg ×m�ao + �Mb/o · �αib + �ωib × ( �Mb/o · �ωib) (7.95)

In the special case where o is the center of mass, then �rg = �0, and the result is the same
as in (7.91, 7.92).
The coordinate form in the b frame is written in matrix form as

µ
mI m(rbg)

×T

m(rbg)
× Mb

b/o

¶µ
abo
αb
ib

¶
+

Ã
m(ωb

ib)
× ¡ωb

ib

¢×
rbg

(ωb
ib)

×Mb
b/oω

b
ib

!
=

µ
Fb
bo

Tb
bo

¶
(7.96)

Here it is used that �a × �b = −�b × �a for any two vectors �a and �b, and that (·)× =

− [(·)×]
T . Note that the leading matrix on the left side is symmetric and positive definite.

This matrix can be regarded as a mass matrix.
An alternative formulation is

�Fbo = m

·
bd

dt
�vo + �ωib × �vo + �αib × �rg + �ωib × (�ωib × �rg)

¸
(7.97)

�Tbo = m�rg ×
bd

dt
�vo +m�rg × (�ωib × �vo) + �Mb/o · �αib + �ωib × ( �Mb/o · �ωib) (7.98)

with matrix form

µ
mI m(rbg)

×T

m(rbg)
× Mb

b/o

¶µ
v̇bo
αb
ib

¶
+

µ
m(ωb

ib)
× £(ωb

ib)
×rbg + vbo

¤
(ωb

ib)
×Mb

b/oω
b
ib +m(rbg)

×(ωb
ib)

×vbo

¶
=

µ
Fb
bo

Tb
bo

¶

7.3.9 Satellite attitude dynamics

Suppose that the inertia matrix in the body-fixed frame b is

Mb
b/c = diag(m11,m22,m33). (7.99)

Then the angular momentum is

hbb/c = Mb
b/cω

b
ib =

 m11ω1
m22ω2
m33ω3

 . (7.100)



278 CHAPTER 7. NEWTON-EULER EQUATIONS OF MOTION

The torque Tb
bc = (T1, T2, T3)

T is acting on the body. The torque law is then

�Tbc =
id

dt
�hb/c =

id

dt

³
�Mb/c · �ωib

´
=

bd

dt

³
�Mb/c · �ωib

´
+ �ωib ×

³
�Mb/c · �ωib

´
(7.101)

The inertia dyadic is constant in the b frame, therefore

�Mb/c · �αib + �ωib ×
³
�Mb/c · �ωib

´
= �Tbc (7.102)

where (6.402) is used. With coordinate vectors this is written

Mb
b/cω̇

b
ib + (ωb

ib)
×Mb

b/cω
b
ib = Tb

bc. (7.103)

Written out in components the model is

m11ω̇1 + (m33 −m22)ω2ω3 = T1 (7.104)

m22ω̇2 + (m11 −m33)ω3ω1 = T2 (7.105)

m33ω̇3 + (m22 −m11)ω1ω2 = T3 (7.106)

7.4 Example: Ball and beam dynamics
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Figure 7.5: Ball and beam system.

In this section we will derive the equations of motion for a ball-and-beam system with
a ball that rolls in a track on a beam. To do this we start with the kinematics of the
system, and then combine the equations of motion for the ball and for the beam. We
fix a coordinate system b in the beam so that the xb axis is along the track, and the zb
axis is along the motor shaft. The orthogonal unit vectors �b1,�b2,�b3 are placed along the
xb, yb, zb axes. According to (6.103) the scalar products of the unit vectors of frames n
and b are related by

�n1 ·�b1 = cos θ, �n1 ·�b2 = − sin θ (7.107)

�n2 ·�b1 = sin θ, �n2 ·�b2 = cos θ (7.108)

�n3 ·�b1 = �n3 ·�b2 = 0, �n3 ·�b3 = 1 (7.109)

which implies that

�n1 = cos θ�b1 − sin θ�b2 (7.110)

�n2 = sin θ�b1 + cos θ�b2, (7.111)

�n3 = �b3 (7.112)
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We note that

�n1 ×�b1 = sin θ�b3, �n1 ×�b2 = cos θ�b3 (7.113)

�n2 ×�b1 = − cos θ�b3, �n2 ×�b2 = sin θ�b3 (7.114)

Note that �n2 is pointing vertically downwards so that the acceleration of gravity is
�g = g�n2. The beam is rotated with angular velocity �ω1 = θ̇�b3 by a motor so that
the track can be given an angle θ relative to the horizontal line, and the ball can be
made to roll along the beam. The system is shown in Figure 7.5.
The radius of the ball is R, and the position of the ball along the track is denoted by

x. The position of the center of the ball is

�r2 = x�b1 −R�b2.

The velocity is

�v2 =
bd

dt
�r + �ω1 × �r = ẋ�b1 + θ̇�b3 ×

³
x�b1 −R�b2

´
=
³
ẋ + θ̇R

´
�b1 + θ̇x�b2, (7.115)

and the acceleration is

�a2 =
bd

dt
�v2 + �ω1 × �v2

=
³
ẍ+ θ̈R

´
�b1 +

³
θ̈x+ θ̇ẋ

´
�b2 + θ̇�b3 ×

h³
ẋ + θ̇R

´
�b1 + θ̇x�b2

i
=

³
ẍ+ θ̈R− θ̇

2
x
´
�b1 +

³
θ̈x+ 2θ̇ẋ + θ̇

2
R
´
�b2. (7.116)

It follows that the ball rolls along the track with an angular velocity given by

�ω2 =

µ
θ̇ +

ẋ

R

¶
�b3 (7.117)

as it is assumed that the ball does not slide.
The kinematic equations have now been established, and we will now develop the

equations of motion. The mass of the ball is m, and the moment of inertia of the ball
about its center of inertia is

J2 =
2

5
m2R

2 (7.118)

which is tabulated in textbooks on dynamics. The contact force acting from the beam
on the ball is

�F = Fx�b1 + Fy�b2 (7.119)

while the gravitational force on the ball is

�G = m2g�n2 = m2g
³
sin θ�b1 + cos θ�b2

´
. (7.120)

It is noted that the contact torque between the ball and the beam is zero.
The angular momentum equation for the ball is (7.32)

�T2c = J2
nd

dt
�ω2 = J2

µ
θ̈ +

ẍ

R

¶
�b3 (7.121)
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It is convenient to use the moment

�N2/o =
³
−R�b2

´
× �G2 = m2Rg sin θ�b3 (7.122)

about the contact point between the ball and the beam in the equation of motion. The
reason for this is that the unknown constraint force Fx will not show up in the torque
in this case. From (7.45) the moment �N2/o and the torque �T2c are related through the
expression

�N2/o = �T2c +
³
−R�b2

´
×m2�a (7.123)

which gives

m2Rg sin θ = J2

µ
θ̈ +

ẍ

R

¶
+m2R

³
ẍ + θ̈R− θ̇

2
x
´

(7.124)

=
¡
J2 +m2R

2
¢
θ̈ +

µ
J2
R

+m2R

¶
ẍ−m2Rxθ̇

2
(7.125)

This is written¡
J2 +m2R

2
¢
θ̈ +

1

R

¡
J2 +m2R

2
¢
ẍ = m2Rxθ̇

2
+Rm2g sin θ (7.126)

By inserting the value of J2 from (7.118), we get¡
J2 +m2R

2
¢

=
7

5
m2R

2 (7.127)

The Newton’s law for the ball is

m2�a2 = �F + �G2 (7.128)

In the yb direction this gives

m2

³
θ̈x + 2θ̇ẋ+ θ̇

2
R
´

= Fy +m2g cos θ (7.129)

To proceed an expression for the contact force Fy from the beam on the ball is needed.
This can be found from the equation of motion for the beam. The contact force from
the ball on the beam in the yb direction is −Fy. In the equation of motion for the beam
this gives

J1θ̈�b3 = x�b1 × (−Fy�b2) + T�b3 (7.130)

which leads to
J1θ̈ = −xFy + T (7.131)

This equation is combined with (7.129), and the result is¡
J1 +m2x

2
¢
θ̈ = T +m2gx cos θ − 2m2xθ̇ẋ−m2θ̇

2
xR (7.132)

where T is the motor torque and Fy is the contact force in the yb direction.

The model of the ball and beam is given by¡
J1 +m2x

2
¢
θ̈ = T +m2gx cos θ − 2m2xθ̇ẋ−m2θ̇

2
xR (7.133)

¡
J2 +m2R

2
¢
θ̈ +

1

R

¡
J2 +m2R

2
¢
ẍ = m2Rxθ̇

2
+Rm2g sin θ (7.134)
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Example 123 The rate of change of the energy of the ball and beam system will be equal
to the power θ̇T supplied by the torque T . If the model does not satisfy this condition,
then the model is not correct, which provides us with a method to check the validity of
the model. The total energy of the system is

V =
1

2
J1�ω1 · �ω1 +

1

2
J2�ω2 · �ω2 +

1

2
m2�v2 · �v2 +m2g (−x sin θ +R cos θ)

=
1

2
J1θ̇

2
+

1

2
J2

µ
θ̇ +

ẋ

R

¶2
+

1

2
m2

µ³
ẋ + θ̇R

´2
+
³
θ̇x
´2¶

+m2g (−x sin θ +R cos θ) (7.135)

The time derivative along the solutions of the system is

V̇ = θ̇J1θ̈ +

µ
θ̇ +

ẋ

R

¶
J2

µ
θ̈ +

ẍ

R

¶
+
³
ẋ + θ̇R

´
m2

³
ẍ + θ̈R

´
+θ̇xm2θ̈x + θ̇xm2θ̇ẋ−m2g

³
ẋ sin θ + xθ̇ cos θ +Rθ̇ sin θ

´
= θ̇

¡
J1 +m2x

2
¢
θ̈ +

µ
θ̇ +

ẋ

R

¶¡
J2 + m2R

2
¢µ

θ̈ +
ẍ

R

¶
+ m2xẋθ̇

2

−m2g
³
ẋ sin θ + xθ̇ cos θ +Rθ̇ sin θ

´
= θ̇T (7.136)

This result shows that the model is consistent with the energy flow in the system.

Example 124 Insertion of ω2 = θ̇ + ẋ/R gives a diagonal mass matrix:¡
J1 +m2x

2
¢
θ̈ = T +m2gx cos θ − 2m2xθ̇ẋ−m2θ̇

2
xR (7.137)

7

5
m2R

2ω̇2 = Rm2θ̇
2
x +Rm2g sin θ (7.138)

Example 125 If the radius of the ball becomes small, that is, when R → 0, then the
model becomes ¡

J1 +mvx2
¢
θ̈ = T +m2gx cos θ − 2mvxθ̇ẋ (7.139)

7

5
m2ẍ = m2θ̇

2
x+m2g sin θ (7.140)

Example 126 Linearization about θ̇ = 0, θ = 0, ẋ = 0 and x = 0 gives

J1θ̈ = T + m2gx (7.141)

ẍ =
5

7
gθ (7.142)

which gives
d4

dt4
x =

1

J1
m2gx +

5

7

g

J1
T (7.143)

7.5 Example: Inverted pendulum

7.5.1 Equations of motion

Consider a pendulum on a cart as shown in Figure 7.6. The mass of the cart is mv, the
position of the cart is x, and the force on the cart is F . The pendulum is a point mass



282 CHAPTER 7. NEWTON-EULER EQUATIONS OF MOTION

mp
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Figure 7.6: Inverted pendulum.

mb at the end of a massless rod of length Lb. The angle of the pendulum is denoted θb,
which is zero at the upright position.
To derive the equations of motion for the system we will first describe the kinematics

of the system by assigning coordinate frames n and b to describe the motion of the cart
and the pendulum, and then derive kinematic equations for the unit vectors of frames
n and b. A non-moving coordinate frame n is defined with unit vector �n1 along the
motion of the cart, with �n2 in the vertical downwards direction and �n3 along the axis of
rotation. A frame b is fixed to the pendulum. The rotation matrix is Rn

b = Rz,θb which
is a rotation by an angle θb about the axis defined by �n3 = �b3. The angular velocity of
the pendulum is �ωb = θ̇b�n3 = θ̇b�b3. The relation between the unit vectors in frames n
and b is as given in Section 7.4.
The next step in the derivation of the equations of motion is to derive kinematic

equations for position, velocity and acceleration. The position of the point mass m1 is

�rb = x�n1 − Lb�b2 (7.144)

The velocity is found to be

�vb =
nd�rb
dt

= ẋ�n1 − θ̇b�b3 × Lb�b2 = ẋ�n1 + θ̇bLb�b1 (7.145)

and acceleration is

�ab = ẍ�n1 + θ̈bLb�b1 + θ̇b�b3 × θ̇bL�b1 = ẍ�n1 + θ̈bLb�b1 + θ̇
2

bLb
�b2 (7.146)

At this stage, the kinematic model has been established, and the equations of motion
can be derived. This is done by combining Newton’s law for the point mass and for the
cart, and with the torque law for the pendulum. Newton’s law for the point mass gives

mb�ab = �Fb +mg�n2 (7.147)

where g is the acceleration of gravity. In the �n1 direction this gives

mb

³
ẍ+ θ̈bLb cos θb − θ̇

2

bLb sin θb

´
= �Fb · �n1 (7.148)
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Newton’s law for the cart gives

mvẍ = F − �Fb · �n1 (7.149)

Combination of the two equations gives

(mv + mb)ẍ+mbLbθ̈b cos θb −mbθ̇
2

bLb sin θb = F (7.150)

The torque law for the pendulum about the connection point is according to (7.45)

−Lb�b2 ×mbg�n2 = −Lb�b2 ×mb

³
ẍ�n1 + θ̈bLb�b1 − θ̇bLb�b2

´
(7.151)

where �rg = −Lb�b2 in the notation of (7.45). The component of this equation in the �n3
direction is

mbLbg sin θb = mbLbẍ cos θb +mbL
2
b θ̈b (7.152)

The model for the cart and pendulum has then been found to be

(mv +mb)ẍ+mbLbθ̈b cos θb = mbθ̇
2

bLb sin θb + F (7.153)

mbL
2
b θ̈b +mbLbẍ cos θb = mbLbg sin θb (7.154)

where F is the external force acting on the cart.

Example 127 The rate of change of the energy in the system is equal to the power Fẋ
supplied by the external force F . We will now check if the model is consistent with this
observation. The total energy of the system is

V =
1

2
mvẋ

2 +
1

2
mb�vb · �vb +mbgLb cos θb

=
1

2
mvẋ

2 +
1

2
mb(ẋ

2 + 2Lb cos θbẋθ̇b + θ̇
2

bL
2
b) +mbgLb cos θb (7.155)

The time derivative of the energy along the solutions of the system is

V̇ = ẋ
h
(mv +mb)ẍ +mbLb cos θbθ̈b

i
+ θ̇b

³
mbL

2
b θ̈b +mbLb cos θbẍ

´
−Lbmb sin θbẋθ̇

2

b −mbgLbθ̇b sin θb

= ẋ
³
mbθ̇

2

bLb sin θb + F
´

+ θ̇bmbLbg sin θb − Lbmb sin θbẋθ̇
2

b −mbgLbθ̇b sin θb

= Fẋ (7.156)

This shows that the model is consistent with the energy flow of the system.

Next we combine the cart and pendulum model with the motor model. The cart is
controlled with a current controlled DC motor with dynamics given by

Jmθ̈m = KTu− TL (7.157)

where θm is the motor angle, u is the input, KT is the torque constant, Jm is the inertial
of the motor, and TL is the load torque from the cart. The motor is connected to the cart
with a string that runs over a pulley fixed to the motor axis. The radius of the pulley is
r, and it follows that

TL = rF, ẋ = rθ̇m (7.158)



284 CHAPTER 7. NEWTON-EULER EQUATIONS OF MOTION

which gives
Jm
r2

ẍ =
KT

r
u− F (7.159)

It is observed that the cart and pendulum is driven by the motor through a port with
effort F and and flow ẋ. The effortF is input to the cart and pendulum model, and the
flow ẋ is output. At the same time the motor model has input F and output ẋ. This
means that the inputs and the outputs of the port interconnection are incompatible, so
that the equations must be combined by adding equations (7.153) and (7.159). This gives

(m +mb)ẍ +mbLb cos θbθ̈b −mbθ̇
2

bLb sin θb =
KT

r
u (7.160)

where m = mv + Jm/r
2.

The model of cart, pendulum and motor is

(m +mb)ẍ +mbLb cos θbθ̈b −mbθ̇
2

bLb sin θb =
KT

r
u (7.161)

mbL
2
b θ̈b +mbLbẍ cos θb = mbLbg sin θb (7.162)

7.5.2 Double inverted pendulum

m

x

mv

r

mb

mc

b

c

Figure 7.7: Double inverted pendulum.

A double pendulum system is obtained by adding one more pendulum to the cart
and pendulum system as shown in Figure 7.7. The variables of the second pendulum are
denoted with a subscript c. The position of the point mass mc of the second pendulum
is

�rc = x�n1 − Lc�c2 (7.163)

The velocity is
�vc = ẋ�n1 + θ̇cLc�c1 (7.164)
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and acceleration is
�ac = ẍ�n1 + θ̈cL�c1 + θ̇

2

cLc�c2 (7.165)

Newton’s law for the point mass of the second pendulum gives

mc

³
ẍ + θ̈cLc cos θc − θ̇

2

cLc sin θc

´
= �Fc · �n1 (7.166)

Newton’s law for the cart is modified by one additional term, which is due to the contact
force from the second pendulum. This gives

mvẍ = F − �Fb · �n1 − �Fc · �n1 (7.167)

The torque law for the second pendulum about the connection point is

mcLcg sin θc = mcLcẍ cos θc +mcL
2
c θ̈c (7.168)

The model for a cart and two pendulums then is found to be

(mv +mb +mc)ẍ +mbLbθ̈b cos θb +mcLcθ̈c cos θc

−mbθ̇
2

bLb sin θb −mcθ̇
2

cLc sin θc = F (7.169)

mbL
2θ̈b +mbLẍ cos θb = mbLbg sin θb (7.170)

mcL
2
c θ̈c +mcLcẍ cos θc = mcLcg sin θc (7.171)

The motor model is included by inserting

F =
KT

r
u− Jm

r2
ẍ (7.172)

7.6 Example: The Furuta pendulum
The Furuta pendulum is a laboratory example where a rotational joint with vertical axis
of rotation is used to balance an inverted pendulum (Aström and Furuta 2000). The
inertial frame n is defined with the �n3 axis vertically upwards. The frame b is obtained
by a rotation θ1 about the �n3 vector, and the frame c is obtained by a rotation θ2 about
the �b2 axis (Figure 7.8). According to (6.103) the frames n and b have direction cosines

�n1 ·�b1 = cos θ1, �n1 ·�b2 = − sin θ1 (7.173)

�n2 ·�b1 = sin θ1, �n2 ·�b2 = cos θ1 (7.174)

�n1 ·�b3 = �n2 ·�b3 = �n3 ·�b1 = �n3 ·�b2 = 0, �n3 ·�b3 = 1 (7.175)

and the unit vectors of frame b and frame c have direction cosines

�b1 · �c1 = cos θ2, �b1 · �c3 = sin θ2 (7.176)
�b1 · �c2 = �b3 · �c2 = �b2 · �c1 = �b2 · �c3 = 0, �b2 · �c2 = 1 (7.177)
�b3 · �c1 = − sin θ2, �b3 · �c3 = cos θ2 (7.178)

It is noted that

�b1 = cos θ2�c1 + sin θ2�c3 (7.179)
�b3 = − sin θ2�c1 + cos θ2�c3 (7.180)
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n1
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m
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Figure 7.8: Coordinate frames n, b and c used in the description of the Furuta pendulum.

and that

b1 × �c3 = − cos θ2�c2 (7.181)
�b3 × �c1 = cos θ2�c2, �b3 × �c2 = − cos θ2�c1 − sin θ2�c3, �b3 × �c3 = sin θ2�c2(7.182)

The acceleration of gravity is �g = −g�n3. The first link is rotated with angular velocity

�ω1 = θ̇1�b3 (7.183)

and the second link is rotated with angular velocity

�ω2 = θ̇1�b3 + θ̇2�c2 (7.184)

The position of the mass
�r = L1�b2 + L2�c3

The velocity is

�v = L1θ̇1�b3 ×�b2 + L2

³
θ̇1�b3 + θ̇2�c2

´
× �c3

= −L1θ̇1�b1 + L2θ̇1 sin θ2�c2 + L2θ̇2�c1 (7.185)

and the acceleration is

�a = −L1θ̈1�b1 + L2θ̈1 sin θ2�c2 + L2θ̇1θ̇2 cos θ2�c2 + L2θ̈2�c1

−L1θ̇1θ̇1�b3 ×�b1 +
³
θ̇1�b3 + θ̇2�c2

´
×
³
L2θ̇1 sin θ2�c2 + L2θ̇2�c1

´
= −L1θ̈1�b1 + L2θ̈1 sin θ2�c2 + L2θ̇1θ̇2 cos θ2�c2 + L2θ̈2�c1

−L1θ̇21�b2 − L2θ̇
2

1 sin θ2 (cos θ2�c1 + sin θ2�c3) + L2θ̇1θ̇2 cos θ2�c2 − L2θ̇
2

2�c3
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which gives

�a = −L1θ̈1�b1 +
³
L2θ̈1 sin θ2 + 2L2θ̇1θ̇2 cos θ2 − L1θ̇

2

1

´
�b2

+
³
L2θ̈2 − L2θ̇

2

1 sin θ2 cos θ2

´
�c1 −

³
L2θ̇

2

1 sin2 θ2 + L2θ̇
2

2

´
�c3 (7.186)

The kinematic equations have now been established, and we will develop the equations
of motion. Newton’s law for the mass gives

�F = m�a

where F is the force on link 2 from link 1. The the torque law for the first angle is

T = J1θ̈1 + (�r ×m�a) ·�b3 (7.187)

After some relative extensive vector calculations we may find that

(�r ×m�a) ·�b3 =
h³
L1�b2 + L2�c3

´
×m�a

i
·�b3

= mL21θ̈1 −mL1L2 cos θ2θ̈2 +mL1L2θ̇
2

2 sin θ2

+mL22θ̈1 sin2 θ2 + 2mL22θ̇1θ̇2 sin θ2 cos θ2 (7.188)

This gives the equation of motion

J1θ̈1 +mL21θ̈1 +mL22 sin2 θ2θ̈1 −mL1L2 cos θ2θ̈2

= T −mL1L2θ̇
2

2 sin θ2 − 2mL22θ̇1θ̇2 sin θ2 cos θ2 (7.189)

The equation of motion for the second link is found from

L2�c3 × (−mg�b3) = L2�c3 ×m�a (7.190)

where �rg = L2�c3 in the notation of (7.95). The component of (7.190) in the �c2 direction
is

L2mg sin θ2 = mL2�c3 ×
³
−L1θ̈1�b1 + L2θ̈2�c1 − L2θ̇

2

1 sin θ2 cos θ2�c1

´
· �c2 (7.191)

which is simplified to

L2mg sin θ2 = mL22θ̈2 −mL1L2 cos θ2θ̈1 −mL22θ̇
2

1 sin θ2 cos θ2 (7.192)

We may then conclude as follows:

The dynamic model of the Furuta pendulum is

(J1 +mL21 +mL22 sin2 θ2)θ̈1 −mL1L2 cos θ2θ̈2

= T −mL1L2θ̇
2

2 sin θ2 − 2mL22θ̇1θ̇2 sin θ2 cos θ2 (7.193)

−mL1L2 cos θ2θ̈1 +mL22θ̈2 = mL22θ̇
2

1 sin θ2 cos θ2 +mL2g sin θ2 (7.194)
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Example 128 The derivation of the dynamic model of the Furuta pendulum is quite
complicated, and it is important to check for errors in the model. This can be done by
investigating if the model satisfies the energy flow requirement that the time derivative
of the total energy is equal to the power θ̇1T supplied by the motor torque T . The total
energy is the kinetic energy of the first rotational link, the kinetic energy of the mass,
and the potential energy due to gravity. This gives

V =
1

2
J1θ̇

2

1 +
1

2
m�v · �v +mgL2 cos θ2

=
1

2
J1θ̇

2

1 +
1

2
m
³
L21θ̇

2

1 + L22 sin2 θ2θ̇
2

1 + L22θ̇
2

2 − 2L1L2θ̇1θ̇2 cos θ2

´
+mgL2 cos θ2

=
1

2
(J1 +mL21 + mL22 sin2 θ2)θ̇

2

1 +
1

2
mL22θ̇

2

2

−mL1L2θ̇1θ̇2 cos θ2 +mgL2 cos θ2 (7.195)

The time derivative for the solutions of the system is

V̇ = θ̇1

h
(J1 +mL21 +mL22 sin2 θ2)θ̈1 −mL1L2θ̈2 cos θ2

i
+θ̇2

³
mL22θ̈2 −mL1L2θ̈1 cos θ2

´
+mL1L2θ̇1θ̇

2

2 sin θ2 +mL22θ̇
2

1θ̇2 sin θ2 cos θ2 − θ̇2mgL2 sin θ2

= θ̇1

³
T −mL1L2θ̇

2

2 sin θ2 − 2mL22θ̇1θ̇2 sin θ2 cos θ2

´
+θ̇2

³
mL22θ̇

2

1 sin θ2 cos θ2 +mL2g sin θ2

´
+mL1L2θ̇1θ̇

2

2 sin θ2 +mL22θ̇
2

1θ̇2 sin θ2 cos θ2 − θ̇2mgL2 sin θ2

= θ̇1T (7.196)

This shows that the model is consistent with the energy flow dynamics.

7.7 Principle of virtual work

7.7.1 Introduction

The equations of motion give the relation between the forces and torques acting on the
system and the resulting accelerations. There are two classes of forces that are important
in this connection: The active forces, which are also termed actuator forces, and the
forces of constraint. In the design of a control system we are mainly concerned with the
actuator forces, which can be command to achieve a specified motion. In contrast to this,
the main concern in a mechanical design will be the forces of constraint, which are forces
that ensure that the mechanical system is not damaged, and which ensure the system
does not break into parts. The following examples illustrate the contrast between the
two classes of forces:

• In the design of a robot control system we are interested in the motor torques
required for a desired acceleration. In the mechanical design of a robot it is different,
then it is important that the forces of constraint that appear in the bearings of the
joints are within acceptable limits so that the joint is not damaged. Note that as
long as the robot joints are intact, the forces of constraint are not relevant in the
control systems design.
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• In speed control of a train the control problem is to set up an engine force that
give a desired acceleration. The mechanical design problem is to ensure that the
tracks and the wheels can support the forces of constraint, which in this case are
the forces required to keep the train on the track.

• For a football player the motion control problem is to use the muscles of the leg
to set up active forces that result in a desired motion. For the knee the muscles
will provide the active forces that rotate the knee about its axis of rotation. The
forces of constraint will keep the knee join together so that is not damaged. As
long as the joint is strong enough, the football player need not be concerned about
the forces of constraint.

From this we get the idea that in the design of control systems we need not know the
forces of constraint to get the solutions we are seeking. It turns out that it may be quite
complicated to derive the forces of constraint, and therefore it seems to be attractive
to find a way to eliminate the forces of constraint from the equations of motion. The
principle of virtual work is a tool that allows us to do this, but first we have to introduce
generalized coordinates and the concept of virtual displacements.

7.7.2 Generalized coordinates

Consider N particles numbered by k = 1, . . . , N . Each particle is of mass mk and has
position

�rk = xk�i1 + yk�i2 + zk�i3 (7.197)

in an Newtonian coordinate frame i with orthogonal unit vectors�i1,�i2,�i3 along the axes.
The position vectors �rk define the configuration of the system. The resultant force on
each particle is �F

(r)
k . Newton’s law for each particle is given by

mk
d2

dt2
�rk = �F

(r)
k (7.198)

Note that all differentiations of vectors are done in the Newtonian frame i in this section.
Adding over all particles gives

NX
k=1

mk
d2

dt2
�rk =

NX
k=1

�F
(r)
k (7.199)

Suppose that there is an n-dimensional column vector q = (q1, . . . , qn)T so that the
position �rk of all particles are given as functions of q and t, that is,

�rk = �rk [q(t), t] (7.200)

Then the variables q1, . . . , qn are called the generalized coordinates of the system. If
n is the minimum number of generalized coordinates that define the configuration of
the system, then q1, . . . , qn will in addition be termed the minimal coordinates. The
n-dimensional space described by the generalized coordinates is called the configuration
space of the system.
The velocity of particle k can be expressed in terms of the generalized coordinates

according to

�vk =
d

dt
�rk =

nX
i=1

∂�rk
∂qi

q̇i +
∂�rk
∂t

(7.201)
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Example 129 For later use we note that (7.201) implies that partial differentiation of
�vk with respect to q̇i gives

∂�vk
∂q̇i

=
∂�rk
∂qi

(7.202)

Moreover, we find that by interchanging derivation with respect to qi and t that

∂�vk
∂qi

=
∂

∂qi

d�rk
dt

=
d

dt

∂�rk
∂qi

(7.203)

7.7.3 Virtual displacements

We now introduce the concept of virtual displacements which is very important in dy-
namics. The virtual displacement δ�rk of particle k is defined by

δ�rk =
nX
i=1

∂�rk
∂qi

δqi (7.204)

where δqi is the virtual displacement in the generalized coordinate qi. If the time deriva-
tives q̇i of the generalized coordinates are independent, then the virtual displacements
δqi are linearly independent, and there are n independent virtual displacements δ�rk, and
the system is said to have n degrees of freedom.
If there is a linear constraint on the generalized velocities q̇i given by

A(q)q̇ = 0 (7.205)

then the virtual displacements of the generalized coordinates will satisfy

A(q)δq = 0 (7.206)

where δq = (δq1, . . . , δqn)T . If the null-space of A(q) has dimension ndof ≤ n, which
means that there are ndof independent generalized velocities q̇i, then there are ndof
independent virtual displacements δ�rk and the system is said to have ndof degrees of
freedom.

7.7.4 d’Alembert’s principle

From the outset there are N particles, each with three coordinates, hence, if the particles
are moving independently of each other, then a system of N particles will have 3N
degrees of freedom. However, to satisfy constraints of the form �rk = �rk [q(t), t] where the
velocities q̇i are independent, the system will have only n degrees of freedom. To make
these constraints hold there must be certain forces acting on the particles. Such forces
can be characterized in a number of ways, but it turns out to appropriate to define forces
of constraints �F

(c)
k that satisfy the principle of virtual work which is given by

NX
k=1

δ�rk · �F (c)k = 0 (7.207)

Here �F
(c)
k is the force of constraint acting on particle k. Then the resultant force on

particle k is given by
�F
(r)
k = �F

(c)
k + �Fk (7.208)
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Actuators System Constraint
mechanism

F k

d
dt
rk

F k
c

d
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rk

Figure 7.9: A mechanical system is driven by actuators that set up active forces �Fk acting
on the system. In addition there is a constraint mechanism that set up constraint forces
�F
(c)
k that ensures that the system does not break in parts. It simplifies the equation of
motion greatly if the forces of constraint are formulated so that they do not influence on
the action of the active forces, which is achieved by the principle of virtual work. The
forces of constraint can then be eliminated from the equations of motion.

where �Fk is the active force on particle k.
The principle of virtual work can now be used to eliminate the forces of constraint

�F
(c)
k from the equation of motion. This is done by taking the scalar product between the
equation of motion for particle k and the virtual displacement δ�rk, and then summing
over all particles. This gives

NX
k=1

δ�rk ·mk
d2�rk
dt2

=
NX
k=1

δ�rk · �F (c)k +
NX
k=1

δ�rk · �Fk

=
NX
k=1

δ�rk · �Fk (7.209)

and we arrive at the following formulation of the equation of motion

NX
k=1

δ�rk ·
µ
mk

d2�rk
dt2
− �Fk

¶
= 0 (7.210)

which is called d’Alembert’s principle. Note that the only forces appearing in this for-
mulation are the externally applied forces �Fk.
If we insert the expression for δ�rk from (7.204) and change the order of the summation,

we find that
nX
i=1

δqi

NX
k=1

∂�rk
∂qi

·
µ
mk

d2�rk
dt2
− �Fk

¶
= 0 (7.211)

If the virtual displacements δqi in the generalized coordinates are independent, then
d’Alembert’s principle can be written

NX
k=1

∂�rk
∂qi

·
µ
mk

d2�rk
dt2
− �Fk

¶
= 0 (7.212)

Example 130 A train is running along a railway. The generalized coordinate of the
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Figure 7.10: Train running along a track r (q, t) where the track has a velocity ∂r/∂t
due to the rotation of the earth. The virtual displacement δr is along the track, and the
force of constraint F(c) is perpedicular to the track in accordance with the principle of
virtual work.

train is the position coordinate along the railway track, which is denoted q. The position
of the train in a Newtonian coordinate frame is �r (q, t), and the velocity of the train is

�v=
d�r

dt
=

∂�r

∂q
q̇ +

∂�r

∂t
(7.213)

Here the first term on the right side is due to the motion along the track, and the other
term is due to the rotation of the earth. The virtual displacement of the train is defined
as

δ�r =
∂�r

∂q
δq (7.214)

which is a vector tangent to the track. The train is subjected to the resultant force
�F (r)=�F + �F (c) where �F (c) is the constraint force that keeps the train on the track, and
�F is the motor and braking force that controls the velocity of the train. The principle of
virtual work then simply states that

δ�r · �F (c) = 0 (7.215)

The physical interpretation of this is that �F (c) is normal to the track because δ�r is tangent
to the track. This is illustrated in Figure 7.10.

Example 131 In coordinate form we have

δrk = Jkδq (7.216)

The principle of virtual work states that for all δq we have

0 =
NX
k=1

δrTkF
(c)
k = δqT

NX
k=1

JTkF
(c)
k (7.217)
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This means that the constraint force F
(c)
k satisfies

NX
k=1

JTkF
(c)
k = 0 (7.218)

which shows that F
(c)
k is in the null-space of JT , while the active force Fk is the part of

the resultant force F
(r)
k = Fk +F

(c)
k that is in the range space of Jk. Extensive treatment

of null-spaces and range space is found in (Strang 1988).

7.8 Principle of virtual work for a rigid body

7.8.1 Virtual displacements for a rigid body

The configuration of a rigid body b can be given by a rotation matrix Ri
b and a position

�rc of the center of the mass. The velocity is given by the velocity �vc of the center of
mass and the angular velocity �ωib of frame b relative to frame i. The forces and moments
acting on the rigid body are represented by a force �Fbc with line of action through the
mass center, and a torque �Tbc. The force �Fbc can be split into an active force �F

(a)
bc and

a constraint force �F
(c)
bc . In the same way the �Tbc can be described as a sum of an active

torque �T
(a)
bc and a constraint torque �T

(c)
bc so that

�Fbc = �F
(a)
bc + �F

(c)
bc , �Tbc = �T

(a)
bc + �T

(c)
bc (7.219)

The constraint force �F (c)b and the constraint torque �T (c)b can be eliminated with the princi-
ple of virtual work. To do this we will have to define virtual displacements corresponding
to the velocity �vc and the angular velocity �ωib.
It is assumed that the configuration of the body is described by n ≤ 6 generalized

coordinates qj . Then the velocity and angular velocity are given by

�vc =
nX
j=1

�vc,j q̇j + �vt (7.220)

�ωib =
nX
j=1

�ωib,j q̇j + �ωt (7.221)

where

�vc,j =
∂�rc
∂qj

=
∂�vc
∂q̇j

, �ωib,j =
∂�ωib
∂q̇j

(7.222)

Following the terminology of (Kane and Levinson 1985), �vc,j is called partial velocity
j and �ωib,j is called partial angular velocity j. The virtual displacements may then be
defined by

δ�rc =
nX
j=1

�vc,jδqj (7.223)

�σib =
nX
j=1

�ωib,jδqj (7.224)
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Example 132 If the configuration is given partly in terms of a rotation matrix, then it
may not be convenient to use generalized coordinates. In this case the use of generalized
velocities uj will serve our purpose. Then the velocity and angular velocity is given by

�vc =
nX
j=1

�vc,juj + �vt (7.225)

�ωib =
nX
j=1

�ωib,juj + �ωt (7.226)

where the partial velocities and the partial angular velocities are given by

�vc,j =
∂�vc
∂uj

, �ωib,j =
∂�ωib
∂uj

(7.227)

In this case the virtual displacements can be defined by

δ�rc =
nX
j=1

�vc,jζj (7.228)

�σib =
nX
j=1

�ωib,jζj (7.229)

where ζj are independent variables.

Example 133 In a description using the velocity �vo of a point o in the rigid body the
partial velocities �vo,j = ∂�vo/∂q̇j will be needed in the virtual displacements

δ�ro =
nX
j=1

�vo,jδq̇j (7.230)

of the point o. The virtual displacements in rotation are the same as when the velocity
of the center of mass is used.

7.8.2 Force and torque of constraint

The mechanical power of a mass force �fdm acting on the point p in a rigid body b is
dPm = �vp · d�f . The resulting power Pm from the mass forces on the body b is found by
integrating dPm over the body b using the expression �vp = �vc + �ωib × �r. The result is

Pm =

Z
b

�vp · d�f =

Z
b

(�vc + �ωib × �r) · d�f = �vc · �F (r) + �ωib · �Nb/c (7.231)

where �F (r) is the resultant force on the body b, and �Nb/c is the moment on the body b

about the center of the mass. As usual we will represent �F (r) and �Nb/c by the equivalent
description where �Fbc is a force vector equal to the resultant force and that has line of
action through the center of mass, and �Tbc is a torque that is equal to the moment of the
forces about the center of mass. The power supplied to a rigid body is then given by

P = �vc · �Fbc + �ωib · �Tbc (7.232)
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The force �Fbc is given as a sum of an active force �F
(a)
bc and a constraint force �F

(c)
bc , and in

the same way the torque �Tbc is the sum of an active torque �F
(a)
bc and a constraint torque

�T
(c)
bc . This is written

�Fbc = �F
(a)
bc + �F

(c)
bc , �Tbc = �T

(a)
bc + �T

(c)
bc (7.233)

According to the principle of virtual work the force of constraint �F
(c)
bc and the torque of

constraint �T (c)bc on a rigid body satisfy

δ�rc · �F (c)bc + �σib · �T (c)bc = 0 (7.234)

where δ�rc and �σib are the virtual displacements defined by (7.223 and (7.224).

7.9 Multi-body dynamics and virtual work

7.9.1 Introduction

The principle of virtual work can be used to derive the equations of motion for a wide
range of mechanical systems. The method is more systematic than a straightforward
application of the Newton-Euler equations as it provides a systematic procedure for elim-
inating the forces and torques of constraint. The physical interpretation of the method is
that the equations of motion are projected into the directions associated with the gener-
alized speeds of the system. This may give significant simplification in the derivation of
the equations of motion as it leaves out expressions pertaining to the directions associated
with the forces of constraint. In the following the principle of virtual work will be used
to derive the equations of motion for multi-body systems. This includes manipulators,
the ball and beam system, inverted pendulums and the Furuta pendulum.
The principle of virtual work in the derivation of equations of motion has a long

tradition in mechanics that stems back to d’Alembert and Euler. Recently the this
method has been treated extensively in (Kane et al. 1983) and (Kane and Levinson 1985),
and the method presented in this section is based on these references.

7.9.2 Equations of motion

In this section we will investigate the dynamics of a multi-body system in the form of nb
interconnected rigid bodies. The system has n generalized coordinates q1, . . . , qn that may
be angles or translations. The generalized coordinates are assumed to be independent of
each other, which implies that the virtual displacements δqj are independent. Frame k
is assumed to be fixed in rigid body k of the system. Rigid body k has mass mk, inertia
dyadic �Mk/c about the center of mass, and angular velocity �ω0k relative to the stationary
base frame 0. The center of mass in body k has velocity �vck and acceleration �ack.
The velocity and the angular velocity of body k are given in terms of the generalized

coordinates by

�vck =
nX
j=1

�vck,j q̇j , �ω0k =
nX
j=1

�ω0k,j q̇j (7.235)

and the virtual displacements are then given by

δ�rck =
nX
j=1

�vck,jδqj , �σok =
nX
j=1

�ω0k,jδqj (7.236)
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where δqj are independent variables that can be selected arbitrarily.
The forces and moments acting on body k are represented by the equivalent descrip-

tion with a force �Fkc acting through the center of mass, and a torque Tkc. The force and
the torque are split into an active part and a constraint part according to

�Fkc = �F
(a)
bc + �F

(c)
bc , �Tkc = �T

(a)
bc + �T

(c)
bc (7.237)

The equations of motion for the rigid body can then be written

mk�ack − �F
(a)
kc − �F

(c)
kc = �0 (7.238)

�Mk/c · �α0k + �ω0k × ( �Mk/c · �ω0k)− �T
(a)
kc − �T

(c)
kc = �0 (7.239)

From the equations of motion it follows that

0 = δ�rck ·
³
m�ack − �F

(a)
kc − �F

(c)
kc

´
+�σ0k ·

³
�Mk/c · �α0k + �ω0k × ( �Mk/c · �ω0k)− �T

(a)
kc − �T

(c)
kc

´
(7.240)

for body k.
The power supplied to the multi-body system from the forces �Fkc and torques �Tkc is

P =
nX

k=1

³
�vck · �Fkc + �ω0k · �Tkc

´
(7.241)

where the result is obtained by summing up the power supplied to each rigid body.
According to the principle of virtual work the forces and torques of constraint satisfy

nX
k=1

³
δ�rck · �F (c)kc + �σ0k · �T (c)kc

´
= 0 (7.242)

From this result it is seen that the forces and torques of constraint can be eliminated by
summing up the equations (7.240) for all k, which gives

nX
k=1

h
δ�rck ·

³
mk�ack − �F

(a)
kc

´
+ �σ0k ·

³
�Mk/c · �α0k + �ω0k × ( �Mk/c · �ω0k)− �T

(a)
kc

´i
= 0

Insertion of the expression for the virtual displacements δ�rck and �σ0k from (7.236) gives

nX
k=1

h
�vck,j ·

³
mk�ack − �F

(a)
kc

´
+ �ω0k,j ·

³
�Mk/c · �α0k + �ω0k × ( �Mk/c · �ω0k)− �T

(a)
kc

´i
δqj = 0

Note that this is a sum over the bodies numbered by k, while the index j of the generalized
coordinate is held constant. To complete the derivation we define the generalized forces

τ j =
nX

k=1

�vck,j · �F (a)kc + �ω0k,j · �T (a)kc (7.243)

and note that the variations δqj of the generalized coordinates are assumed to be arbi-
trary. Then the following result appears:
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The equations of motion for a multi-body system with generalized coordinates qj can be
written

nX
k=1

h
�vck,j ·mk�ack + �ω0k,j ·

³
�Mk/c · �α0k + �ω0k × ( �Mk/c · �ω0k)

´i
= τ j (7.244)

where

τ j =
nX

k=1

�vck,j · �F (a)kc + �ω0k,j · �T (a)kc (7.245)

This is Kane’s formulation of the equation of motion for a multi-body system.

7.9.3 Equations of motion about a point

In the same way as in the previous section the equations of motion can be found using a
description where the velocity of a point o is used. In this case the force �Fbo is assumed
to have line of action through o, and the torque is �Tbo = �Tbc + �rg × �Fbc where �rg is the
vector from o to c. The equations of motion are in this case given by

�Fbo = m�ac (7.246)
�Tbo = �rg ×m�ao + �Mb/o · �αib + �ωib × ( �Mb/o · �ωib). (7.247)

The force and torque are written as the sum of the active and constraint part according
to �Fbo = �F

(a)
bo + �F

(c)
bo and �Tbo = �T

(a)
bo + �T

(c)
bo . Again the constrain force and torque is

eliminated with the principle of virtual work, which gives

nX
k=1

h
δ�rok ·

³
mk�ack − �F

(a)
ko

´
+ �σ0k ·

³
�rgk ×mk�aok + �Mk/o · �α0k

+�ω0k × ( �Mk/o · �ω0k)− �T
(a)
ko )

´i
= 0 (7.248)

τ j =
nX

k=1

�vok,j · �F (a)ko + �ω0k,j · �T (a)ko (7.249)

The equations of motion for a multi-body system with generalized coordinates qj can be
written

nX
k=1

h
�vok,j ·mk�aok + �ω0k,j ·

³
�rgk ×mk�aok + �Mk/o · �α0k

+�ω0k × ( �Mk/o · �ω0k)
´i

= τ j (7.250)

where

τ j =
nX

k=1

�vok,j · �F (a)ko + �ω0k,j · �T (a)ko (7.251)

This is Kane’s formulation about a point o.

Example 134 A simple example is presented to illustrate the use of the equation of
motion in the form (7.250). It is clear that this formulation is overly complicated for
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this system, however, it may be a worthwhile exercise to understand the concept of this
section. Consider a thin beam with homogeneous mass distribution and length L. The
end of the beam denoted o. The beam is driven by a motor that is attached at o and
rotates the beam by a angle θ and acts with a torque �T = τ�b3 on the beam. The velocity
of o is zero. A frame b is fixed to the beam so that �b1 is along the length of the beam,
and �b3 is the axis of rotation of the motor. A fixed frame i has axes that coincide with
the axes of b when θ = 0. The rotation matrix, the angular velocity and the angular
acceleration from i to b are

Ri
b = Rz,θ, �ωib = θ̇�b3, �αib = θ̈�b3 (7.252)

The position of the point o is �ro = �0, and it follows that �vo = �0 and �ao = �0. The inertia
dyadic about o is

�Mo =
mL2

3

³
�b2�b2 +�b3�b3

´
(7.253)

The angle θ is selected as the generalized coordinate of the system. The associated general
force is τ . Then

�vo,1 = �0, �ωib,1 = �b3 (7.254)

The principle of virtual work gives

0 = �ωib,1 ·
³
�Mo · �αib + �ωib × ( �Mo · �ωib)− �T

´
(7.255)

and insertion of the relevant expressions gives

τ = �b3 · mL2

3

³
�b2�b2 +�b3�b3

´
· θ̈�b3 +�b3 · θ̇�b3 ×

µ
mL2

3

³
�b2�b2 +�b3�b3

´
· θ̇�b3

¶
=

mL2

3
θ̈ (7.256)

This leads to the equation of motion, which is simply

mL2

3
θ̈ = τ (7.257)

7.9.4 Ball and beam

In this section the equations of motion will be derived for the ball and beam shown in
Figure 7.5 with Kane’s equations (7.244). In this problem the force of constraint is the
contact force Fx�b1 +Fy�b2 from the beam on the ball. The normal component Fy will be
the contact force from the beam on the ball, while Fx is the friction force that makes the
ball roll without slipping. The magnitude of these two forces need not be known, and it
is convenient that the principle of virtual work cancel out these forces.
The generalized coordinates are q1 = θ and q2 = x. The angular velocities and the

velocity of the ball is given by

�ω1 = θ̇�b3 (7.258)

�ω2 = θ̇�b3 + ẋ
�b3
R

(7.259)

�v2 = θ̇
³
R�b1 + x�b2

´
+ ẋ�b1 (7.260)
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The acceleration of the center of mass of the ball is

�a2 =
³
ẍ + θ̈R− θ̇

2
x
´
�b1 +

³
θ̈x + 2θ̇ẋ+ θ̇

2
R
´
�b2 (7.261)

The angular accelerations are

�α1 = θ̈�b3 (7.262)

�α2 =

µ
θ̈ +

ẍ

R

¶
�b3 (7.263)

The partial angular velocities and partial velocities are then found to be

�v2,1 = R�b1 + x�b2, �v2,2 = �b1 (7.264)

�ω1,1 = �b3, �ω2,1 = �b3, �ω2,2 =
�b3
R

(7.265)

The inertia dyadics are

�M1/c = J1

³
�b2�b2 +�b3�b3

´
, �M2/c = J2

³
�b1�b1 +�b2�b2 +�b3�b3

´
(7.266)

The forces and torques acting on the beam and ball are represented by the forces and
torques

�F1 = �0 (7.267)
�F2 = Fx�b1 + Fy�b2 +m2g�n2 (7.268)

�T1/c = T�b3 + x�b1 × (−�F ) = T�b3 − xFy�b3 (7.269)

�T2/c = R�b2 × �F2 = −RFx�b3 (7.270)

Here the constraint forces Fx and Fy should have been left out according to the procedure
of the virtual work, however, but we keep them in the derivation to see that they are
actually cancelled.
The equation of motion (7.244) gives

�v2,1 ·m2�a2 + �ω1,1 · �M1/c · �α1 + �ω2,1 · �M2/c · �α2 = �v2,1 · �F2 + �ω1,1 · �T1/c + �ω2,1 · �T2/c
�v2,2 ·m2�a2 + �ω2,2 · �M2/c · �α2 = �v2,2 · �F2 + �ω2,2 · �T2/c

which give³
R�b1 + x�b2

´
·m2

³³
ẍ+ θ̈R− θ̇

2
x
´
�b1 +

³
θ̈x+ 2θ̇ẋ + θ̇

2
R
´
�b2

´
+�b3 · J1θ̈�b3 +�b3 · J2

µ
θ̈ +

ẍ

R

¶
�b3

=
³
R�b1 + x�b2

´
·
³
Fx�b1 + Fy�b2 +m2g�n2

´
+�b3 ·

³
T�b3 − xFy�b3

´
−�b3 ·RFx�b3

and

�b1 ·m2

³³
ẍ + θ̈R− θ̇

2
x
´
�b1 +

³
θ̈x + 2θ̇ẋ+ θ̇

2
R
´
�b2

´
+
�b3
R
· J2

µ
θ̈ +

ẍ

R

¶
�b3

= �b1 ·
³
Fx�b1 + Fy�b2 +m2g�n2

´
+
�b3
R
·
³
−RFx�b3

´
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Note that at this point the forces of constraint Fx and Fy are eliminated from the
equations. Evaluation of the scalar products gives

Rm2

³
ẍ + θ̈R− θ̇

2
x
´

+ xm2

³
θ̈x+ 2θ̇ẋ + θ̇

2
R
´

+J1θ̈ + J2

µ
θ̈ +

ẍ

R

¶
= m2g (R sin θ + x cos θ) + T

and

m2

³
ẍ + θ̈R− θ̇

2
x
´

+
J2
R

µ
θ̈ +

ẍ

R

¶
= m2g sin θ

By rearranging the equations we find that

The equations for a ball and beam system can be written£
J1 + J2 +m2

¡
x2 +R2

¢¤
θ̈ +

1

R

¡
J2 +m2R

2
¢
ẍ + 2m2xẋθ̇

= T +m2g (R sin θ + x cos θ) (7.271)

1

R

¡
J2 +m2R

2
¢
θ̈ +

1

R2
¡
J2 +m2R

2
¢
ẍ−m2θ̇

2
x = m2g sin θ (7.272)

This model is found to be equivalent to the model (7.133, 7.134) derived with the
Newton-Euler method as (7.272) is equal to (7.134), and (7.271) is obtained by adding
7.134 to (7.133).

7.9.5 Single and double inverted pendulum

In this section the equations of motion will be derived using Kane’s equations (7.244)
for a single and double inverted pendulum as shown in Figures 7.6 and 7.7. First the
single pendulum will be treated. In this problem the force of constraint is the contact
force �Fb between the pendulum and the cart. The velocity and acceleration of the cart
are denoted

�vv = ẋ�n1, �av = ẍ�n1 (7.273)

while the velocity and the acceleration of the point mass at the end of the pendulum is

�vb = ẋ�n1 + θ̇1Lb�b1 (7.274)

�ab = ẍ�n1 + θ̈bLb�b1 + θ̇
2

bLb
�b2 (7.275)

The angular velocity and angular acceleration of the pendulum are

�ωb = θ̇b�b3, �αb = θ̈b�b3 (7.276)

The force of the cart is F�n1, while the force on the pendulum is the gravity force mbg�n2.
The pendulum is assumed to be made with a massless rod and a point mass, and it
follows that the inertia dyadic is zero.
The nonzero partial velocities and partial angular velocities are

�vv,x = �n1, �vb,x = �n1 (7.277)

�vb,θb = Lb�b1, �ωb,θb = �b3 (7.278)
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Kane’s equations (7.244, 7.245) give

�n1 ·mvẍ�n1 + �n1 ·mb

³
ẍ�n1 + θ̈bLb�b1 + θ̇

2

bLb
�b2

´
= F (7.279)

Lb�b1 ·mb

³
ẍ�n1 + θ̈bLb�b1 + θ̇

2

bLb
�b2

´
= Lb�b1 · gmb�n2 (7.280)

where we have left out the force of constraint �Fb that would have been cancelled anyway
if it had been included. By evaluating the scalar products, we find that the equations of
motion are given by

(mv +mb) ẍ+mbLb cos θbθ̈b −mbLb sin θbθ̇
2

b = F (7.281)

mbLb cos θbẍ +mbL
2
b θ̈b = mbLbg sin θb (7.282)

which is the same result as (7.153, 7.154).
Next we add one more pendulum with point mass mc at the end of a rod of length

Lc. The velocity and acceleration of the point mass of the second pendulum are

�vc = ẋ�n1 + θ̇1Lc�c1 (7.283)

�ac = ẍ�n1 + θ̈cLc�c1 + θ̇
2

cLc�c2 (7.284)

while the angular velocity and angular acceleration are

�ωc = θ̇b�b3, �αc = θ̈b�b3 (7.285)

The gravity force on the second pendulum is mcg�n2. The nonzero partial velocities and
partial angular velocities are

�vv,x = �n1, �vb,x = �n1, �vc,x = �n1 (7.286)

�vb,θb = Lb�b1, �ωb,θb = �b3 (7.287)

�vc,θc = Lc�c1, �ωc,θc = �b3 (7.288)

Kane’s equations give

�n1 ·mvẍ�n1 + �n1 ·mb

³
ẍ�n1 + θ̈bLb�b1 + θ̇

2

bLb
�b2

´
+�n1 ·mc

³
ẍ�n1 + θ̈cLc�c1 + θ̇

2

cLc�c2

´
= F (7.289)

Lb�b1 ·mb

³
ẍ�n1 + θ̈bLb�b1 + θ̇

2

bLb
�b2

´
= Lb�b1 · gmb�n2 (7.290)

Lc�c1 ·mc

³
ẍ�n1 + θ̈cLc�c1 + θ̇

2

cLc�c2

´
= Lc�c1 · gmc�n2 (7.291)

and the equations of motion are found by evaluation of the scalar products to be

(mv +mb +mc) ẍ +mbLb cos θbθ̈b +mcLc cos θcθ̈c

−mbLb sin θbθ̇
2

b −mcLc sin θcθ̇
2

c = F (7.292)

mbLb cos θbẍ +mbL
2
b θ̈b = mbLbg sin θb (7.293)

mcLc cos θcẍ +mcL
2
c θ̈c = mcLcg sin θc (7.294)

which is in agreement with (7.169—7.171).
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7.9.6 Furuta pendulum

In this section we show how Kane’s equations of motion can be used for the Furuta
pendulum. The equations of motion were derived using the Newton-Euler formulation
in Section 7.6.
With reference to Section 7.6 the angular velocities are

�ω1 = θ̇1�b3 (7.295)

�ω2 = θ̇1�b3 + θ̇2�c2 (7.296)

The accelerations are

�ac1 = �0 (7.297)

�ac2 = −L1θ̈1�b1 +
³
L2θ̈1 sin θ2 + 2L2θ̇1θ̇2 cos θ2 − L1θ̇

2

1

´
�b2

+
³
L2θ̈2 − L2θ̇

2

1 sin θ2 cos θ2

´
�c1 −

³
L2θ̇

2

1 sin2 θ2 + L2θ̇
2

2

´
�c3 (7.298)

while the partial velocities and partial angular velocities are

�vc2,1 = −L1�b1 + L2 sin θ2�c2, �ω1,1 = �b3, �ω2,1 = �b3 (7.299)

�vc2,2 = L2�c1, �ω2,2 = �c2 (7.300)

The inertia dyadics are �M1/c = J1(�n2�n2 + �n3�n3) and �Mc2 = �0. Then Kane’s equations
of motion give

�vc2,1 ·m2�ac2 + �ω1,1 ·
³
�M1/c · �α1

´
= τ1 (7.301)

�vc2,2 ·m2�ac2 = �vc2,2 · (−m2g�n3) (7.302)

These two equations are identical to equations (7.187) and (7.190) that were used in the
development of the model with the Newton-Euler approach. The rest of the derivation
is therefore as in Section 7.6.

7.9.7 Planar two-link manipulator: Derivation 1

To demonstrate the use of Kane’s equations of motion we consider the planar two-link
manipulator in Figure 7.11. Frame 0 with orthogonal unit vectors �i0,�j0,�k0 is a fixed
Newtonian frame with �i0 along the x0 axis, �j0 along the y0 axis, and �k0 along the z0
axis. Frame 1 with orthogonal unit vectors �i1,�j1, �k1 is fixed in link 1, and is obtained
from frame 0 by a rotation q1 about �k0. Frame 2 with orthogonal unit vectors�i2,�j2, �k2 is
fixed in link 2, and is obtained by a rotation q2 about �k1. This means that �k0 = �k1 = �k2.
The direction cosines are given by

�i0 ·�i1 = cos q1, �i0 ·�j1 = − sin q1 (7.303)
�j0 ·�i1 = sin q1, �j0 ·�j1 = cos q1 (7.304)

and

�i1 ·�j2 = cos q2, �i1 ·�j2 = − sin q2 (7.305)
�i1 ·�j2 = sin q2, �i1 ·�j2 = cos q2 (7.306)
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q 1

q2b1
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y

Figure 7.11: Planar two-link manipulator.

The angular velocity of the two links are

�ω1 = q̇1�k1 (7.307)

�ω2 = (q̇1 + q̇2)�k2 (7.308)

and the angular acceleration is

�α1 = q̈1�k1 (7.309)

�α2 = (q̈1 + q̈2)�k2 (7.310)

The position of the centers of mass are

�rc1 = Lc1�i1 (7.311)

rc2 = L1�i1 + Lc2�i2 (7.312)

The velocity of the centers of mass are

�vc1 = Lc1q̇1�k1 ×�i1
= q̇1Lc1�j1 (7.313)

�vc2 = L1q̇1�k1 ×�i1 + (q̇1 + q̇2)�k2 × Lc2�i2

= q̇1L1�j1 + (q̇1 + q̇2)Lc2�j2 (7.314)

and the acceleration of the centers of mass are

�ac1 = q̈1Lc1�j1 + q̇1Lc1�ω1 ×�j1

= q̈1Lc1�j1 − q̇21Lc1�i1 (7.315)

�ac2 = q̈1L1�j1 + (q̈1 + q̈2)Lc2�j2

+q̇1L1�ω1 ×�j1 + (q̇1 + q̇2)Lc2�ω2 ×�j2

= q̈1L1�j1 + (q̈1 + q̈2)Lc2�j2 − q̇21L1�i1 − (q̇1 + q̇2)
2 Lc2�i2 (7.316)
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This gives the following partial velocities and partial angular velocities:

�vc1,1 = Lc1�j1, �vc2,1 = L1�j1 + Lc2�j2, �ω1,1 = �k1, �ω2,1 = �k2 (7.317)

�vc1,2 = �0, �vc2,2 = Lc2�j2, �ω1,2 = �0 �ω2,2 = �k2 (7.318)

The mass of link 1 is m1, the mass of link 2 is m2, and the inertia dyadics about the
centers of mass are

�M1/c = I1x�i1�i1 + I1y�j1�j1 + I1z�k1�k1 (7.319)

�M2/c = I2x�i2�i2 + I2y�j2�j2 + I2z�k2�k2 (7.320)

Then the equation of motion (7.244) gives

�vc1,1 ·m1�ac1 + �vc2,1 ·m2�ac2

+�ω1,1 ·
³
�M1/c · �α1 + �ω1 × ( �M1/c · �ω1)

´
+�ω2,1 ·

³
�M2/c · �α2 + �ω2 × ( �M2/c · �ω2)

´
= τ1 (7.321)

�vc2,2 ·m2�ac2 + �ω2,2 ·
³
�M2/c · �α2 + �ω2 × ( �M2/c · �ω2)

´
= τ2 (7.322)

This gives

Lc1�j1 ·m1

³
q̈1Lc1�j1 − q̇21Lc1�i1

´
+
³
L1�j1 + Lc2�j2

´
·m2

³
q̈1L1�j1 + (q̈1 + q̈2)Lc2�j2

−q̇21L1�i1 − (q̇1 + q̇2)
2 Lc2�i2

´
+�k1 · I1z q̈1�k1 + �k2 · I2z (q̈1 + q̈2)�k2 = τ1 (7.323)

Lc2�j2 ·m2

³
q̈1L1�j1 + (q̈1 + q̈2)Lc2�j2 − q̇21L1�i1 − (q̇1 + q̇2)

2
Lc2�i2

´
+�k2 · Ib3 (q̈1 + q̈2)�k2 = τ2 (7.324)

which leads to the following conclusion:

The equations of motions for a planar two-link manipulator are given by£
I1z + I2z +m1L

2
c1 +m2

¡
L2c2 + L21 + 2L1Lc2 cos q2

¢¤
q̈1

+
£
I2z +m2

¡
L2c2 + L1Lc2 cos q2

¢¤
q̈2 −m2L1Lc2 sin q2

£
2q̇1q̇2 + q̇22

¤
= τ1(7.325)£

I2z +m2

¡
L2c2 + L1Lc2 cos q2

¢¤
q̈1 +

¡
I2z +m2L

2
c2

¢
q̈2 +m2L1Lc2 sin q2q̇

2
1 = τ2 (7.326)

7.9.8 Planar two-link manipulator: Derivation 2

In this section the equations of motion for the planar two-link manipulator in Figure 7.11
will be derived about the origins of the coordinate frames. The direction cosines, the
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angular velocities and the angular accelerations are as in the previous section. The
velocity of the origin of frame 1 and 2 are given by

�vo1 = �0 (7.327)

�vo2 = q̇1L1�j1 (7.328)

This gives the following partial velocities and partial angular velocities:

�vo1,1 = �0, �vo2,1 = L1�j1, �ω1,1 = �k1, �ω2,1 = �k2 (7.329)

�vo1,2 = �0, �vo2,2 = �0, �ω1,2 = �0 �ω2,2 = �k2 (7.330)

The accelerations are

�ao1 = �0 (7.331)

�ao2 = q̈1L1�j1 + q̇1L1�ω1 ×�j1

= q̈1L1�j1 − q̇21L1�i1 (7.332)

The inertia dyadic about the origins are found from the parallel axes theorem (7.84) to
be

�M1/o = I1x�i1�i1 +
¡
I1y +m1L

2
c1

¢
�j1�j1 +

¡
I1z + m1L

2
c1

¢
�k1�k1 (7.333)

�M2/o = I2x�i2�i2 +
¡
I2y +m2L

2
c2

¢
�j2�j2 +

¡
I2z + m2L

2
c2

¢
�k2�k2 (7.334)

Then the equation of motion (7.250) gives

�vo2,1 ·m2�ac2

+�ω1,1 ·
³
�M1/o · �α1 + �ω1 × ( �M1/o · �ω1)

´
+�ω2,1 ·

³
�rg2 ×m�ao2 + �M2/o · �α2 + �ω2 × ( �M2/o · �ω2)

´
= τ1 (7.335)

�ω2,2 ·
³
�rg2 ×m�a2 + �M2/o · �α2 + �ω2 × ( �M2/o · �ω2)

´
= τ2 (7.336)

which gives

L1�j1 ·m2

³
q̈1L1�j1 + (q̈1 + q̈2)Lc2�j2 − q̇21L1�i1 − (q̇1 + q̇2)

2 Lc2�i2

´
+
¡
I1z +m1L

2
c1

¢
q̈1 + �k2 · Lc2�i2 ×m2

³
q̈1L1�j1 − q̇21L1�i1

´
+
¡
I2z +m2L

2
c2

¢
(q̈1 + q̈2) = τ1 (7.337)

�k2 · Lc2�i2 ×m2

³
q̈1L1�j1 − q̇21L1�i1

´
+
¡
I2z +m2L

2
c2

¢
(q̈1 + q̈2)�k2 = τ2 (7.338)

and finally the equations of motions are found to be¡
I1z + I2z +m1L

2
c1 +m2L

2
c2 +m2L

2
1 + 2m2L1Lc2 cos q2

¢
q̈1

+
¡
I2z +m2L

2
c2 +m2L1Lc2 cos q2

¢
q̈2

−m2L1Lc2 sin q2
£
2q̇1q̇2 + q̇22

¤
= τ1 (7.339)

[I2z +m2(L
2
c2 + L1Lc2 cos q2)]q̈1 +

¡
I2z +m2L

2
c2

¢
q̈2 +m2L1Lc2 sin q2q̇

2
1 = τ2 (7.340)

This is the same result as the result of the previous section.
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7.9.9 Kane’s computational scheme for two-link manipulator

In this section we will see that a more efficient derivation is possible by using the method
proposed in (Kane and Levinson 1983), where the equations of motion for a six-link
robot were derived. We will use the equation of motion in the form (7.244), but we use
a change of coordinates so that the generalized speeds are

u1 = q̇1, u2 = q̇1 + q̇2 (7.341)

The corresponding generalized forces are

K1 = τ1 − τ2, K2 = τ2 (7.342)

We note that this implies that

K1u1 +K2u2 = (τ1 − τ2) q̇1 + τ2 (q̇1 + q̇2) = τ1q̇1 + τ2q̇2 (7.343)

The equations of motion for the two link manipulator are then

K1 = �vc1,u1 ·m1�ac1 + �vc2,1 ·m2�ac2

+�ω1,u1 ·
³
�M1/c · �α1 + �ω1 × ( �M1/c · �ω1)

´
+�ω2,u1 ·

³
�M2/c · �α2 + �ω2 × ( �M2/c · �ω2)

´
(7.344)

K2 = �vc1,u1 ·m1�ac1 + �vc2,u2 ·m2�ac2

+�ω1,u2 ·
³
�M1/c · �α1 + �ω1 × ( �M1/c · �ω1)

´
+�ω2,u2 ·

³
�M2/c · �α2 + �ω2 × ( �M2/c · �ω2)

´
(7.345)

where the partial velocities are referenced to the generalized speeds.
The expressions for the angular velocities are

�ω1 = u1�k1 (7.346)

�ω2 = u2�k2 (7.347)

Following the method of (Kane and Levinson 1983) we introduce intermediate variables
Zi for simplifying the derivation. The velocities are written

�vc1 = Z1u1�j1 (7.348)

�vc2 = Z2u1�j1 + Z3u2�j2 (7.349)

and

�vc1 = Z4�j1 (7.350)

�vc2 = Z5�j1 + Z6�j2 (7.351)

where the intermediate Zi variables are defined by

Z1 = Lc1, Z2 = L1, Z3 = Lc2 (7.352)

Z4 = u1Z1, Z5 = u1Z2, Z6 = u2Z3 (7.353)
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The nonzero partial velocities and partial angular velocities with respect to u1 and u2
are

�vc1,u1 = Z1�j1, �vc2,u1 = Z2�j1, �ω1,u1 = �k1 (7.354)

�vc2,u2 = Z3�j2, �ω2,u2 = �k2 (7.355)

The angular accelerations are

�α1 = u̇1�k1 (7.356)

�α2 = u̇2�k2 (7.357)

and the accelerations of the centers of mass are found to be

�ac1 = Z1u̇1�j1 + Z1u1�ω1 ×�j1

= Z1u̇1�j1 − Z1u
2
1
�i1 (7.358)

�ac2 = Z2u̇1�j1 + Z3u̇2�j2 + Z2u1�ω1 ×�j1 + Z3u2�ω2 ×�j2

= Z2u̇1�j1 + Z3u̇2�j2 − Z2u
2
1
�i1 − Z3u

2
2
�i2 (7.359)

Then the equation of motion (7.344) and (7.345) are found to be

K1 = Z1�j1 ·m1

³
Z1u̇1�j1 − Z1u

2
1
�i1

´
(7.360)

+
³
Z2�j1 + Z3�j2

´
·m2

³
Z2u̇1�j1 + Z3u̇2�j2 − Z2u

2
1
�i1 − Z3u

2
2
�i2

´
(7.361)

+�k1 · Ia3u̇1�k1 (7.362)

K2 = Z3�j2 ·m2

³
Z2u̇1�j1 + Z3u̇2�j2 − Z2u

2
1
�i1 − Z3u

2
2
�i2

´
(7.363)

+�k2 · Ib3u̇2�k2 (7.364)

This can be written

K1 = X11u̇1 +X12u̇2 + Z7 (7.365)

K2 = X21u̇1 +X22u̇2 + Z8 (7.366)

where the coefficients are given by

X11 = m1Z
2
1 +m2Z

2
2 + Ia3 (7.367)

X12 = X21 = m2Z2Z3 cos q1 (7.368)

X22 = m2Z
2
3 + Ib3 (7.369)

Z7 = −m2Z2Z3 sin q1u
2
2 (7.370)

Z8 = m2Z2Z3 sin q1u
2
1 (7.371)

To obtain the original variables qi and τ i we use that

q̇1 = u1, q̇2 = u2 − u1 (7.372)

τ1 = K1 +K2, τ2 = K2 (7.373)

To have a model in a form suitable for simulation the model is written

u̇1 = Y11 (K1 − Z7) + Y12 (K2 − Z8) (7.374)

u̇2 = Y21 (K1 − Z7) + Y22 (K2 − Z8) (7.375)
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where µ
Y11 Y12
Y21 Y22

¶
=

µ
X11 X12

X21 X22

¶−1
(7.376)

Example 135 Insertion of the Zi and Xij constants gives the equations of motion on
the form ¡

m1L
2
c1 +m2L

2
1 + I1z

¢
u̇1 + (m2L1Lc2 cos q1) u̇2

−m2L1Lc2 sin q1u
2
2 = K1 (7.377)

m2L1Lc2 cos q1u̇1 +
¡
m2L

2
c2 + I2z

¢
u̇2 +m2L1Lc2 sin q1u

2
1 = K2 (7.378)

A change of variables by insertion of (7.341) and (7.342), and the addition of the second
equation to the first equation gives the equations of motion as given by (7.325) and
(7.326). Note that the equations of motion have a simpler form when the variables uj
and Kj are used.

7.9.10 Manipulator dynamics in coordinate form

In this section Kane’s formulation (7.244) of the equations of motion for a multi-body
system will be used to derive coordinate vector form of the equations of motion for a
manipulator. The manipulator has n joints that connect the n links of the manipulator.
The generalized coordinates in the case of rotational joints are the joint angles qj . It is
assumed that the joint angles are independent.
In coordinate vector form the equations of motion for link k are writtenÃ

mka
k
ck −

¡
Fk
k

¢(a) − ¡Fk
k

¢(c)
Mk

k/cα
k
0k +

¡
ωk
0k

¢×
Mk

k/cω
k
0k −

¡
Tk
kc

¢(a) − ¡Tk
kc

¢(c)
!

= 0 (7.379)

The velocity and angular velocity of link k are given byµ
vkck
ωk
0k

¶
= Jk (q) q̇. (7.380)

where Jk (q) is the Jacobian of link k. The virtual displacements of rigid body k are
given by µ

δrk
σk

¶
= Jk (q) δq. (7.381)

Note that the velocities q̇j are assumed to be independent, and this implies that the
virtual displacements δqj are arbitrary.
The principle of virtual work can be written

0 =
nX

k=1

µ
δrk
σk

¶T µ
(Fk

k)
(c)

(Tk
kc)

(c)

¶
=

nX
k=1

δqTJTk

µ
(Fk

k)
(c)

(Tk
kc)

(c)

¶
(7.382)

The virtual displacements δq are independent, and it follows that

nX
k=1

JTk

µ
(Fk

k)
(c)

(Tk
kc)

(c)

¶
= 0 (7.383)
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The input generalized forces are defined by

τ =
nX

k=1

JTk

µ
Fk
k

Tk
kc

¶
(7.384)

which are the joint torque in the case of rotary joints. Then the equation of motion can
be written

nX
k=1

JTk

Ã
makck

Mk
k/cα

k
0k +

¡
ωk
0k

¢×
Mk

k/cω
k
0k

!
= τ (7.385)

From this equation it is possible to see that row j of the equations of motion is the sum
of the projections of the equations of motion for link k along column j of the Jacobian
Jk.

7.9.11 Spacecraft and manipulator

In this section we will derive the equations of motion for a spacecraft with a manipulator.
The spacecraft is described as link 0, and the manipulator links are denoted by link 1 to
link 6. The mass of link k is mk, the inertia dyadic of link k about the center of mass
of link k is �Mk/c, the position is �rck, the velocity is �vck, and the acceleration is �ack, the
angular velocity is with respect to an inertial frame i is �ωik, and the angular acceleration
is �αik. The links of the manipulator are connected with rotational joints so that joint k
with joint angle qk connects link k− 1 and k. The motor torque applied at joint k is τk.
The control forces and torques applied to the spacecraft are represented by a force �F0c
with line of action through the center of mass, and a torque �T0c.
The position of the center of mass of link k, k ≥ 1, is

�rck = �rc0 +
kX

j=1

�dj − �dk,kc (7.386)

where �dj is the position of the origin of frame k, k ≥ 1, relative to the origin of frame 0,
and �dk,kc is the position of the center of mass of link k relative to the origin of frame k.
The generalized speed vector and the generalized force vector are defined by

�vc0 = u1�i0 + u2�j0 + u3�k0 (7.387)

�ωik = u4�i0 + u5�j0 + u6�k0 (7.388)

uk+6 = q̇k (7.389)

and the generalized forces are

�F0c = F1�i0 + F2�j0 + F3�k0 (7.390)
�T0c = F4�i0 + F5�j0 + F6�k0 (7.391)

Fk+6 = τk (7.392)

The partial velocities �vck,j and partial angular velocities �ωik,j are then defined by

�vck =
12X
k=0

�vck,juj , �ωik =
12X
k=0

�ωik,juj (7.393)
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Figure 7.12: Link k.

The equation of motion is then given by

12X
k=0

h
�vck,j ·mk�ack + �ωik,j ·

³
�Mk/c · �αk + �ωk × ( �Mk/c · �ωk)

´i
= Fj (7.394)

Note that this formulation allows us to develop the equations of motion without intro-
ducing generalized coordinates in the form of Euler angles for the spacecraft.

7.10 Recursive Newton-Euler

7.10.1 Inverse dynamics

The inverse dynamics problem for manipulators is the problem of computing τ given q,
q̇ and q̈. A computational algorithm for this is the recursive Newton-Euler scheme of
(Luh, Walker and Paul 1980). The main idea of the recursive Newton-Euler scheme is to
compute velocities, angular velocities, accelerations and angular accelerations recursively
from the base to the tip of the arm. Then the equations of motion are used for each
link to compute the required resultant forces and torques on each link, and finally the
contact forces and torques between the links are found by recursive computation from
the tip of the arm to the base. Finally, the motor torques are found by projecting the
contact torque onto the rotational axis of the joint.
Consider the link shown in Figure 7.12. The acceleration of the origin of Denavit-

Hartenberg frame k is denoted �ak. The contact force and torque from link (k − 1) on
link k are denoted �Fk−1,k and �Tk−1,k, respectively. The distance from the origin of frame
(k− 1) to the origin of frame k is denoted �dk−1,k. The distance from the origin in frame
(k − 1) to the mass center kc is denoted �dk−1,kc , while �dk,kc = �dk−1,kc − �dk−1,k is the
distance from the origin of frame k to kc. We note that �dk−1,k, �dk−1,kc and �dk,kc are
constant vectors in frame k. We define z = (0, 0, 1)T as the unit vector in the z direction.
Note that in accordance with the Denavit-Hartenberg convention the rotational axis of
the joint between links k and (k + 1) is the z axis of frame k.
The forces and moments acting on link k are represented by the force Fk

kc with
magnitude and direction equal to the resultant force and line of action through the
center of mass kc, and by the torque Tk

kc which is equal in magnitude and direction to
the moment about the center of mass. The acceleration of frame 0 is set to be minus
the acceleration of gravity as gravity always enters in the expressions together with
acceleration as �ak − �g.
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Recursive Newton-Euler:
Initialization: ω00 = 0, α00 = 0, a00 = −g0 where g0 is the acceleration of gravity.
Outwards recursion (k = 1 . . . 6):

ωk
k = Rk

k−1
³
ωk−1
k−1 + zθ̇k

´
(7.395)

αk
k = Rk

k−1
h
αk−1
k−1 +

¡
ωk−1
k−1

¢×
zθ̇k + zθ̈k

i
(7.396)

akk = Rk
k−1a

k−1
k−1

+
¡
αk
k

¢×
dkk−1,k +

¡
ωk
k

¢× ¡
ωk
k

¢×
dkk−1,k (7.397)

The equations of motion referred to the centers of mass (k = 1 . . . 6):

Fk
kc = mk[a

k
k +

¡
αk
k

¢×
dkk,kc +

¡
ωk
k

¢× ¡
ωk
k

¢×
dkk,kc ] (7.398)

Tk
kc = Mk

k/cα
k
k +

¡
ωk
k

¢×
Mk

k/cω
k
k (7.399)

Inwards recursion (k = 5 . . . 0):

Fk
k−1,k = Rk

k+1F
k+1
k,k+1 + Fk

kc (7.400)

tkk−1,k = Rk
k+1t

k+1
k,k+1

+
¡
dkk−1,k

¢×
Rk
k+1F

k+1
k,k+1 +

¡
dkk−1,kc

¢×
Fk
kc + Tk

kc (7.401)

Motor torques (k = 1 . . . 6):

τk = zTRk−1
k tkk−1,k (7.402)

If joint (k+1) is prismatic, then �ωk = �ωk−1 and ḋk−1k,k = ḋkz, where dk is the Denavit-
Hartenberg parameter that specifies translation along the z axis. Then the outwards
recursion is

ωk
k = Rk

k−1ω
k−1
k−1 (7.403)

αk
k = Rk

k−1α
k−1
k−1 (7.404)

akk = Rk
k−1(a

k−1
k−1 + zd̈k) +

¡
αk
k

¢×
dkk−1,k

+
¡
ωk
k

¢× ¡
ωk
k

¢×
dkk−1,k + 2

¡
ωk
k

¢×
Rk
k−1zḋk (7.405)

while the motor force is
τk = zTRk−1

k Fk
k−1,k (7.406)

The algorithm requires 117n− 24 multiplications and 103n− 21 additions for a ma-
nipulator with n rotational joints, which gives 678 multiplications and 597 additions for
a manipulator with six rotational joints.

7.10.2 Simulation

The recursive Newton-Euler scheme computes the required generalized forces τ (t) when
q(t), q̇(t) and q̈(t) are given. In contrast to this the simulation problem is to calculate the
state vector given by [q(t), q̇(t)] when the initial state [q(0), q̇(0)] and the generalized
forces τ (t) are given. This is done by numerical integration of the acceleration q̈(t).
Therefore, in the simulation of manipulator dynamics the acceleration q̈(t) must be
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computed when [q(t), q̇(t)] and τ (t) are given. In the following a method based on the
use of the recursive Newton-Euler algorithm to establish the model in the Lagrangian
form. This is a convenient solution when the RNE algorithm is available.
The simulation problem involves the computation of q̈ given q, q̇ and τ . This can

be done using recursive Newton-Euler with the method of Walker and Orin (Walker and
Orin 1982), (Sciavicco and Siciliano 2000). The method is based on the fact that the
equation of motion for a manipulator can be written

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (7.407)

This result will be derived in Section 8.2.8.
We denote the recursive Newton-Euler as a function RNE(·) which takes q, q̇ and q̈

as inputs and outputs τ . This is written

τ = RNE(q, q̇, q̈) (7.408)

Simulation using the recursive Newton-Euler scheme:

1. Compute column j of M(q) =
¡

m1 m2 . . . m6

¢
(j = 1 . . . 6):

mj = RNE(q,0, ej) (7.409)

with 0a0 = 0 where e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , . . . , e6 = (0, 0, . . . , 1)T .

2. Compute
C(q, q̇)q̇ + g(q) = RNE(q, q̇,0) (7.410)

3. Compute the accelerations from

q̈ = M−1(q)(−C(q, q̇)q̇− g(q) + τ ) (7.411)

We see that the RNE(·) function is used n+1 times, and that a Gaussian elimination
is required to compute q̈. This means that the computational requirements for the
simulation is higher than for the inverse dynamics problem.



Chapter 8

Analytical mechanics

8.1 Introduction

The term analytical mechanics was introduced by Lagrange with his work Mécanique
Analytique which was published in 1788. In this work Lagrange emphasized the use of
algebraic operations in the derivation and analysis of equations of motion as opposed to
the earlier works of Newton and Euler which relied on vector operations. In our presen-
tation of analytical mechanics we will first explore Lagrangian dynamics, which is based
on the use of generalized coordinates, generalized forces and energy functions. Then we
will present a related formulation based on the Euler-Poincaré equation, where dynam-
ics on SO(3) and SE(3) can be described using energy functions without the reliance
on generalized coordinates. Finally the extended Hamilton’s principle and Hamilton’s
equations of motion will be presented. These methods are energy-based, and quite useful
as they provide a systematic way of deriving energy functions that are potential Lya-
punov function candidates. Moreover, Hamilton’s principle and Hamilton’s equations of
motion provide the basis for the Hamilton-Jacobi equation which is important in opti-
mal control theory. The material in this chapter is based on classical texts on dynamics
like (Goldstein 1980) and (Lovelock and Rund 1989), more recent text on dynamics
like (Arnold 1989) and (Marsden and Ratiu 1994), and robotics books like (Spong and
Vidyasagar 1989), (Sciavicco and Siciliano 2000) and (Murray et al. 1994). The results
that will be presented in this chapter are well established in the dynamics literature.
However, a control engineer will have to consult a great number of books, some of which
are quite advanced, to find the selection of analysis tools that will be presented here. Note
that although some of the material may seem to be abstract at a first reading, the meth-
ods are of great use in practical controller design and analysis, and in the development
of simulation systems.

8.2 Lagrangian dynamics

8.2.1 Introduction

The equations of motion for a mechanical system can be derived in the Newton-Euler
formulation, which is based on Newton’s second law in a vector formulation. It has been
documented in robotics that the Newton-Euler equations lead to an efficient formulation
suited for computations in real-time control and simulation (Luh et al. 1980). An alter-
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native way of deriving the equations of motion is to use Lagrange’s formulation which is
based on algebraic operations on energy expressions using generalized coordinates and
generalized forces. Lagrange’s formulation may be better suited to derive results re-
lated to energy conservation and passivity, as it is based on the expressions for kinetic
and potential energy. This is becoming even more important in control theory as many
new controller designs are energy-based using Lyapunov designs or passivity (Slotine
1991), (Krstíc, Kanellakopoulos and Kokotovíc 1995), (Khalil 1996), (Arimoto 1996),
(Sepulchre, Jankovíc and Kokotovíc 1997), (Lozano et al. 2000). Well-known examples
in robotics is the independent-joint controller (Takegaki and Arimoto 1981), and the
adaptive tracking controller (Slotine and Li 1988), and related results have appeared in
other applications like attitude control (Wen and Kreutz-Delgado 1991) and vibration
damping (Kelkar and Joshi 1996). It is therefore of great interest to study Lagrange’s
equation of motion and related concepts of analytical dynamics for use in controller
design and analysis.

8.2.2 Lagrange’s equation of motion

Lagrange’s equations of motion for a mechanical system are equivalent to the Newton-
Euler equations of motion, although the methods derive the equations of motion in
two different ways. We have already presented Newton-Euler formulations, and we will
now show how to derive Lagrange’s equation of motion from d’Alembert’s principle as
presented in Section 7.7 for a system of particles (Goldstein 1980). We consider N
particles, where particle k has mass mk and position �rk(q1, . . . , qn, t), where q1, . . . , qn
are the generalized coordinates of the system. The velocity of particle k is �vk = d�rk/dt,
and the acceleration is �ak = d�vk/dt. Time differentiation and partial differentiation of
vectors are in a Newtonian frame in this section.
The starting point for our derivation of Lagrange’s equation of motion is d’Alembert’s

principle in the form (7.211)

nX
i=1

"
NX
k=1

∂�rk
∂qi

·
³
mk�ak − �Fk

´#
δqi = 0 (8.1)

To proceed we introduce the kinetic energy T of the system, which is

T =
NX
k=1

1

2
mk�vk · �vk (8.2)

We find that

∂T

∂q̇i
=

∂

∂q̇i

Ã
NX
k=1

1

2
mk�vk · �vk

!
=

NX
k=1

∂�vk
∂q̇i

·mk�vk =
NX
k=1

∂�rk
∂qi

·mk�vk (8.3)

∂T

∂qi
=

∂

∂qi

Ã
NX
k=1

1

2
mk�vk · �vk

!
=

NX
k=1

∂�vk
∂qi

·mk�vk =
NX
k=1

d

dt

∂�rk
∂qi

·mk�vk (8.4)

where (7.202) and (7.203) are used. The following calculation can then be done:

d

dt

∂T

∂q̇i
=

NX
k=1

d

dt

µ
∂�rk
∂qi

·mk�vk

¶
=

NX
k=1

µ
d

dt

∂�rk
∂qi

·mk�vk +
∂�rk
∂qi

·mk�ak

¶

=
∂T

∂qi
+

NX
k=1

∂�rk
∂qi

·mk�ak (8.5)
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This result combined with (8.1) leads to

nX
i=1

"
d

dt

µ
∂T

∂q̇i

¶
− ∂T

∂qi
−

NX
k=1

∂�rk
∂qi

· �Fk
#
δqi = 0 (8.6)

The third term in the bracket is defined to be the generalized force

Qi :=
NX
k=1

∂�rk
∂qi

· �Fk (8.7)

associated with the generalized coordinate qi. This gives
nX
i=1

·
d

dt

µ
∂T

∂q̇i

¶
− ∂T

∂qi
−Qi

¸
δqi = 0 (8.8)

Then, under the assumption that the time derivatives q̇i of the generalized coordinates
are independent, the virtual displacements δqi are arbitrary, and it follows that

d

dt

µ
∂T

∂q̇i

¶
− ∂T

∂qi
= Qi (8.9)

The generalized force Qi is assumed to be given by a conservative force −∂U/∂qi due to
a potential U = U(q) plus the generalized actuator force τ i. This is written

Qi = −∂U
∂qi

+ τ i (8.10)

Then the equation of motion becomes

d

dt

µ
∂T

∂q̇i

¶
− ∂T

∂qi
+

∂U

∂qi
= τ i (8.11)

From this result, Lagrange’s equation of motion is found:

Lagrange’s equation of motion is formulated using the Lagrangian

L (q, q̇, t) = T (q, q̇, t)− U (q) (8.12)

The equation of motion is
d

dt

µ
∂L

∂q̇i

¶
− ∂L

∂qi
= τ i (8.13)

Example 136 For use in the part on Hamiltonian dynamics we derive the following
result: Time differentiation of the Lagrangian gives

dL (q, q̇, t)

dt
=

∂L (q, q̇, t)

∂q
q̇ +

∂L (q, q̇, t)

∂q̇
q̈ +

∂L (q, q̇, t)

∂t

=

µ
d

dt

∂L (q, q̇, t)

∂q̇
− τT

¶
q̇ +

∂L (q, q̇, t)

∂q̇
q̈ +

∂L (q, q̇, t)

∂t
(8.14)

where Lagrange’s equation of motion (8.13) has been inserted. This gives

dL (q, q̇, t)

dt
=

d

dt

µ
∂L (q, q̇, t)

∂q̇
q̇

¶
+

∂L (q, q̇, t)

∂t
− τT q̇ (8.15)
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m
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l

Figure 8.1: Mathematical pendulum.

8.2.3 Generalized coordinates and generalized forces

The power supplied to the system with �rk = �rk(q) from the forces �Fk is

NX
k=1

d�rk
dt

· �Fk =
NX
k=1

Ã
nX
i=1

∂�rk
∂qi

q̇i · �Fk
!

=
nX
i=1

Ã
NX
k=1

∂�rk
∂qi

· �Fk
!
q̇i

=
nX
i=1

Qiq̇i (8.16)

This shows that the product Qiq̇i between the generalized force Qi and the generalized
speed q̇i has dimension power. This means that a system with two degrees of freedom
with q1 = x is a position and q2 = θ is an angle, then Q1 must be a force and Q2 must
be a torque.

8.2.4 Pendulum

A mathematical pendulum is a mass point of mass m in the gravity field which is con-
nected by a massless rod of length L to a frictionless joint with angle q. The pendulum
is shown in Figure 8.1. The kinetic energy is

T =
1

2
mv2 =

1

2
mc2q̇2 (8.17)

The potential energy is
U = mgc (1− cos q) (8.18)

The resulting Lagrangian is

L =
1

2
mc2q̇2 −mgc (1− cos q) (8.19)

and the equation of motion is

d

dt

¡
mc2q̇

¢
+mgc sin q = 0 (8.20)

which gives

q̈ + ω20 sin q = 0, ω0 =

r
g

c
(8.21)
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8.2.5 Mass-spring system

A mass-spring system with mass m and spring stiffness k will have Lagrangian

L = T − U =
1

2
mq̇2 − 1

2
kq2 (8.22)

Lagrange’s equation of motion is then found to be

d

dt
(mq̇) + kq = τ (8.23)

which can be written in the familiar form

mq̈ + kq = τ (8.24)

8.2.6 Ball and beam

The ball and beam system presented in Section 7.4 has kinetic energy

T =
1

2
J1θ̇

2
+

1

2
J2

µ
θ̇ +

ẋ

R

¶2
+

1

2
m

·³
ẋ + θ̇R

´2
+
³
θ̇x
´2¸

=
1

2

µ
θ̇
ẋ

¶T µ
J1 + J2 +m

¡
x2 +R2

¢
1
R

¡
J2 +mR2

¢
1
R

¡
J2 +mR2

¢
m+ J2

R2

¶µ
θ̇
ẋ

¶
(8.25)

and potential energy
U = mg (R cos θ − x sin θ) (8.26)

The generalized coordinates are selected as

q1 = θ and q2 = x (8.27)

Then, with L = T − U , we have the following partial derivatives

∂L

∂θ̇
= J1θ̇ + J2

µ
θ̇ +

ẋ

R

¶
+m

h³
ẋ + θ̇R

´
R +

³
θ̇x
´
x
i

(8.28)

∂L

∂ẋ
= J2

µ
θ̇ +

ẋ

R

¶
1

R
+ m

³
ẋ + θ̇R

´
(8.29)

∂L

∂θ
= mg (R sin θ + x cos θ) (8.30)

∂L

∂x
= mθ̇

2
x +mg sin θ (8.31)

and the equations of motion can be written£
J1 + J2 +m

¡
x2 +R2

¢¤
θ̈

+
1

R

¡
J2 +mR2

¢
ẍ + 2mxẋθ̇ = mg (R sin θ + x cos θ) + τ (8.32)

1

R

¡
J2 +mR2

¢
θ̈ +

µ
m+

J2
R2

¶
ẍ−mθ̇

2
x = mg sin θ (8.33)

We note that these equations of motion have the same form as (7.271, 7.272) which were
found using the formulation of Kane. We note that the matrix formulation

M

µ
θ̈
ẍ

¶
=

Ã
−2mxẋθ̇ +mg (R sin θ + x cos θ)

mθ̇
2
x+mg sin θ

!
+

µ
τ
0

¶
(8.34)
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has a positive definite and symmetric mass matrix

M =

µ
J1 + J2 +m

¡
x2 +R2

¢
1
R

¡
J2 + mR2

¢
1
R

¡
J2 +mR2

¢
m+ J2

R2

¶
(8.35)

8.2.7 Furuta pendulum

The kinetic energy T and the potential energy U of the Furuta pendulum are given by

T =
1

2
(J1 + mL21 +mL22 sin2 θ2)θ̇

2

1 +
1

2
mL22θ̇

2

2 −mL1L2θ̇1θ̇2 cos θ2 (8.36)

U = mgL2 cos θ2 (8.37)

which give the Lagrangian

L =
1

2
(J1 +mL21 +mL22 sin2 θ2)θ̇

2

1 +
1

2
mL22θ̇

2

2 −mL1L2θ̇1θ̇2 cos θ2 −mgL2 cos θ2 (8.38)

The partial derivatives are

∂L

∂θ̇1
= (J1 +mL21 + mL22 sin2 θ2)θ̇1 −mL1L2θ̇2 cos θ2 (8.39)

∂L

∂θ̇2
= mL22θ̇2 −mL1L2θ̇1 cos θ2 (8.40)

∂L

∂θ1
= 0 (8.41)

∂L

∂θ2
= mL22 sin θ2 cos θ2θ̇

2

1 +mL1L2θ̇1θ̇2 sin θ2 +mgL2 sin θ2 (8.42)

and the equations of motion are found by evaluation

d

dt

µ
∂L

∂θ̇1

¶
− ∂L

∂θ1
= (J1 +mL21 +mL22 sin2 θ2)θ̈1 −mL1L2θ̈2 cos θ2

+2mL22θ̇1θ̇2 sin θ2 cos θ2 +mL1L2θ̇
2

2 sin θ2 (8.43)

d

dt

µ
∂L

∂θ̇2

¶
− ∂L

∂θ2
= mL22θ̈2 −mL1L2θ̈1 cos θ2 +mL1L2θ̇1θ̇2 sin θ2

−mL22 sin θ2 cos θ2θ̇
2

1 −mL1L2θ̇1θ̇2 sin θ2

−mgL2 sin θ2 (8.44)

The equations of motion of the Furuta pendulum are

(J1 +mL21 +mL22 sin2 θ2)θ̈1 −mL1L2θ̈2 cos θ2

+2mL22θ̇1θ̇2 sin θ2 cos θ2 +mL1L2θ̇
2

2 sin θ2 = τ (8.45)

mL22θ̈2 −mL1L2θ̈1 cos θ2 −mL22 sin θ2 cos θ2θ̇
2

1 −mgL2 sin θ2 = 0 (8.46)

This result is in agreement with the result derived with the Newton-Euler approach.
The Lagrange derivation is much simpler for this system.
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8.2.8 Manipulator

In this section we will derive the Lagrangian equations of motion for a manipulator
(Spong and Vidyasagar 1989), (Sciavicco and Siciliano 2000). The manipulator has n
links which are rigid bodies. The links are assumed to be connected with rotary joints
of one degree of freedom. The joint angle of joint i is denoted qi. The joint angles are
the generalized coordinates of the manipulator. The vector of generalized coordinates is
denoted q = (q1 . . . qn)

T . At each joint there is a motor torque τ i which are the input
generalized forces. The vector of generalized forces is denoted τ = (τ1 . . . τn)

T .
The kinetic energy of link i is

Ti =
1

2
mi(v

i
ci)

T (vici) +
1

2
(ωi

0i)
TMi

ciω
i
0i (8.47)

where mi is the mass, vici is the velocity of the center of mass, ω
i
0i is the angular velocity,

andMi
ci is the inertia matrix around the center of mass. The velocity vici and the angular

velocity ωi
0i are linear combinations of the time derivatives of the generalized coordinates,

and we may write

vici =
iX

j=1

vici,j (q) q̇j = Jvci (q) q̇ (8.48)

ωi
0i =

iX
j=1

ωi
0i,j (q) q̇j = Jω0i (q) q̇ (8.49)

Then the kinetic energy of link i can be written

Ti =
1

2
miq̇

TJTvci (q)Jvci (q) q̇+
1

2
q̇TJTω0i (q)Mi

ciJω0i (q) q̇ (8.50)

and the total kinetic energy for the manipulator is

T =
1

2
q̇T

nX
i=1

h
miJ

T
vci (q)Jvci (q) +JTωi (q)Mi

ciJω0i (q)
i

(8.51)

This shows that the kinetic energy of the manipulator can be written as the quadratic
form

T =
1

2
q̇TM (q) q̇ (8.52)

where the n× n mass matrix M (q) given by

M (q) =
nX
i=1

£
miJ

T
vci (q)Jvci (q) + JTω0i (q)Mi

ciJω0i (q)
¤

(8.53)

is symmetric. Moreover, the kinetic energy is nonnegative, which implies that M (q) is
positive definite. The potential energy is due to the gravity potential, and is written

U (q) =
nX
i=1

Ui (q) =
nX
i=1

mig
T rci (q) (8.54)

The Lagrangian of the manipulator is therefore

L =
1

2
q̇TM (q) q̇− U(q) (8.55)
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The derivation of the Lagrangian equation of motion is a relatively complicated exercise,
and we therefore state the main results first and present derivation afterwards.

The equations of motion for a manipulator can be written

M (q) q̈ + C (q, q̇) q̇ + g (q) = τ (8.56)

where M (q) = MT (q) is positive definite and g (q) is the gradient of the gravity poten-
tial. The matrix C (q, q̇) can be selected to be

C (q, q̇) = {ckj} =

(
nX
i=1

cijk q̇i

)
(8.57)

where

cijk :=
1

2

µ
∂mkj

∂qi
+

∂mik

∂qj
− ∂mij

∂qk

¶
(8.58)

are the Christoffel symbols of the first kind. In this case the matrix Ṁ − 2C is skew
symmetric.

To derive Lagrange’s equation of motion it is convenient to use the component form

T =
1

2

nX
i=1

nX
j=1

mij (q) q̇iq̇j (8.59)

for the kinetic energy, which gives the Lagrangian

L =
1

2

nX
i=1

nX
j=1

mij (q) q̇iq̇j − U (q) (8.60)

We find that

d

dt

∂L

∂q̇k
=

d

dt

1

2

nX
j=1

mkj q̇j +
1

2

nX
i=1

mik q̇i


=

nX
j=1

mkj (q) q̈j +
1

2

nX
i=1

nX
j=1

µ
∂mkj

∂qi
+

∂mik

∂qj

¶
q̇iq̇j (8.61)

and that
∂L

∂qk
=

1

2

nX
i=1

nX
j=1

∂mij

∂qk
q̇iq̇j − ∂U

∂qk
(8.62)

The resulting equation of motion is

nX
j=1

mkj (q) q̈j +
nX
i=1

nX
j=1

cijk (q) q̇iq̇j + gk (q) = τk (8.63)

where cijk are the Christoffel symbols of the first kind as defined by (8.58), and

gk :=
∂U

∂qk
(8.64)
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Then the equation of motion (8.56) appears by defining the matrix

C (q, q̇) = {ckj (q, q̇)} , ckj (q, q̇) =
nX
i=1

cijk (q) q̇i (8.65)

and the gravity vector

g (q) =
∂U

∂q

T

(8.66)

Finally, we will show that the matrix

N = Ṁ− 2C (8.67)

is skew symmetric. This is shown by considering element

nkj = ṁkj − 2ckj (8.68)

of the matrix. We find that

ṁkj − 2ckj =
nX
i=1

µ
∂mkj

∂qi
− ∂mkj

∂qi
− ∂mik

∂qj
+

∂mij

∂qk

¶
q̇i

=
nX
i=1

µ
∂mij

∂qk
− ∂mik

∂qj

¶
q̇i (8.69)

This implies
nkj = −njk (8.70)

which shows that N is skew symmetric.

8.2.9 Passivity of the manipulator dynamics

The time derivative of the energy E = T + U is found by the chain rule to be

Ė(q, q̇) =
d

dt

µ
1

2
q̇TM (q) q̇

¶
+

∂U

∂q
q̇

= q̇TM (q) q̈+
1

2
q̇TṀ (q) q̇ +

∂U

∂q
q̇ (8.71)

The time derivative along the solutions of the system is found by inserting the equation
of motion (8.56) and (8.66). This gives

Ė(q) = q̇T [−C (q, q̇) q̇− g (q) + τ ] +
1

2
q̇TṀ (q) q̇ + g (q)

T
q̇

= q̇Tτ+
1

2
q̇T
h
TṀ (q)−2C (q, q̇)

i
q̇ (8.72)

Finally, the skew symmetry of Ṁ− 2C gives the result

Ė(q) = q̇
T
τ (8.73)

The kinetic energy is always nonnegative.
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If there is a constant Umin so that the potential energy is lower bounded according to
U ≥ Umin, then the storage function V = T + U − Umin ≥ 0 will have time derivative

V = q̇T τ (8.74)

along the solutions of the system. This implies that the manipulator dynamics (8.56)
with input τ and output q̇ is passive.

8.2.10 Example: Planar two-link manipulator 1

The planar manipulator from Section 7.9.7 has kinetic energy

T =
1

2
m1�vc1 · �vc1 +

1

2
m2�vc2 · �vc2 +

1

2
�ω1 · �M1/c · �ω1 +

1

2
�ω2 · �M2/c · �ω2 (8.75)

This can be written
T =

1

2
m11q̇

2
1 +m12q̇1q̇2 +

1

2
m22q̇

2
2 (8.76)

where

m11 = I1z + I2z +m1L
2
c1 +m2

¡
L21 + L2c2 + 2L1Lc2 cos q2

¢
(8.77)

m12 = m21 = I2z +m2L
2
c2 +m2L1Lc2 cos q2 (8.78)

m22 = I2z +m2L
2
c2 (8.79)

are the elements of the inertia matrix. The potential energy is

U = (m1gLc1 +m2gL1) sin q1 +m2gLc2 sin(q1 + q2) (8.80)

Then, from L = T − U the partial derivatives are found to be

∂L

∂q̇1
=

∂T

∂q̇1
= m11q̇1 +m12q̇2 (8.81)

∂L

∂q̇2
=

∂T

∂q̇2
= m21q̇1 +m22q̇2 (8.82)

∂L

∂q1
=

∂T

∂q1
− ∂U

∂q1
= − (m1Lc1 +m2L1) g cos q1 −m2Lc2g cos(q1 + q2) (8.83)

∂L

∂q2
=

∂T

∂q2
− ∂U

∂q2
=

1

2

∂m11

∂q2
q̇21 +

∂m21

∂q2
q̇1q̇2 −m2gLc2g cos(q1 + q2) (8.84)

The equations of motion are then found from (8.13) to be

m11q̈1 +m12q̈2 +

µ
∂m11

∂q2
q̇2

¶
q̇1 +

µ
∂m12

∂q2
q̇2

¶
q̇2 +

∂U

∂q1
= τ1 (8.85)

m21q̈1 + m22q̈2 +

µ
∂m21

∂q2
q̇2

¶
q̇1 − 1

2

∂m11

∂q2
q̇21 −

∂m21

∂q2
q̇1q̇2 +

∂U

∂q2
= τ2 (8.86)

which gives the equations of motion in the form¡
I1z + I2z +m1L

2
c1 +m2

¡
L21 + L2c2 + 2L1Lc2 cos q2

¢¢
q̈1

+
¡
I2z +m2L

2
c2 +m2L1Lc2 cos q2

¢
q̈2

−m2L1Lc2 sin q2
¡
2q̇1q̇2 + q̇22

¢
+(m1Lc1 +m2L1) g cos q1 +m2Lc2g cos(q1 + q2) = τ1 (8.87)
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¡
I2z + m2L

2
c2 +m2L1Lc2 cos q2

¢
q̈1 +

¡
I2z + m2L

2
c2

¢
q̈2

+m2L1Lc2q̇
2
1 sin q2 +m2Lc2g cos(q1 + q2) = τ2 (8.88)

8.2.11 Example: Planar two-link manipulator 2

In this section we will see that the equations of motion will be simplified by introducing
a following change of generalized coordinates to

φ =

µ
φ1
φ2

¶
=

µ
1 0
1 1

¶µ
q1
q2

¶
= Aq (8.89)

with associated generalized forces

K =

µ
K1

K2

¶
=

µ
1 −1
0 1

¶µ
τ1
τ2

¶
= A−T τ (8.90)

as this gives

KT φ̇ = τ
T
A−1Aq̇ = τT q̇ (8.91)

Note that φ̇1 = ω1 and φ̇2 = ω2.
With the new set of generalized coordinates the kinetic energy is

T =
1

2
q̇TM(q)q̇ =

1

2
φ̇
T
A−TM(q)A−1φ̇ =

1

2
φ̇
T
D(φ)φ̇ (8.92)

where the mass matrixD(φ) = {dij(φ)} corresponding to the new coordinates φ is found
to be

D(φ) = A−TM(q)A−1 =

µ
1 −1
0 1

¶µ
m11 m12

m21 m22

¶µ
1 0
−1 1

¶
=

µ
m11 − 2m12 +m22 m12 −m22

m12 −m22 m22

¶
(8.93)

which gives

D(φ) =

µ
I1z +m1L

2
c1 +m2L

2
1 m2L1Lc2 cos (φ2 − φ1)

m2L1Lc2 cos (φ2 − φ1) I2z +m2L
2
c2

¶
(8.94)

The equations of motion are then found from (8.13) to be

d11φ̈1 + d22φ̈2 +

µ
∂d12
∂φ1

φ̇1 +
∂d12
∂φ2

φ̇2

¶
φ̇2 −

µ
∂d12
∂φ1

¶
φ̇1φ̇2 +

∂U

∂φ1
= K1

d21φ̈1 + d22φ̈2 +

µ
∂d21
∂φ1

φ̇1 +
∂d21
∂φ2

φ̇2

¶
φ̇1 −

µ
∂d21
∂φ2

¶
φ̇1φ̇2 +

∂U

∂φ2
= K2

to be ¡
I1z +m1L

2
c1 +m2L

2
1

¢
φ̈1 +m2L1Lc2 cos (φ2 − φ1) φ̈2

−m2L1Lc2 sin (φ2 − φ1) φ̇
2

2 + (m1Lc1 +m2L1) g cosφ1 = K1 (8.95)

m2L1Lc2 cos (φ2 − φ1) φ̈1 +
¡
I2z +m2L

2
c2

¢
φ̈2

+m2L1Lc2 sin (φ2 − φ1) φ̇
2

1 +m2Lc2g cos(φ2) = K2 (8.96)
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8.2.12 Limitations of Lagrange’s equation of motion

Lagrange’s equation of motion is based on the use of a set of generalized coordinates.
For many systems the use of generalized coordinates is convenient. Typically, this is the
case for robotic manipulators where the joint angles are suitable candidates for the use
as generalized coordinates. However, there are other systems which are more efficiently
described in terms of the rotation matrix and the angular velocity, and for such systems
the use of generalized coordinates may introduce complicated expressions.
To illustrate this we use the rotational dynamics of a rigid body as an example. The

kinetic energy is

T =
1

2
ωTMω (8.97)

where ω is the angular velocity in body-fixed coordinates, and M is the constant inertia
matrix in body coordinates. The configuration of the rotational dynamics is given by the
rotation matrix R. To derive Lagrange’s equation of motion for this system we have to
select a set of generalized coordinates. The usual set of generalized coordinates for this
system is the roll-pitch-yaw angles ψ, θ and φ, that is, q = (φ, θ, ψ)

T . Then the kinetic
energy is found to be

T =
1

2
q̇TET

d (q)MEd(q)q̇ (8.98)

where

Ed(q) =

 1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

 (8.99)

Lagrange’s equation of motion is

d

dt

¡
ET
d (q)MEd(q)q̇

¢− ∂

∂q

µ
1

2
q̇TET

d (q)MEd(q)q̇

¶
= 0 (8.100)

Here, we clearly see that the use of the generalized coordinate vector q has introduced
kinematic terms in the form of the matrixEd(q) in the equation of motion. This causes an
unnecessary complication of the expressions, and moreover, the matrix Ed(q) is singular
for cos θ = 0, which introduces a singularity in the mathematical model which is due to
the mathematical representation. A great deal of patience is required to arrive at the
result

Mω̇ + ω×Mω = 0 (8.101)

which is straightforward to derive in the Newton-Euler formulation.
Still, it would be useful if there were some energy-based formulation that resembled

Lagrange’s equation, but where the definition of generalized coordinates was not required.
The form that we will use is the Euler-Poincaré equation of motion, but before we
can present it, we need some background material on the calculus of variations. This
includes a quite interesting development of the variation of the rotation matrix, and of
the homogeneous transformation matrix.

8.3 Calculus of variations

8.3.1 Introduction

In the following the concept of variations in dynamics is discussed, and standard results
on the variation of a function is presented. In addition, variational tools on SO(3) and
SE(3) are presented.
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8.3.2 Variations versus differentials

We consider a continuous and differentiable function f (x1, x2, x3), and we would like to
investigate the extremal points of the function, which are the points (x1, x2, x3) where
f has its minima or maxima. This will be done by finding the stationary values of the
function f, which are the values f (x1, x2, x3) at points (x1, x2, x3) where the rate of
change of f is zero. The usual technique in calculus is to find the differential

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 (8.102)

and locate the stationary points as the points where df = 0. In mechanical systems it
is customary to associate the differentials dxi with the actual infinitesimal change of
the variables xi, and in accordance with this df denotes the infinitesimal change in the
function f due to the infinitesimal change dxi. The time derivative of f is found by
dividing with dt, giving

df

dt
=

∂f

∂x1
ẋ1 +

∂f

∂x2
ẋ2 +

∂f

∂x3
ẋ3 (8.103)

where ẋi = dxi
dt are the velocities.

As opposed to this, Lagrange introduced the concept variations or virtual changes
δxi in the variables xi (Lanczos 1986), (Lovelock and Rund 1989). The variation δxi
is to be considered as a mathematical experiment without any change in the physical
variable xi. This makes sense as it should be possible to decide if a point (x1, x2, x3)
is an extremal point without moving the system around. The variation in f associated
with the variation δxi is

δf =
∂f

∂x1
δx1 +

∂f

∂x2
δx2 +

∂f

∂x3
δx3 (8.104)

which reflects an infinitesimal change in f due to the mathematical experiment δxi
without any change being done in the variables xi. Stationary values are then found
when δf = 0, as would be expected. This distinction between the operator d and δ may
seem strange at first, but it turns out that this provides us with a number of very useful
techniques for analysis of mechanical systems. Prominent examples of such techniques
are d’Alembert’s principle and Hamilton’s principle. Extensive discussion on the concept
of variations in dynamics is found in (Lanczos 1986).

8.3.3 The variation of a function

In this section we will present a number of useful results on variations. We start with
the following definition:

Consider a continuous and differentiable function f (x). Define the perturbed function

f(x, α) = f(x) + αφ(x) (8.105)

where φ(x) is an arbitrary continuous and differentiable function. The variation of f at
x is then defined as

δf(x) =
df(x, α)

dα

¯̄̄̄
α=0

= φ(x) (8.106)
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fx,

f

fx

df

dx

x

Figure 8.2: The variation δf and the differential df of a function f (x).

The difference between df and δf(x), which are both infinitesimal changes in f , is clear
in this case as df is the infinitesimal change in the function f(x) due to an infinitesimal
change dx, while δf(x) is the infinitesimal change due to the infinitesimal changes in
f(x) to f(x, �) for the same x. This is shown in Figure 8.2.
Using the definition (8.106) it is straightforward to establish several results for the

variation of a function. The variation of the derivative of the function is found from the
derivative of f(x, α). Consider the function

f 0(x, α) = f 0(x) + αφ0(x) (8.107)

where (·)0 denotes the derivative with respect to x. The variation is

δf 0(x) =
df 0(x, α)

dα

¯̄̄̄
α=0

= φ0(x) (8.108)

We see that
d

dx
[δf(x)] = δ

·
d

dx
f(x)

¸
(8.109)

that is, the derivative of the variation is equal to the variation of the derivative.
The variation of the definite integral

I =

Z b

a

f(x)dx (8.110)

where a and b are constants is found from the function

I (α) =

Z b

a

f(x, α)dx (8.111)

The variation is given by

δI =
dI (α)

dα

¯̄̄̄
α=0

=
d

dα

Z b

a

f(x, α)dx

¯̄̄̄
¯
α=0

=

Z b

a

df(x, α)

dα

¯̄̄̄
α=0

dx

=

Z b

a

δf(x)dx (8.112)

which shows that the variation of the integral is equal to the integral of the variation.
We sum up that
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The variation operation commutes with differentiation and integration in the sense that

d

dx
[δf(x)] = δ

·
d

dx
f(x)

¸
(8.113)

δ

Z b

a

f(x, α)dx =

Z b

a

δf(x)dx (8.114)

8.3.4 The Euler-Lagrange equation for a general integral

To derive the Euler-Lagrange equation we consider the definite integral

I =

Z b

a

f(y, y0, x)dx (8.115)

where

y = y(x), y0 =
dy

dx
(8.116)

with boundary conditions
y(a) = ya, y(b) = yb (8.117)

At this point this is a purely mathematical exercise without any physical interpretation.
The integral I will depend on the curve that is defined by the function y = y(x). We

want to find the path where the integral has a stationary value with respect to curves
that result from infinitesimal changes in the function y(x). To this end we define the
function

y(x, α) = y(x) + αφ(x) (8.118)

where φ(x) is an arbitrary function that vanishes at the end-points, that is, φ(a) = φ(b) =
0. The variation in y is then defined as

δy(x) =
dy(x, α)

dα

¯̄̄̄
α=0

= φ(x) (8.119)

We note that derivation and variation commute, that is,

d

dx
(δy) = δ

µ
dy

dx

¶
(8.120)

There is no point in introducing a variation in the variable x. Therefore δx = 0 will
always be used in this type of problem.
The variation of the definite integral is

δI = δ

Z b

a

f(y, y0, x)dx

=
d

dα

Z b

a

f [y(x,α), y0(x, α), x] dx

¯̄̄̄
¯
α=0

=

Z b

a

δf [y(x, α), y0(x, α), x] dx (8.121)
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where

δf [y(x), y0(x), x] =
d

dα
f [y(x, �), y0(x, �), x]

¯̄̄̄
α=0

=
∂f

∂y
δy +

∂f

∂y0
δy0 (8.122)

This gives

δI =

Z b

a

µ
∂f

∂y
δy +

∂f

∂y0
δy0
¶
dx (8.123)

Then the standard technique is to use partial integration of the second term in the
integrand. We see thatZ b

a

∂f

∂y0
δy0dx =

µ
∂f

∂y0

¶
δy

¯̄̄̄b
a

−
Z b

a

d

dx

µ
∂f

∂y0

¶
δydx = −

Z b

a

d

dx

µ
∂f

∂y0

¶
δydx (8.124)

because the variation vanishes at the end-points. This gives

δI =

Z b

a

·
∂f

∂y
− d

dx

µ
∂f

∂y0

¶¸
δydx (8.125)

Since δy(x) is arbitrary for all x, we see that δI = 0 implies the Euler-Lagrange equation

d

dx

µ
∂f

∂y0

¶
− ∂f

∂y
= 0 (8.126)

8.3.5 The variation of the rotation matrix

It is not immediately obvious how to define the variation of a rotation matrix. However,
we will see in this section that the definition can be formulated in analogy with the
definition (8.106) for a function. A rigid body has orientation given by R ∈ SO(3). The
time derivative of R is

Ṙ = Rω× (8.127)

where ω is the angular velocity in body coordinates. The differential of the rotation
matrix can be written

dR = Rω×dt (8.128)

The variation δR of the rotation matrix is found by considering the perturbation
(Marsden and Ratiu 1994, p. 390)

R(α) = R exp(ασ×) (8.129)

where σ is an arbitrary three-dimensional vector in body coordinates, and σ× is the
corresponding skew-symmetric form. This means that R(α) is the composite rotation of
R and a rotation about the axis defined by σ. The variation in R is then defined as

δR =
d

dα
R exp(ασ×)

¯̄̄̄
α=0

(8.130)

which gives the result
δR = Rσ× (8.131)
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We note that variation and time differentiation commutes as

d

dt
(δR)=

d

dt

·
d

dα

£
R exp(ασ×)

¤¯̄̄̄
α=0

¸
=

d

dα

·
d

dt

¡
R exp(ασ×)

¢¸¯̄̄̄
α=0

= δṘ (8.132)

We will now derive the relation between the variation δω× of the angular velocity
ω× = RT Ṙ and σ× = RT δR. First we note that since RTR = I we have

0 = δI = δ
¡
RTR

¢
= δ

¡
RT
¢
R + RT δR⇒δ

¡
RT
¢

= −RT δRRT (8.133)

In the same way we find that

d

dt

¡
RT
¢

= −RT ṘR
T

(8.134)

Consider

δω× = δ
¡
RT
¢
Ṙ + R

T
δṘ = −R

T
δRRT Ṙ + R

T
δṘ = −σ×ω×+RT δṘ

and

d

dt
σ× =

d

dt

¡
RT
¢
δR + RT d

dt
(δR) = −RT ṘR

T
δR + RT δṘ = −ω×σ×+RT δṘ

This gives

δω× =
d

dt
σ× + ω×σ× − σ×ω× =

d

dt
σ× +

¡
ω×σ

¢×
(8.135)

where (6.33) is used. The vector form of this is

δω =
d

dt
σ + ω×σ (8.136)

To sum up:

The variation of the rotation matrix can be defined by

δR = Rσ× (8.137)

where σ× is the skew symmetric form of a vector σ in body coordinates. The variation
of the angular velocity in body coordinates is

δω =
d

dt
σ + ω×σ (8.138)

Example 137 The time derivative of the rotation matrix R at the identity I is

dR

dt

¯̄̄̄
R=I

= ω× ∈ so(3) (8.139)

The set so (3) of skew symmetric matrices is the Lie algebra of SO(3). Thus the matrix
forms ω× and σ× are both in the Lie algebra so (3). The Lie bracket in so (3) is (Arnold
1989), (Marsden and Ratiu 1994), (Murray et al. 1994)£

ω×,σ×
¤

:= ω×σ× − σ×ω× =
¡
ω×σ

¢×
(8.140)
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The matrix adω is defined from £
ω×,σ×

¤
= (adωσ)

× (8.141)

From these two equations it is seen that

adω = ω× (8.142)

which gives

δω =
d

dt
σ + adωσ (8.143)

8.3.6 The variation of the homogeneous transformation matrix

A rigid body has configuration given by

T =

µ
R r
0 1

¶
∈ SE(3) (8.144)

The time derivative of T can be written is the form

Ṫ = Tŵ (8.145)

where

ŵ =

µ
ω× v
0 0

¶
(8.146)

is the 4× 4 matrix representation of the vector w = (v
T
,ωT )T .

The variation of T is

δT =

µ
δR δr
0 0

¶
(8.147)

This can be written
δT = Tη̂ (8.148)

where

η̂ =

µ
σ× δr
0 0

¶
(8.149)

is the matrix form of the vector η= (δrT ,σT )T .
In analogy with the derivation for SO(3) we find that

δŵ = δ
¡
T−1

¢
Ṫ + T

−1
δṪ = −T

−1
δTT−1Ṫ + T

−1
δṪ = −η̂ŵ + T

−1
δṪ

and

d

dt
η̂ =

d

dt

¡
T−1

¢
δT + T−1

d

dt
(δT) = −T−1ṪT

−1
δT + T−1δṪ = −ŵη̂ + T

−1
δṪ

and we may conclude that the variation of the six-dimensional velocity vector w is related
to the time derivative of the variation η by

δŵ =
d

dt
η̂ + ŵη̂ − η̂ŵ (8.150)
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The last two terms are evaluated by the computation

ŵη̂ − η̂ŵ =

µ
ω× v
0 0

¶µ
σ× δr
0 0

¶
−
µ
σ× δr
0 0

¶µ
ω× v
0 0

¶
=

µ
ω×σ× − σ×ω× ω×δr− σ×v

0 0

¶
=

µ
(ω×σ)

×
ω×δr + v×σ

0 0

¶
= \adwη (8.151)

where adw is the matrix

adw :=

µ
ω× v×

0 ω×

¶
(8.152)

The vector form corresponding to (8.150) is therefore

δw =
d

dt
η + adwη (8.153)

The variation of the homogeneous transformation matrix can be defined by

δT = Tη̂ (8.154)

where the vector η is in body coordinates. Then the variation of the velocity w in body
coordinates is

δw =
d

dt
η + adwη (8.155)

Remark 2 The time derivative of the homogeneous transformation matrix T at the
identity I is

dT

dt

¯̄̄̄
T=I

= ŵ ∈ se(3) (8.156)

The set se (3) is the set of matrices of the form ŵ as defined in (8.146). The set se (3) is
the Lie algebra of SE(3). The matrix forms ŵ and η̂ are in the Lie algebra se (3). The
Lie bracket in se (3) is (Arnold 1989), (Marsden and Ratiu 1994), (Murray et al. 1994)

[ŵ, η̂] = ŵη̂ − η̂ŵ (8.157)

The matrix adw is defined by
[ŵ, η̂] = \adwη (8.158)

We see from (8.150) that this agrees with the expression (8.152) for adw.

8.4 The adjoint formulation

8.4.1 Introduction

In the previous section the ad operator was used in SO(3) and SE(3). To make the
presentation complete we include a brief presentation of the Ad and ad operators and
the Lie bracket on SO(3) and SE(3) in this section.
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8.4.2 Rotations

The configuration in SO(3) is given by R ∈ SO(3). The time derivative is Ṙ = Rω× =
Ω×R where Ω = Rω. The skew-symmetric forms of ω and Ω are related by

Ω× = Rω×RT (8.159)

The mapping from ω to Ω can also be written in terms of vectors in the adjoint repre-
sentation

Ω = AdRω (8.160)

where the matrix AdR is the adjoint transformation on SO(3). It is clear that

AdR = R (8.161)

Consider a vector v in the moving coordinate frame, and let V = Rv be the vector in
the fixed frame. Then

V× = Rv×RT , V = AdRv (8.162)

The time derivative is

dV×

dt
= R

µ
dv×

dt

¶
RT + Ṙv

×
RT + Rv×ṘT

= R

µ
dv×

dt

¶
RT + Rω×v×RT −Rv×ω×ṘT

= R

µ
dv×

dt

¶
RT + R

¡
ω×v× − v×ω×

¢
ṘT

= R

µ
dv×

dt

¶
RT + R

£
ω×,v×

¤
ṘT (8.163)

where £
ω×,v×

¤
= ω×v× − v×ω× =

¡
ω×v

¢×
(8.164)

which is the Lie bracket on SO(3). In vector form the equation (8.163) is written

dV

dt
= R

dv

dt
+ Rω×v (8.165)

However, time differentiation of V = AdRv gives

dV

dt
= AdR

dv

dt
+

d (AdR)

dt
v (8.166)

which implies
d (AdR)

dt
= Rω× = AdRω

× (8.167)

We now define the operator adω according to

d (AdR)

dt
= AdRadω (8.168)

and it follows that in SO(3) we have

adω = ω× (8.169)

This implies that
(adωv)× =

£
ω×,v×

¤
(8.170)

which means that adωv is a vector representation of the Lie bracket [ω×,v×] . Intuitively
we can think of adωv as the rate of change in v due to the motion due to the angular
velocity ω, which is the directional derivative of v in the direction of ω.
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8.4.3 Rigid motion

The configuration in SE(3) is given by

T =

µ
R r
0 1

¶
∈ SE(3) (8.171)

with inverse

T−1 =

µ
RT −RT r
0 1

¶
∈ SE(3) (8.172)

Consider the vector

W =

µ
V + r×Ω
Ω

¶
(8.173)

in inertial coordinates and

w =

µ
v
ω

¶
(8.174)

in body-fixed coordinates. The corresponding matrix forms in se(3) are given by

Ŵ =

µ
Ω× V+r×Ω
0 0

¶
∈ se(3), ŵ =

µ
ω× v
0 0

¶
∈ se(3) (8.175)

The derivative of T is

Ṫ =

µ
Rω× Rv

0 0

¶
=

µ
R r
0 1

¶µ
ω× v
0 0

¶
= Tŵ (8.176)

or

Ṫ =

µ
Ω×R v

0 0

¶
=

µ
Ω× V+r×Ω
0 0

¶µ
R r
0 1

¶
= ŴT (8.177)

We see that
Ŵ = TŵT−1 (8.178)

In vector form we get
W = AdTw (8.179)

where the adjoint transformation on SE(3) is given by

AdT =

µ
R r×R
0 R

¶
(8.180)

with inverse

(AdT )
−1

=

µ
RT −RT r×

0 RT

¶
(8.181)

The time derivative of AdT is

d

dt
(AdT ) =

µ
Rω× Rv× + r

×
Rω×

0 Rω×

¶
=

µ
R r×R
0 R

¶µ
ω× v×

0 ω×

¶
= AdTadw (8.182)

where adw is defined by
d

dt
(AdT ) = AdTadw (8.183)
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We see that

adw =

µ
ω× v×

0 ω×

¶
(8.184)

Let w be an a six dimensional vector, and let W = AdTw. Then

Ŵ = TŵT−1 (8.185)

and time differentiation gives

dŴ

dt
= Ṫ

dŵ

dt
T−1 + ṪŵT

−1
+ TŵṪ

−1

= Ṫ
dŵ

dt
T−1 + TûŵT−1 −TŵûT−1

= Ṫ
dŵ

dt
T−1 + T (ûŵ− ŵû)T−1

= Ṫ
dŵ

dt
T−1 + T [û, ŵ]T−1 (8.186)

where
[û, ŵ] = ûŵ− ŵû (8.187)

is the Lie bracket in se(3). In adjoint form the time derivative is

dW

dt
= AdT

µ
dW

dt
+ aduw

¶
(8.188)

Comparing the two expressions, we find that

\aduw= [û, ŵ] (8.189)

As in SO(3) we see that aduw is a vector form of the Lie bracket [û, ŵ] . Much in the
same way as in SO(3) the intuitive interpretation of aduw is that it is the rate of change
in w due to the motion induced by the velocity vector u.

Remark 3 The physical interpretation of U = AdTu where u =
¡

v ω
¢T
is not quite

straightforward. However, this is not a problem as this vector, which is called the spatial
velocity vector, is not widely used. We see from U =

¡
Rv−Ω×r Rω

¢T
that the

velocity Rv−Ω×r is the velocity of a point of the rigid body which is at the origin of
the fixed frame. The angular velocity is simply the angular velocity of the rigid body in
the coordinates of the fixed frame.

8.5 The Euler-Poincaré equation

8.5.1 A central equation

Consider a rigid body b where the mass element dm has position r in inertial coordinates.
The externally applied force on mass element dm is df , and the force of constraint on
the mass element is denoted df (c). Newton’s law for a mass element dm is

r̈dm− df−df (c) = 0 (8.190)
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The virtual displacement of the mass element dm is denoted δr. We take the scalar
product between the virtual displacement δr and Newton’s law, and integrate the result
over the rigid body. This gives the following equation of motion:Z

b

³
r̈dm− df−df (c)

´T
δr = 0 (8.191)

The total kinetic energy of body b is

T =
1

2

Z
b

ṙTdmṙ (8.192)

We note that the variation of the kinetic energy expressed in terms of ṙ is

δT =

Z
b

ṙTdmδṙ (8.193)

Moreover, we define the virtual work

Wδ :=

Z
b

dfT δr (8.194)

To simplify the expression the product rule for differentiation is used to arrive atZ
b

r̈T dmδr =
d

dt

Z
b

ṙT dmδr−
Z
b

ṙT dmδṙ =
d

dt

Z
b

ṙT dmδr−δT (8.195)

This results in the equation of motion in the form

d

dt

Z
b

ṙT dmδr− δT −Wδ −
Z
b

³
df (c)

´T
δr = 0 (8.196)

where the forces of constraint df (c) still appears.
Next a change of variables is introduced. The main difference from the usual La-

grange formulation is that we do not necessarily use generalized coordinates. Instead a
generalized speed vector u is introduced, where the velocity ṙ is affine in the components
of a vector u. The motivation for this is that this allows us to work with the rotation
matrices and the angular velocity in SO(3) and SE(3). The velocity is expressed by

ṙ =
∂ṙ

∂u
u+

∂r

∂t
(8.197)

We define the variation associated with u to be ξ, so that the virtual displacement δr is
given by

δr =
∂ṙ

∂u
ξ (8.198)

The first term on the left side of (8.196) can then be written

d

dt

Z
b

ṙTdmδr =
d

dt

Z
b

∂

∂ṙ

µ
ṙT dmṙ

2

¶
∂ṙ

∂u
ξ

=
d

dt

·
∂T

∂u
ξ

¸
(8.199)

This leads to the following result:
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The equation of motion can be written

d

dt

µ
∂T

∂u
ξ

¶
− δT −Wδ −

Z
b

³
df (c)

´T
δr = 0 (8.200)

Suppose that T = T (u), Wδ = τTξ and that
R
b

¡
df (c)

¢T
δr = 0. Then δT = (∂T/∂u) δu,

and the equation of motion is found to be

d

dt

µ
∂T

∂u

¶
ξ − ∂T

∂u

³
δu− ξ̇

´
− τT ξ = 0 (8.201)

The equation of motion (8.200) was presented in (Bremer 1988) where it was termed
a central equation as it forms a basis from which related results like Lagrange’s equation
of motion, Hamel-Boltzmann’s equation and the Euler-Poincaré equation can be derived
with a reasonable effort. In the following we will use the equation of motion in the form
(8.201) to derive the Euler-Poincaré equation in SO(3) and SE(3).

Example 138 It is noted that if generalized coordinates are available so that u = q̇,
then the usual equations

ṙ =
∂r

∂q
q̇+

∂r

∂t
, δr =

∂r

∂q
δq (8.202)

are recovered in place of (8.197) and (8.198). Moreover, if T = T (q, q̇), Wδ = τTξ andR
b

¡
df (c)

¢T
δr = 0, then ξ = δq and

δT =
∂T

∂q
δq+

∂T

∂q̇
δq̇ (8.203)

This gives the familiar result·
d

dt

µ
∂T

∂q̇

¶
− ∂T

∂q
− τ

¸T
δq = 0 (8.204)

which gives Lagrange’s equation of motion if the elements of δq are independent.

8.5.2 Rotating rigid body

A rotating rigid body b has configuration R and angular velocity ω in the body-fixed b
frame. The generalized speed is taken to be u = ω where ω× = RT Ṙ. The corresponding
variation vector is σ× = RT δR. The kinetic energy is

T =
1

2
ωTMω (8.205)

where M is constant, positive definite and symmetric. Moreover, suppose that the gen-
eralized forces are denoted τ , so that the virtual work is Wδ = τTσ. Then

∂T

∂ω
= ωTM (8.206)

and the equation of motion can then be found from (8.201) to be

d

dt

µ
∂T

∂ω

¶
σ − ∂T

∂ω
(δω − σ̇)− τTσ = 0 (8.207)
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Application of (8.138) givesµ
d

dt

µ
∂T

∂ω

¶
− ∂T

∂ω
ω× − τT

¶
σ = 0 (8.208)

If the rigid body undergoes a free rotation, then the components of σ are independent.
This leads to:

The Euler-Poincaré equation for a rotating rigid body is

d

dt

µ
∂T

∂ω

¶T
+ ω×

µ
∂T

∂ω

¶T
= τ (8.209)

Insertion of (8.206) gives the familiar equation

Mω̇ + ω× (Mω) = τ (8.210)

8.5.3 Free-floating rigid body

A free-floating rigid body b has configuration given by the homogeneous transformation
matrix

T =

µ
R rp
0 1

¶
∈ SE(3) (8.211)

where R is the rotation matrix and rp is the position of some fixed point p in b. The
generalized speed is selected to be

u = w =

µ
vbp
ωb

¶
(8.212)

which is given in the body-fixed frame b, and which has a 4× 4 matrix form ŵ = T−1Ṫ.
The associated variation vector is η which is defined by its 4×4 matrix form η̂= T−1δT
To find an expression for the kinetic energy we need to find expressions for

ṙ =
∂ṙ

∂w
w, δr =

∂ṙ

∂w
η (8.213)

This is found by observing that the velocity ṙ of the mass element is ṙ = R
¡
vbp + ωb×rbpm

¢
where r = rp + rpm and ṙp = Rvbp. This gives

∂ṙ

∂w
= R

³
I
... −rb×pq

´
(8.214)

The kinetic energy is then found to be

T =
1

2

Z
b

ṙTdmṙ (8.215)

=
1

2

Z
b

wT

µ
I

rb×pq

¶
RTR

³
I
... −rb×pq

´
wdm (8.216)

=
1

2
wTDb

pw (8.217)
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where

Db
p =

µ
mI − R

b
rb×pq dmR

b
rb×pq dm − R

b
rb×pq rb×pq dm

¶
=

µ
mI mrb×g
−mrb×g Mb

p

¶
(8.218)

For a free-floating rigid body the principle of virtual work states that the forces of con-
straint does no virtual work, that is,Z

b

³
df (c)

´T
δr = 0 (8.219)

The virtual work is

Wδ =

Z
b

dfT δr =

µ
Fb

Lb
p

¶T
η (8.220)

where Fb is the total force on the rigid body with line of action through the point P ,
and Lb

p is the total torque. The vectors Fb and Lb
p are given in the frame b.

In this setting, the kinetic energy will be a function of velocity and angular velocity,
which is written T = T (w). The equation of motion is then found from (8.201) to be

d

dt

µ
∂T

∂w

¶
η − ∂T

∂w
(δw− η̇)−

µ
Fb

Lb
p

¶T
η = 0 (8.221)

Then, by noting from (8.153) that δw − η̇ = adwη we find that"
d

dt

µ
∂T

∂w

¶
− ∂T

∂w
adw −

µ
Fb

Lb
p

¶T#
η = 0 (8.222)

Since η is arbitrary this gives

d

dt

µ
∂T

∂w

¶T
− adTw

µ
∂T

∂w

¶T
=

µ
Fb

Lb
p

¶
(8.223)

and using (8.152) we find that

d

dt

µ
∂T

∂w

¶T
+

µ
ω× 0
v× ω×

¶µ
∂T

∂w

¶T
=

µ
Fb

Lb
p

¶
(8.224)

This equation can be expanded to Kirchhoff’s equation of motion:

Euler-Poincaré’s equation for a free-floating rigid body gives Kirchhoff’s equations of
motion

d

dt

µ
∂T

∂v

¶T
+ ω×

µ
∂T

∂v

¶T
= Fb (8.225)

d

dt

µ
∂T

∂w

¶T
+ v×

µ
∂T

∂v

¶T
+ ω×

µ
∂T

∂ω

¶T
= Lb

p (8.226)

Kirchhoff’s equations of motion are important in the modeling of ship motion, where
also the added inertia effects may be represented in this setting (Lamb 1945), (Sagatun
and Fossen 1991), (Leonard 1997), (Fossen 2002).
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Example 139 If it is been assumed that P is the center of mass of the rigid body, thenµ
∂T

∂w

¶T
=

µ
mvbc
Mb

cω
b
c

¶
(8.227)

and the equations of motion are found to be

mv̇b + ωb×mvbc = Fb (8.228)

Mb
cω̇

b + ωb×Mb
cω

b = Lb
c (8.229)

8.5.4 Mechanism with n degrees of freedom

We will now study a mechanism with n degrees of freedom. The velocity vectors of the
rigid body k are then

wk =
∂wk

∂u
u, ηk=

∂wk

∂u
η,

∂wk

∂u
=

Ã
∂vkkp
∂u
∂ωkk
∂u

!
(8.230)

where u = (u1, . . . , un)T is the vector of generalized velocities. Typically, for a robot
arm we will have u = q̇ where q is the n-dimensional vector of generalized coordinates.
In this case the principle of virtual work is used to eliminate the forces of constraint.
The principle of virtual work states that the total virtual work of the constraint forces is
zero. Therefore we need to sum up the virtual work done by the constraint forces for the
whole system to eliminate the constraint forces from the equation of motion. Note that
the constraint forces includes two types of constraint forces: Internal constraint forces in
each body which makes the body rigid, and interconnecting constraint forces that hold
the mechanism together.
The principle of virtual work for a mechanism with k interconnected rigid bodies can

be written
nX

k=1

Z
bk

³
df (c)

´T
δr = 0 (8.231)

where bk denotes body k. Therefore the forces of constraint can be eliminated by summing
up the equations of motions in the form (8.200). This gives

nX
k=1

·
d

dt

µ
∂Tk
∂wk

ηk

¶
− δTk −Wkδ −

Z
b

³
df (c)

´T
δr

¸
= 0 (8.232)

we are able to eliminate the constraint forces, and get

nX
k=1

·
d

dt

µ
∂Tk
∂wk

ηk

¶
− δTk −Wkδ

¸
= 0 (8.233)

If we proceed as for the free-floating rigid body, but keep the virtual displacement ηk in
the expression we arrive at

0 =
nX

k=1

·
ηTk

µ
mkv̇

k
kc + ωk×

k mkv
k
kc − Fk

k

Mk
kω̇

k
k + ωk×

k Mk
kω

k
k − Lk

k

¶¸

=
nX

k=1

ηT Ã ∂vkkp
∂u
∂ωkk
∂u

!T µ
mkv̇

k
kc + ωk×

k mkv
k
kc − Fk

k

Mkω̇
k
k + ωk×

k Mkω
k
k − Lk

kc

¶ (8.234)
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Here η is arbitrary, and it follows that

nX
k=1

"µ
∂vkkc
∂u

¶T ¡
mv̇kkc + ω×k mvkkc − Fk

k

¢
+

µ
∂ωk

k

∂u

¶T ³
Mkcω̇

k
k + ωk×

k Mkcω
k
k − Lk

kc

´#
= 0 (8.235)

We note that Fk
k is the applied force to body k, and Lkc is the applied torque to body

k around point center of mass of body k, and that the forces of constraint has been
eliminated in the derivation. This form of the equation of motion was called the Newton-
Euler equation of motion with eliminated constraint forces in (Bremer 1988). Written out
in component form it was called Kane’s equation of motion in (Kane and Levinson 1985).

8.6 Hamilton’s principle

8.6.1 Introduction

Hamilton’s principle is based on the use of the time integral of certain energy functions.
Hamilton’s principle can be used to derive Lagrange’s equation of motion for a system
described by n generalized coordinates q1, . . . , qn. The motivation for introducing Hamil-
ton’s principle is that it is the starting point for the Hamilton-Jacobi equation, and that
it is used for systems described by partial differential equations. Moreover, it can be used
to derive the Euler-Poincaré equation. The Euler-Lagrange equation for the integral of
a function is the starting point for the development.

8.6.2 The extended Hamilton principle

The presentation starts with the extended Hamilton principle, which will be derived in
the following. Consider a system with N particles, where particle k has mass mk and
position �rk(q1, . . . , qn, t) where qi are the generalized coordinates of the system. The
velocity of particle k is �vk = d�rk/dt, and the acceleration is �ak = d�vk/dt. The starting
point is again d’Alembert’s principle

NX
k=1

µ
mk

d�vk
dt
− �Fk

¶
· δ�rk = 0 (8.236)

The virtual work of the forces �Fk satisfy

NX
k=1

�Fk · δ�rk = fWδ (8.237)

where the function fWδ is defined by

fWδ =
nX
j=1

µ
τ j − ∂U

∂qj

¶
δqj = Wδ − δU (8.238)

Here

Wδ =
nX
j=1

τ jδqj (8.239)
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is the virtual work of the active generalized forces τ j , and

δU =
nX
j=1

∂U

∂qj
δqj (8.240)

is the variation of the potential energy U . The kinetic energy

T =
1

2

NX
k=1

mk�vk · �vk (8.241)

has the variation

δT = δ

Ã
1

2

NX
k=1

mk�vk · �vk
!

=
NX
k=1

mk�vk · δ�vk

=
NX
k=1

d

dt
(mk�vk · δ�rk)−

NX
k=1

mk
d�vk
dt

· δ�rk (8.242)

This result in combination with (8.236) and (8.237) leads to the equation

δT −fWδ −
NX
k=1

d

dt
(mk�vk · δ�rk) = 0 (8.243)

A critical observation for the next step in the derivation is the fact that if �rk(t1) and
�rk(t2) are fixed, thenZ t2

t1

NX
k=1

d

dt
(mk�vk · δ�rk) dt =

NX
k=1

(mk�vk · δ�rk)
¯̄̄̄
¯
t=t2

t=t1

= 0 (8.244)

This means that we can eliminate the last term of (8.243) by integrating the expression
in (8.243) from t1 to t2. The leads to the following result:

The extended Hamilton principle is given byZ t2

t1

³
δT +fWδ

´
dt = 0 (8.245)

where the endpoints are fixed and fWδ = Wδ − δU , or, alternatively, byZ t2

t1

(δL +Wδ) dt = 0 (8.246)

where the endpoints are fixed.

8.6.3 Derivation of Lagrange’s equation of motion

We consider a mechanical system with generalized coordinates q and Lagrangian L. We
study a trajectory C given by q(t) on the time interval t1 ≤ t ≤ t2 with the boundary
conditions that q(t1) and q(t2) are given. A variation δq(t) = ψ(t), δq̇(t) = ψ̇(t) is
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considered for the trajectory C, where ψ(t) is an arbitrary function. The boundary con-
ditions imply that ψ(t1) = ψ(t2) = 0. The corresponding variation δL in the Lagrangian
is

δL =
∂L

∂q
δq+

∂L

∂q̇
δq̇ =

µ
∂L

∂q
ψ+

∂L

∂q̇
ψ̇

¶
(8.247)

The extended Hamilton principle (8.246) givesZ t2

t1

(δL +Wδ) dt =

Z t2

t1

µ
∂L

∂q
ψ+

∂L

∂q̇
ψ̇ + τTψ

¶
dt = 0 (8.248)

Partial integration givesZ t2

t1

∂L

∂q̇
ψ̇dt =

·
∂L

∂q̇
ψ

¸t2
t1

−
Z t2

t1

d

dt

µ
∂L

∂q̇

¶
ψdt = −

Z t2

t1

d

dt

µ
∂L

∂q̇

¶
ψdt (8.249)

where it is used that ψ(t1) = ψ(t2) = 0. The variation of the integral is then found to
be Z t2

t1

·
∂L

∂q
− d

dt

µ
∂L

∂q̇

¶
+ τT

¸
ψdt = 0 (8.250)

Since ψ(t) is arbitrary, this implies that

d

dt

µ
∂L

∂q̇

¶T
−
µ
∂L

∂q

¶T
= τ (8.251)

which is Lagrange’s equation of motion.

8.6.4 Hamilton’s principle

Suppose thatWδ = 0, which means that there are no active forces τ acting on the system.
In this case the extended Hamilton’s principle givesZ t2

t1

δLdt = 0 (8.252)

which is known as Hamilton’s principle. The system will then follow some trajectory
(q, q̇) which is denoted C, where the trajectory C depends on the initial conditions.
Define the action integral of a trajectory C by

A(C) =

Z t2

t1

Ldt (8.253)

which is the integral of the Lagrangian. The action integral does not have a clear phys-
ical interpretation, it is merely a mathematical tool. Hamilton’s principle can then be
reformulated to state that the variation of the action integral is zero for the trajectory
C, that is,

δA(C) = 0 (8.254)

The variation of the action integral is

δA(C) = δ

Z t2

t1

Ldt =

Z t2

t1

δLdt (8.255)

and from the derivation in the previous section it is seen that Hamilton’s principle implies
that

d

dt

µ
∂L

∂q̇

¶
− ∂L

∂q
= 0 (8.256)

which is Lagrange’s equation of motion when the applied force is zero
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8.6.5 Rotations with the Euler-Poincaré equation

Consider a rigid body with rotation matrix R, angular velocity ω in body-fixed coordi-
nates defined by Ṙ = Rω×, and variation δR = Rσ× where σ is an arbitrary vector.
Suppose that the kinetic energy can be written

T =
1

2
ωTMω (8.257)

where M is a constant matrix, and that the generalized force vector acting on the body
is τ so that Wδ = τTσ. Assume that the potential energy is zero. ThenZ t2

t1

(δT +Wδ) dt =

Z t2

t1

µ
∂T

∂ω
δω + τTσ

¶
dt

=

Z t2

t1

·
∂T

∂ω

¡
σ̇ + ω×σ

¢
+ τTσ

¸
dt

=

Z t2

t1

·
− d

dt

µ
∂T

∂ω

¶
+

∂T

∂ω
ω× + τT

¸
σdt (8.258)

where (8.138) and partial integration was used. Then as the components σ are indepen-
dent, Hamilton’s extended principle (8.245) gives the following result

The equation of motion for a rigid body can be written

d

dt

µ
∂T

∂ω

¶T
+ ω×

µ
∂T

∂ω

¶T
= τ (8.259)

which is the Euler-Poincaré equation in SO(3).

The Euler-Poincaré can be written out as Euler’s equation

Mω̇+ω×Mω = τ (8.260)

8.6.6 Rigid motion with the Euler-Poincaré equation

Consider a rigid body with homogeneous transformation matrix T and velocity vector
w = (v,ω)T in body coordinates so that Ṫ = Tŵ where ŵ is defined in (8.146). Let the
variation of T be given by δT = Tη̂. Suppose that the kinetic energy is given by

T =
1

2
wTMw (8.261)

whereM is constant. Assume that the virtual work is Wδ = τTη, and that the potential
energy is U = 0. ThenZ t2

t1

(δT +Wδ) dt =

Z t2

t1

µ
∂T

∂w
δw + τTη

¶
dt (8.262)

The variation δw satisfies

δw = η̇ + adwη (8.263)

η(t1) = η (t2) = 0 (8.264)
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where adw is given by (8.152). This givesZ t2

t1

(δT +Wδ) dt =

Z t2

t1

∂T

∂w

¡
η̇ + adwη + τTη

¢
dt (8.265)

=

Z t2

t1

·
− d

dt

µ
∂T

∂w

¶
+

∂T

∂w
adw+τT

¸
ηdt (8.266)

and, since η is arbitrary, Hamilton’s extended principle (8.245) gives

The equation of motion for rigid motion can be written in the form of a Euler-Poincaré
equation as

d

dt

µ
∂T

∂w

¶T
− adTw

µ
∂T

∂w

¶T
= τ (8.267)

where

adw =

µ
ω× v×

0 ω×

¶
(8.268)

The Euler-Poincaré equation with τ = (F
T
,LT )

T gives the equations

d

dt

µ
∂T

∂v

¶T
+ ω×

µ
∂T

∂v

¶T
= F (8.269)

d

dt

µ
∂T

∂ω

¶T
+ v×

µ
∂T

∂v

¶T
+ ω×

µ
∂T

∂ω

¶T
= L (8.270)

which are known as Kirchhoff’s equations.

8.7 Lagrangian dynamics for PDE’s

8.7.1 Flexible beam dynamics

Lagrange’s equation of motion can also be used for systems described by partial differ-
ential equations. To illustrate this we will derive Lagrange’s equation of motion for an
Euler-Bernoulli beam (Meirovitch 1980). The beam is of length L, and the undeformed
beam is along the x axis. The elastic displacement in the z direction is denoted by
w(x, t). The kinetic energy is written

T (t) =

Z L

0

T̂ [ẇ (x, t) , ẇ0 (x, t)] dx (8.271)

where T̂ dx is the kinetic energy of the the length element dx of the beam. The potential
energy is

U(t) =

Z L

0

Û [w (x, t) , w0 (x, t) , w00 (x, t)] dx (8.272)

where Ûdx is the potential energy of the length element dx. The Lagrangian can then
be defined as

L(t) =

Z L

0

L̂ [w (x, t) , w0 (x, t) , w00 (x, t) , ẇ (x, t) , ẇ0 (x, t)] dx (8.273)
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where L̂ = T̂ − Û . The virtual work on dx due to nonconservative forces is

Ŵδ(x, t) = f(x, t)δw(x, t) (8.274)

and the virtual work from nonconservative forces on the beam is therefore

Wδ(t) =

Z L

0

Ŵδ(x, t)dx (8.275)

The extended Hamilton principle for this system givesZ t2

t1

(δL +Wδ) dt =

Z t2

t1

Z L

0

³
δL̂+ Ŵδ

´
dxdt = 0 (8.276)

The variation of the Lagrangian density is

δL̂ =
∂L̂

∂w
δw +

∂L̂

∂w0
δw0 +

∂L̂

∂w00
δw00 +

∂L̂

∂ẇ
δẇ +

∂L̂

∂ẇ0
δẇ0 (8.277)

and the extended Hamilton principle is thereforeZ t2

t1

Z L

0

Ã
∂L̂

∂w
δw +

∂L̂

∂w0
δw0 +

∂L̂

∂w00
δw00 +

∂L̂

∂ẇ
δẇ +

∂L̂

∂ẇ0
δẇ0 + f(x, t)δw(x, t)

!
dxdt = 0

Using partial integration and that δw = 0 and δw0 = 0 at t = t1 and t = t2 it is possible,
with some patience, to reach the following result:Z t2

t1

Z L

0

"
∂L̂

∂w
− ∂

∂x

Ã
∂L̂

∂w0

!
+

∂2

∂x2

Ã
∂L̂

∂w00

!
− ∂

∂t

Ã
∂L̂

∂ẇ

!

+
∂2

∂x∂t

Ã
∂L̂

∂ẇ0

!
+ f(x, t)

#
δwdxdt

+

Z t2

t1


"
∂L̂

∂w0
− ∂

∂x

Ã
∂L̂

∂w00

!
+

∂

∂t

Ã
∂L̂

∂ẇ0

!#
δw

¯̄̄̄
¯
L

0

+
∂L̂

∂w00
δw0
¯̄̄̄
¯
L

0

 dt = 0(8.278)

As δw and δw0 are arbitrary for t1 < t < t2 this implies the Lagrangian equation of
motion in the form

∂L̂

∂w
− ∂

∂x

Ã
∂L̂

∂w0

!
+

∂2

∂x2

Ã
∂L̂

∂w00

!
− ∂

∂t

Ã
∂L̂

∂ẇ

!
+

∂2

∂x∂t

Ã
∂L̂

∂ẇ0

!
+ f(x, t) = 0 (8.279)

with boundary conditions"
∂L̂

∂w0
− ∂

∂x

Ã
∂L̂

∂w00

!
+

∂

∂t

Ã
∂L̂

∂ẇ0

!#
δw

¯̄̄̄
¯
L

0

= 0 (8.280)

∂L̂

∂w00
δw0
¯̄̄̄
¯
L

0

= 0 (8.281)
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Example 140 To reach the result (8.278) the following partial integrations are used.

Z L

0

∂L̂

∂w0
δw0dx =

∂L̂

∂w0
δw

¯̄̄̄
¯
L

0

−
Z L

0

∂

∂x

Ã
∂L̂

∂w0

!
δwdx

Z L

0

∂L̂

∂w00
δw00dx =

∂L̂

∂w00
δw0
¯̄̄̄
¯
L

0

− ∂

∂x

Ã
∂L̂

∂w00

!
δw

¯̄̄̄
¯
L

0

+

Z L

0

∂2

∂x2

Ã
∂L̂

∂w00

!
δwdx

Z t2

t1

∂L̂

∂ẇ
δẇdx = −

Z t2

t1

∂

∂t

Ã
∂L̂

∂ẇ

!
δwdx

Z t2

t1

Z L

0

∂L̂

∂ẇ0
δẇ0dxdt =

Z t2

t1

 ∂L̂

∂ẇ0
δẇ

¯̄̄̄
¯
L

0

−
Z L

0

∂

∂x

Ã
∂L̂

∂ẇ0

!
δẇdx

 dt
=

Z t2

t1

 ∂

∂t

 ∂L̂

∂ẇ0
δw

¯̄̄̄
¯
L

0

− Z L

0

∂2

∂x∂t

Ã
∂L̂

∂ẇ0

!
δwdx

 dt
8.7.2 Euler-Bernoulli beam

For an Euler Bernoulli beam the Lagrangian density is

L̂ =
1

2
ρ(x) [ẇ(x, t)]2 − 1

2
EI(x) [w00(x)]

2 (8.282)

The Lagrangian equation of motion (8.279) is in this case

∂2

∂x2

Ã
∂L̂

∂w00

!
− ∂

∂t

Ã
∂L̂

∂ẇ

!
+ f(x, t) = 0 (8.283)

which is evaluated to be

ρ(x)ẅ(x, t) + [EI(x)w00(x)]
00

= f (8.284)

8.7.3 Lateral vibrations in a string

The kinetic energy for lateral vibrations in a string is

T =
1

2

Z L

0

ρ(x) [ẇ(x, t)]
2
dx (8.285)

while the potential energy is

U =
1

2

Z L

0

P [w0(x)]
2
dx (8.286)

The displacement of the string is w. The string is displaced by a force Pw0. A change in
slope dw0 requires the work Pw0dw0 which integrates to

Û =

Z w0

0

Pw0dw0 =
1

2
P [w0(x)]

2 (8.287)
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The Lagrangian density is

L̂ =
1

2
ρ(x) [ẇ(x, t)]

2 − 1

2
P [w0(x)]

2 (8.288)

The Lagrangian equation of motion (8.279) is in this case

− ∂

∂x

Ã
∂L̂

∂w0

!
− ∂

∂t

Ã
∂L̂

∂ẇ

!
+ f(x, t) = 0 (8.289)

which gives the equation of motion

ρ(x)ẅ(x, t) = [Pw0(x)]
0
= f (8.290)

8.8 Hamilton’s equations of motion

8.8.1 Introduction

Hamilton’s equations of motion are strongly related to Lagrange’s equation of motion, and
are based on energy expressions and generalized coordinates. In addition, the concept of a
generalized momentum vector is introduced. Hamilton’s equation of motion can be used
to establish physical properties that are important in controller design and in simulation.
In particular, this formulation is useful to establish energy functions that are invariant
with zero control input. This can be used to find Lyapunov function candidates, and for
checking the accuracy of numerical simulations. There are even specialized simulation
methods for Hamiltonian systems. In addition, the Hamiltonian formulation leads to the
Hamilton-Jacobi equation which is an important tool in optimal control theory. Basic
references for this section are (Lovelock and Rund 1989) and (Goldstein 1980).

8.8.2 Hamilton’s equation of motion

We consider a system with generalized coordinates q and Lagrangian

L(q, q̇, t) = T (q, q̇, t)− U(q) (8.291)

The momentum vector is defined by

p(q, q̇, t) =
∂L(q, q̇, t)

∂q̇

T

(8.292)

We note that Lagrange’s equation of motion can be written

ṗ(q, q̇, t)− ∂L(q, q̇, t)

∂q

T

= τ (8.293)

To define the Hamiltonian H from the Lagrangian L a change of variables from the
Lagrangian variables (q, q̇) to the Hamiltonian variables (q,p) is required. The velocity
vector q̇ is then regarded to be a function

q̇ = φ (q,p, t) (8.294)

of the Hamiltonian variables (q,p).
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The Hamiltonian is defined by

H (q,p, t) = pTφ (q,p, t)−L(q,φ, t) (8.295)

Partial differentiation of (8.295) gives

∂H(q,p, t)

∂p
= φT +

µ
pT − ∂L(q, q̇, t)

∂q̇

¶
∂φ (q,p, t)

∂p

∂H(q,p, t)

∂q
=

µ
pT−∂L(q, q̇, t)

∂q̇

¶
∂φ (q,p, t)

∂q
− ∂L(q,φ, t)

∂q

∂H(q,p, t)

∂t
=

µ
pT − ∂L(q, q̇, t)

∂q̇

¶
∂φ (q,p, t)

∂t
− ∂L(q,φ, t)

∂t

where the definition (8.292) has been used. It follows from the definition (8.292) of the
momentum vector that

∂H(q,p, t)

∂p
= φT (8.296)

∂H(q,p, t)

∂q
= −∂L(q,φ, t)

∂q
(8.297)

∂H(q,p, t)

∂t
= −∂L(q,φ, t)

∂t
(8.298)

Insertion of Lagrange’s equation of motion and q̇ = φ (q,p, t) leads to the result:

Hamilton’s equations of motion are given by

q̇ =
∂H(q,p, t)

∂p

T

(8.299)

ṗ = −∂H(q,p, t)

∂q

T

+ τ (8.300)

The time derivative of the Hamiltonian is found from the chain rule to be

dH

dt
=

∂H

∂p
ṗ+

∂H

∂q
q̇+

∂H

∂t
(8.301)

By inserting Hamilton’s equations of motion (8.299) and (8.300) we find that

dH

dt
= q̇T

Ã
−∂H
∂q

T

+ τ

!
+

∂H

∂q
q̇+

∂H

∂t
= q̇T τ+

∂H

∂t
(8.302)

which leads to:

The time derivative of the Hamiltonian is

dH(q,p, t)

dt
= q̇T τ+

∂H(q,p, t)

∂t
(8.303)
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The following result is useful:

If the Hamiltonian does not depend on time t, that is, if H = H(q,p), and if the system
is unactuated so that τ = 0, then

dH(q,p)

dt
= 0 (8.304)

8.8.3 The energy function

Define the energy function h(q, q̇, t) by

h (q, q̇, t) =
∂L(q, q̇, t)

∂q̇
q̇−L(q, q̇, t) (8.305)

The time derivative of the energy function is found from the definition (8.305) to be

dh (q, q̇, t)

dt
=

d

dt

µ
∂L(q, q̇, t)

∂q̇
q̇

¶
−dL
dt

(q, q̇, t) (8.306)

Insertion of (8.15) gives the result

dh (q, q̇, t)

dt
= −∂L(q, q̇, t)

∂t
+ τT q̇ (8.307)

From (8.292), (8.294), (8.295), and (8.305) it is possible to see that the Hamiltonian
H (q,p, t), has the same numerical value as the energy function h (q, q̇, t), that is,

H (q,p, t) = h (q, q̇, t) (8.308)

However, the two functions have different arguments, and should not be confused with
each other.
Suppose that the kinetic energy is quadratic in the velocity, that is,

T (q, q̇, t) =
1

2
q̇TM (q, t) q̇ (8.309)

Then the the energy function becomes

h (q, q̇, t) = T (q, q̇, t) + U(q) (8.310)

which is the sum of the kinetic and potential energy. This explains the name energy
function.
The kinetic energy can in general be written in the form

T (q, q̇, t) =
1

2
q̇TM (q, t) q̇ +α(q, t)T q̇ + T0(q, t) (8.311)

= T2(q, q̇, t) + T1(q, q̇, t) + T0(q, t) (8.312)

where T2(q, q̇, t) is quadratic in the velocities, T1(q, q̇, t) is linear in the velocities and
T0(q, t) is independent of the velocity. We find that·

∂L

∂q̇

¸
q̇ = q̇TMq̇ +αT q̇ = 2T2 + T1 (8.313)

and using (8.305) and (8.307) we may state the following result:
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The energy function is given by

h(q, q̇, t) = T2(q, q̇, t) + Ua(q, t) (8.314)

where Ua(q, t) = U(q, t) − T0(q, t) may be considered to be an apparent potential. If
h = h(q, q̇) and the system is unactuated, then

dh(q, q̇)

dt
= 0 (8.315)

8.8.4 Change of generalized coordinates

Consider a system with Lagrangian L(q, q̇, t) = T (q, q̇, t)− U(q), where

T (q, q̇, t) =
1

2
q̇TM (q, t) q̇ (8.316)

The energy function is
h (q, q̇, t) = T (q, q̇, t) + U(q) (8.317)

while the momentum vector is

p(q, q̇, t) =
∂L(q, q̇, t)

∂q̇

T

= M (q, t) q̇ (8.318)

and the Hamiltonian is
H (q,p, t) = pTφ−L(q,φ, t) (8.319)

where φ (q,p, t) = q̇.
A change in coordinates

q = q0 + Q (8.320)

from q to Q gives

TQ(Q, Q̇, t) =
1

2
Q̇TMQ (Q, t) Q̇ + q̇

T

0 MQ (Q, t) Q̇+
1

2
q̇T0MQ (Q, t) q̇0

= T (q, q̇, t) (8.321)

UQ(Q) = U(q) (8.322)

The Lagrangian in the new coordinates is

LQ(Q, Q̇, t) = TQ(Q, Q̇, t)− UQ(Q) = L(q, q̇, t) (8.323)

which means that the Lagrangian has the same numerical value after the change in
generalized coordinates. The momentum vector is

P(Q, Q̇, t) =
∂LQ(Q, Q̇, t)

∂Q̇

T

= MQ (Q, t)
³
Q̇ + q̇0

´
= p(q, q̇, t) (8.324)

The energy function becomes

hQ(Q, Q̇, t) =
1

2
Q̇TMQ (Q, t) Q̇+UQ(Q)− 1

2
q̇T0MQ (Q, t) q̇T0

= h (q, q̇, t)−
h
q̇T0MQ (Q, t) Q̇ + q̇

T

0 MQ (Q, t) q̇0

i
(8.325)
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while the Hamiltonian is

HQ(Q,P, t) = PTΦ−LQ(Q,Φ, t) = H (q,p, t)− pT q̇0 (8.326)

where Φ = Q̇. We see that the Lagrangian and the canonical momentum vector has
the same numerical value after a change of coordinates, while the numerical value of the
energy function and the Hamiltonian changes when the coordinate is changed from q to
Q.

Example 141 We will demonstrate the effect of a change of generalized coordinates on
the Lagrangian and the Hamiltonian with an example. Consider a satellite modeled as a
mass point moving about the earth in a nominally circular orbit. Let the position of the
satellite be

r = R + q (8.327)

where R is the nominal circular motion with radius R = |R| and a constant angular
velocity ωc around the earth. The kinetic and potential energy of the satellite are

Tr =
1

2
mṙT ṙ, Ur = µ

m

r
(8.328)

where r = |r|. The energy function

hr (r, ṙ) =
1

2
mṙT ṙ+µ

m

r
(8.329)

is constant. Suppose that the velocity is given by

v = ωcRc1 + q̇ (8.330)

where c1 is the unit vector along the tangent of the nominal orbit. The kinetic energy
may be written

Tq =
1

2
mq̇T q̇+ωcRcT1 q̇+

1

2
mω2cR

2 (8.331)

With these variables the energy function is

hq (q, q̇) =
1

2
mq̇T q̇+Ua(q) (8.332)

where
Ua(q) = µ

m

|R + q| −
1

2
mω2cR

2 (8.333)

is the apparent potential.

8.9 Control aspects

8.9.1 Passivity of Hamilton’s equation of motion

Suppose that the Hamiltonian does not depend on time, so that H = H(q,p). Then from
(8.303) the time derivative of H along the solutions of Hamilton’s equation of motion
(8.299, 8.300) is

dH(q,p)

dt
= q̇T τ (8.334)
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Next, suppose that the Hamiltonian is bounded from below, which means that there is a
constant H0 so that H ≥ H0. Then it is possible to define a nonnegative storage function
V = H −H0 so that the time derivative of V along the solution of the system is

V̇ = q̇T τ (8.335)

From the results of Section 2.4.14 we see that this leads to the following conclusion:

If the Hamiltonian does not depend on time t, and if there is a constant H0 so that
H(q,p) ≥ H0, then the system given by Hamilton’s equation of motion (8.299, 8.300) is
passive with input τ and output q̇, and V = H −H0 is a storage function.

Example 142 Suppose that the Lagrangian L does not depend on time t. Then it is seen
from (8.298) and the definition (8.305) of the energy function h that the Hamiltonian H
and the energy function h will not depend on t: This gives

dH(q,p)

dt
=

dh(q, q̇)

dt
= q̇T τ (8.336)

If the actuator force is set to zero, then this implies that H(q,p) and h(q, q̇) are constants
for solutions of the system. In the terminology of Hamiltonian dynamics H and h are
said to be invariants of motion.

Example 143 Suppose that (8.336) holds. Velocity feedback in the form τ = −Kq̇ will
then lead to

dH(q,p)

dt
=

dh(q, q̇)

dt
= −Kq̇T q̇ ≤ 0 (8.337)

which means that the energy h(q, q̇) = H(q,p) will be nonincreasing, and that the energy
will decrease whenever the velocity is nonzero.

8.9.2 Example: Manipulator dynamics

Consider a robotic manipulator with Lagrangian equation of motion

M (q) q̈ + C (q, q̇) q̇ + g (q) = τ (8.338)

where M is symmetric and positive definite, which implies that M is nonsingular, and
where Ṁ− 2C is skew symmetric. The Lagrangian is

L =
1

2
q̇TM (q) q̇− U(q) (8.339)

and the momentum vector is

p =
∂L(q, q̇, t)

∂q̇

T

= M (q) q̇ (8.340)

As M is nonsingular the velocity can be written

q̇ = M (q)−1p (8.341)

The Hamiltonian is found from the definition (8.295) to be

H = pTM (q)−1p−1

2
pTM (q)−1M (q)M (q)−1p + U(q) (8.342)
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which simplifies to

H(q,p) =
1

2
pTM (q)−1p + U(q) (8.343)

where the first term is the kinetic energy. Then, if U(q) is lower bounded, passivity of
the manipulator dynamics with input τ and output q̇ can be concluded from the general
result in Section 8.9.1. This agrees with the passivity analysis based on the Lagrangian
dynamics in Section 8.2.9. Note that it is easier to establish passivity from τ to q̇ in the
Hamiltonian formulation as it is only necessary to check that H does not depend on t
and that U is lower bounded.

8.9.3 Example: The restricted three-body problem

The restricted three-body problem (Szebehely 1967) is a classical problem in celestial
mechanics that has been adopted as a benchmark for numerical integrators (Hairer and
Wanner 1996), (Shampine, Allen and Preuss 1997). The reason for this is that there are
periodic solutions that are tabulated, and these solutions are very sensitive to changes in
initial conditions. Therefore, the accuracy of a numerical integrator can be investigated
by solving the system equations with initial conditions that correspond to a periodic
solution, and then check if the numerically computed solution is periodic. This is done
in Section 14.1.3.
The system includes three masses moving in a plane. The primary body is the earth,

the secondary body is the moon, and the third body is a satellite. The earth has mass
m1, the moon has mass m2, and the satellite has mass m3, which is much smaller than
m1 and m2. In the formulation of the problem it is assumed that the moon and the earth
interact in a gravitational field without being influenced by the satellite. A coordinate
frame b has the unit vector �b1 along the axis from the earth to the moon, while the �b3
vector is along the axis of rotation of the earth-moon system. According to the law of
gravitation the gravity force �F1 on the earth from the moon, and the gravity force �F2 on
the moon from the earth are given by

�F1 = −�F2 = k2
m1m2

L2
�b1 (8.344)

where k is the Gaussian constant of gravitation and L is the distance between the two
bodies. The vector from the center of the earth to the center of the moon rotates with
an angular velocity �ω = ω�b3. The earth has position �R1 = −x1�b1 and the moon has
position �R2 = x2�b1, which implies that L = x1 + x2. The accelerations are according to
(6.405)

�a1 = �ω × (�ω × �R1) = ω2x1�b1 (8.345)

�a2 = �ω × (�ω × �R2) = −ω2x2�b1 (8.346)

Balance between the centrifugal forces and the gravitational forces imply that

k2
m1m2

L2
= m1x1ω

2 = m2x2ω
2 (8.347)

From this we get Kepler’s third law:

ω2 =
k2M

L3
(8.348)

where M = m1 +m2.
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The satellite moves in the rotating gravitational field set up by the earth and the
moon. The position of the satellite is

�r = x�b1 + y�b2 (8.349)

the velocity is

�v =
bd

dt
�r + �ωib × �r = ẋ�b1 + ẏ�b2 + ω

³
x�b2 − y�b1

´
(8.350)

and from (6.405) the acceleration is

�a =
bd2

dt2
�r + 2�ωib ×

bd

dt
�r + �αib × �r + �ωib × (�ωib × �r)

= ẍ�b1 + ÿ�b2 + 2ω
³
ẋ�b2 − ẏ�b1

´
− ω2

³
x�b1 + y�b2

´
(8.351)

The gravitational force on the satellite is the sum of the gravitational forces from the
earth and the moon, which gives

�F3 = −k2m1m3

r31

h
(x + x1)�b1 + y�b2

i
− k2

m2m3

r32

h
(x− x2)�b1 + y�b2

i
(8.352)

where

r1 =

q
(x + x1)

2
+ y2, r2 =

q
(x− x2)

2
+ y2 (8.353)

Newton’s law in the x and y directions gives

ẍ− 2ωẏ − ω2x = −k2
·
m1

r31
(x+ x1) +

m2

r32
(x− x2)

¸
(8.354)

ÿ + 2ωẋ− ω2y = −k2
µ
m1

r31
+

m2

r32

¶
(8.355)

This model is normalized by introducing

ξ =
x

L
, η =

y

L
, τ = ωt (8.356)

ρ1 =
r1
L
, ρ2 =

r2
L

(8.357)

µ1 =
m1

M
=

x2
L
, µ2 =

m2

M
=

x1
L

(8.358)

This gives the normalized model for the restricted three-body problem:

d2ξ

dτ2
− 2

dη

dτ
− ξ = −

·
µ1 (ξ + µ2)

ρ31
+

µ2 (ξ − µ1)

ρ32

¸
(8.359)

d2η

dτ2
+ 2

dξ

dτ
− η = −

µ
µ1η

ρ31
+

µ2η

ρ32

¶
(8.360)

A constant energy function of the system is found from the kinetic energy

T =
1

2
m3�v · �v

=
1

2
m3

h
ẋ�b1 + ẏ�b2 + ω

³
x�b2 − y�b1

´i
·
h
ẋ�b1 + ẏ�b2 + ω

³
x�b2 − y�b1

´i
=

1

2
m3

¡
ẋ2 + ẏ2

¢
| {z }

T2

+m3ω (−ẋy + ẏx)| {z }
T1

+
1

2
m3ω

2
¡
x2 + y2

¢
| {z }

T0

(8.361)
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and the potential energy

U = −k2m3

µ
m1

r1
+

m2

r2

¶
(8.362)

Then (8.314) and (8.315) imply that an invariant energy function is given by

h =
1

2
m3

£
ẋ2 + ẏ2 − ω2

¡
x2 + y2

¢¤− k2m3

µ
m1

r1
+

m2

r2

¶
(8.363)

In the normalized form the invariant energy function is

κ =
1

2

"µ
dξ

dτ

¶2
+

µ
dη

dτ

¶2
− ξ2 − η2

#
− µ1

ρ1
− µ2

ρ2
(8.364)

8.9.4 Example: Attitude dynamics for a satellite

Consider a satellite that moves in a circular orbit about the earth with radius Rc. The
satellite has mass m and inertia dyadic �Mc about the center of mass. The center of mass
has position �Rc relative to the origin of frame i. Frame b is fixed in the satellite, and
frame i is a Newtonian frame with origin in the center of the earth and with axes pointing
at certain fixed stars. An orbital frame c is defined so that �c1 is along the tangent of
the orbit in the positive velocity direction, �c2 is perpendicular to the orbit, and �c3 is
locally vertical and pointing downwards. Then �Rc = −Rc�c3. The attitude dynamics are
assumed to be given by

�Mc · �αib + �ωib ×
³
�Mc · �ωib

´
= �τ c (8.365)

Here �ωib is the angular velocity of frame b relative to frame i, �αib is the angular acceler-
ation, and �τ c is the actuator torque.
A satellite moving in a circular orbit will have velocity �v = ωcRc�c1 where

ωc =

r
µ

R3c
(8.366)

is the orbital frequency in the sense that T = 2π/ωc is the period of one orbit. In passing
we mention that this equation and the fact that the radius of the earth is 6,378 km
make it possible to compute the altitude of geostationary orbits as 35,863 km, because
this gives an orbital period of 24 hours. Also a low earth orbit with altitude 1,200 km
corresponds to a radius Rc = 7578 km and an orbital period of 109 min.
The kinetic energy of the satellite is

Ti =
1

2
�ωib · �Mc · �ωib +

1

2
mω2cR

2
c (8.367)

while the potential energy is
U = −µm

Rc
(8.368)

Then the energy function

hi = Ti2 − Ti0 + U

=
1

2
�ωib · �Mc · �ωib − 1

2
mω2cR

2
c −

µm

Rc
(8.369)
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is constant as long as the system is not actuated. The last two terms are constants, so
that the function

Vi =
1

2
�ωib · �Mc · �ωib (8.370)

will be a constant for the unactuated system.
The description based on the angular velocity �ωib gives the rotation of the satellite

relative to a star-fixed coordinate frame i. For the stabilization of the attitude in an orbit
it is better to study the dynamics in terms of the angular velocity �ωcb of the satellite
relative to the orbit frame. The change of variables is done using

�ωib = �ωcb + �ωic (8.371)

= �ωcb + ωc�c2 (8.372)

This gives the expression

Tc =
1

2
�ωcb · �Mc · �ωcb + ωc�ωcb · �Mc · �c2 +

1

2
ω2c�c2 · �Mc · �c2 +

1

2
mω2cR

2
c (8.373)

for the kinetic energy. Then the energy function, which is found from

hc = Tc2 − Tc0 + U (8.374)

=
1

2
�ωcb · �Mc · �ωcb − 1

2
ω2c�c2 · �Mc · �c2 − 1

2
mω2cR

2
c −

µm

Rc
(8.375)

is constant for the unactuated satellite. The last two terms on the right side are constants,
and this shows that

Vc =
1

2
�ωcb · �Mc · �ωcb − 1

2
ω2c�c2 · �Mc · �c2 (8.376)

is a constant function for the unactuated satellite.

8.9.5 Example: Gravity gradient stabilization

In this section we introduce gravity gradient stabilization of the satellite in the previous
section. The material is adopted from (Hughes 1986). The gravity force acting on a mass
element is then

d�f = −µ
�R

R3
dm (8.377)

where R3 denotes |�R|3. Note that the gravity force has a gradient in the radial direction,
and this creates a torque about the center of mass. This torque is known as the gravity
gradient torque, and is given by

�gc = −µ
Z
b

�r × �R

R3
dm (8.378)

where �r = �R − �Rc is the vector from the center of mass to the mass element dm. The
gravitational potential is

U = −µ
Z
b

dm

R
(8.379)

The expressions for the gravity gradient �gc and the gravitational potential are difficult to
use in their present form, but can be approximated with more suitable expressions using
the binomial series

1

R3
=

1

R3c

Ã
1− 3

�r · �Rc

R2c
+ . . .

!
(8.380)
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and
1

R
=

1

Rc

Ã
1− �r · �Rc

R2c
− 1

2

r2

R2c
+

3

2

(�r · �Rc)
2

R4c
+ . . .

!
(8.381)

Then, using �r × �R = r × �Rc the gravitational torque can be approximated by

�gc = − µ

R3c

Z
b

�rdm× �Rc − 3µ

R5c
�Rc ·

Z
b

�r�rdm× �Rc

= − 3µ

R3c
�c3 ×

Z
b

�r�rdm · �c3 (8.382)

where
R
b
�rdm = �0 is used. The inertia dyadic is

�Mc =

Z
b

³
r2�I − �r�r

´
dm (8.383)

It is found that

�c3 ×
Z
b

�r�rdm · �c3 = �c3 ×
Z
b

r2�Idm · �c3 + �c3 × �Mc · �c3 (8.384)

= �c3 × �c3

Z
b

r2dm + �c3 × �Mc · �c3 = �c3 × �Mc · �c3 (8.385)

which gives
�gc = 3ω2c�c3 × �Mc · �c3 (8.386)

The equation of motion can then be written

�Mc · �αib + �ωib ×
³
�Mc · �ωib

´
= 3ω2c�c3 × �Mc · �c3 + �τ c (8.387)

From the binomial series the approximation

U = U0 +
3

2
ω2c�c3 · �Mc · �c3 (8.388)

is found for the potential energy where U0 is a constant given by

U0 = −µm
Rc
− 1

2
ω2cTrace �Mc (8.389)

The kinetic energy is

Ti =
1

2
�ωib · �Mc · �ωib +

1

2
mω2cR

2
c (8.390)

where the velocity has been assumed to be �v = ωcRc�c1. Then the energy function

hi = Ti2 − Ti0 + U (8.391)

=
1

2
�ωib · �Mc · �ωib +

3

2
ω2c�c3 · �Mc · �c3 + U0 − 1

2
mω2cR

2
c (8.392)

is constant as long as the system is not actuated, and as the last two terms of the energy
function are constants, the function

Vi =
1

2
�ωib · �Mc · �ωib +

3

2
ω2c�c3 · �Mc · �c3 (8.393)
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will be a constant of motion.
A change of variables using

�ωcb = �ωib − �ωic (8.394)

= �ωib − ωc�c2 (8.395)

will give the following expression for the kinetic energy

T =
1

2
�ωib · �Mc · �ωib| {z }

T2

−ωc�ωib · �Mc · �c2| {z }
T1

+
1

2
ω2c�c2 · �Mc · �c2 +

1

2
mω2cR

2
c| {z }

T0

(8.396)

Then the energy function is found to be

h = T2 − T0 + U

=
1

2
�ωcb · �Mc · �ωcb +

3

2
ω2c�c3 · �Mc · �c3 − 1

2
ω2c�c2 · �Mc · �c2 + U0 − 1

2
mω2cR

2
c

Again, the last two terms of the energy function are constants, and it follows that the
function

Vc =
1

2
�ωcb · �Mc · �ωcb +

3

2
ω2c�c3 · �Mc · �c3 − 1

2
ω2c�c2 · �Mc · �c2 (8.397)

is a constant for the unactuated system.
The function Vc was used for Lyapunov analysis of gravity gradient stabilization of

a satellite in (Hughes 1986). What can be learned from this example is that nontrivial
energy functions for Lyapunov analysis can be derived using Hamilton theory, and in
particular, that this approach offer a systematic way of changing coordinates in the
description.

8.10 The Hamilton-Jacobi equation
In this section the Hamilton-Jacobi equation will be developed from Hamilton’s principle
(Lovelock and Rund 1989). The main idea is that the dynamics of a system with zero
input forces are found by minimization of the action integral A(C). Then, by introducing
a modified Lagrangian L∗, it is possible to define the velocity of the system as a velocity
field that satisfies a partial differential equation known as the Hamilton-Jacobi equation.
This method is the underlying idea for the use of the Hamilton-Jacobi equation in optimal
control.
Let the Lagrangian L (q, q̇, t) and the associated momentum vector

p =
∂L (q, q̇, t)

∂q̇

T

(8.398)

be given. Suppose that the velocity can be given by the function

q̇ = φ (q,p, t) (8.399)

The Hamiltonian is then

H (q,p, t) = pφ (q,p, t)− L (q,φ (q,p, t) , t) (8.400)

The action integral A(C) as defined in Section 8.6.4 satisfies δA(C) = 0 for a tra-
jectory C with fixed end points, and this implies Lagrange’s equation of motion. We
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introduce a function S(q, t), which is yet to be specified, and define the alternative La-
grangian function

L∗ (q, q̇, t) = L (q, q̇, t)− dS(q, t)

dt
(8.401)

From the chain rule it follows that

dS

dt
=

∂S

∂t
+

∂S

∂q
q̇ (8.402)

Define the alternative action integral A∗(C) by

A∗(C) =

Z t2

t1

L∗dt =

Z t2

t1

µ
L− dS

dt

¶
dt =

Z t2

t1

Ldt−
Z t2

t1

dS (8.403)

This implies that
A∗(C) = A(C)− (S2 − S1) (8.404)

where S1 and S2 are the values of S at the end points. As the difference S2 − S1 is
independent of the curve C, it follows that minimum value for A∗(C) is found for the
same trajectory as the minimum for A(C). Therefore the system can be analyzed in terms
of A∗(C) and the function L∗ (q, q̇, t) instead of A(C) and L (q, q̇, t) .
Suppose that a velocity field ψ (q, t) defined according to

q̇ = φ (q,p, t) = ψ (q, t) (8.405)

so that for a suitably selected function S the alternative Lagrangian satisfies

L∗ (q,ψ (q, t) , t) = 0 (8.406)

L∗ (q, q̇, t) > 0 when q̇ 6= ψ (q, t) (8.407)

Then the field ψ (q, t) is called the geodesic field. Note that on the geodesic field L∗ = 0
and (8.401) implies that

dS

dt
= L (8.408)

We will now solve our problem under the assumption that a geodesic field exists.
The geodesic field q̇ = ψ (q, t) may be integrated with respect to the time t to give
a family of curves. We let C denote one of the curves of this family with initial time
t1 corresponding to a point P1, and final time t2 corresponding to a point P2. Then
q̇ = ψ (q, t) at each point along the curve. Moreover, along the curve we have A∗(C) = 0,
whereas A∗(K) > 0 for any other curve K between the points P1 and P2. This means
that the curve C minimizes the alternative action integral A∗, which implies that C is
the solution to the minimization of the action integral A. The curve C is therefore the
solution to Lagrange’s equation of motion with the Lagrangian L. This means that if we
are able to find the velocity field ψ (q, t), then we have the solution of the equation of
motion for any initial condition.
By introducing the function S and the geodesic field ψ (q, t) we have changed the

problem of minimizing the action integral A(C) with respect to C over the time interval
t1 ≤ t ≤ t2, into the problem of minimizing the function L∗ (q, q̇, t) with respect to q̇
for each q and each t. This is simply a minimization problem for a function. In analogy
with the result from basic calculus that the minimum for f(x) is found for df/dx = 0,
the minimum of L∗ (q, q̇, t) for fixed q and t is found for

∂L∗

∂q̇

T

= 0 (8.409)
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This gives

0 =
∂L∗

∂q̇

T

=
∂L

∂q̇

T

− ∂S

∂q

T

= p− ∂S

∂q

T

(8.410)

which implies that

p =
∂S

∂q
(8.411)

on the geodesic field. Moreover, from (8.402) and (8.408) it follows that

L [q,ψ (q, t) , t] =
dS

dt
=

∂S

∂t
+ pTψ (q, t) (8.412)

This can be combined with

H(q,p, t) = pTψ (q, t)−L (q, q̇, t) (8.413)

and the following result is found:

The momentum vector p can be found as a vector field

p(q, t) =
∂S(q, t)

∂q

T

(8.414)

where S(q, t) is the solution of the Hamilton-Jacobi equation

∂S(q, t)

∂t
+H

·
q,

∂S(q, t)

∂q
, t

¸
= 0 (8.415)

which is a partial differential equation in S(q, t).

Example 144 The time derivative of p is found to be

ṗ =
d

dt

∂S (q, t)

∂q

T

=
∂2S (q, t)

∂t∂q

T

+
∂2S (q, t)

∂q∂q
q̇ (8.416)

Partial differentiation of the Hamilton-Jacobi equation gives

∂2S

∂t∂q

T

+
∂H

∂q

T

+
∂H

∂p

∂2S (q, t)

∂q∂q
= 0 (8.417)

Insertion of q̇ = (∂H/∂p)
T gives

∂2S

∂t∂q

T

+
∂2S (q, t)

∂q∂q
q̇ = −∂H

∂q

T

(8.418)

This shows that

ṗ = −∂H
∂q

T

(8.419)

and it has been established that the solution of the Hamilton-Jacobi equation is consistent
with the Hamilton’s equations of motion

q̇ =
∂H

p

T

(8.420)

ṗ = −∂H
∂q

T

(8.421)



Chapter 9

Mechanical vibrations

9.1 Introduction

Active damping of mechanical vibrations has been important for space structures where
there is little damping and where the structures are designed for low weight. As new
inexpensive sensors and actuators are becoming available, active vibration damping is
being more used also in civil engineering, crane systems, and transportation. In this
chapter vibration models will be developed for the string model and the Euler Bernoulli
beam model. These models represent important properties that are seen for models of
mechanical vibrations. Models are developed using assumed modes, mostly in the form of
orthogonal modes, and finite-element models. The Galerkin method is used to illustrate
similarities between the assumed mode method and the finite-element approach. Also
irrational transfer functions are derived, and examples with positive realness and non-
minimum phase dynamics are discussed. The chapter starts with systems with lumped
components, and progresses with distributed parameter models.

Elastic systems consisting of rigid bodies connected with springs and dampers are
described by ordinary differential equations, and are said to be lumped parameter sys-
tems. In contrast to this, systems with elastic bodies are described by partial differential
equations, and are said to be distributed parameter systems. In this chapter we will first
present results on elastic systems with lumped parameters and then proceed with results
on distributed parameter systems.

Energy considerations and passivity properties are important in the analysis and
controller design for elastic systems with distributed parameters. We will see that if
the applied force at a point is the input, and the velocity at the same point is the
output, then the input and output are said to be collocated , and the system is passive.
A system where force is input and velocity is output will not be passive if the input
and output are noncollocated , that is, if the velocity is not measured at the point where
the force is applied. Such systems may even be nonminimum phase, which may cause
severe restrictions on the performance of the closed loop system. In this section we will
study these phenomena closer. The material is adopted from (Meirovitch 1967), (Weaver,
Timoshenko and Young 1990) and (Rao 1990).

361
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9.2 Lumped elastic two-ports

9.2.1 Hybrid two-port

x0

m1 F

D

K

x1

Figure 9.1: Mechanical two-port of the hybrid type with inputs ẋ0 and F .

The equation of motion for a mass m that is connected to a point x0 with a spring
with stiffness K and a damper with coefficient D is given by

mẍ +D(ẋ− ẋ0) +K(x− x0) = F (9.1)

Here x is the position of the mass, and F is a force acting on the mass. The system
is shown in Figure 9.1. In the following this simple system will be used as a building
block in some of the models in this section. In this connection it is useful to have
a two-port description of the system where one port has input ẋ0 and output F0 =
D(ẋ − ẋ0) + K(x − x0), and the other port has input F and output ẋ. This will be
termed a hybrid formulation as one port has the force as output, and the other has
velocity as output. The ports are therefore compatible for a serial interconnection.

9.2.2 Displacement two-port

m1

x1 x2

m2F1 F2

D1

K1

Figure 9.2: Mechanical two-port of the displacement type with inpouts F1 and F2.

Another possible building block for models of lumped elastic systems is two masses
connected by a spring and a damper. The system has two masses m1 and m2 connected
by a spring K1 and a damper D1. An externally applied force F1 is acting on mass m1,
and a force F2 is acting on m2. The position of mass i is denoted xi. The system is
shown in Figure 9.2, and the equations of motion for the system are

m1ẍ1 +D1 (ẋ1 − ẋ2) +K1 (x1 − x2) = F1 (9.2)

m2ẍ2 +D1 (ẋ2 − ẋ1) +K1 (x2 − x1) = F2 (9.3)

This can be written in vector form as

Mẍ + Dẋ + Kx = F (9.4)
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where x = (x1, x2)
T , F = (F1, F2)

T , and the mass matrix M, the damping matrix D
and the stiffness matrix K are given by

M =

µ
m1 0
0 m2

¶
, D =

µ
D1 −D1

−D1 D1

¶
, K =

µ
K1 −K1

−K1 K1

¶
(9.5)

In a network setting the system described by (9.2) and (9.3) is a two-port where port
1 has input F1 and output ẋ1, and port 2 has input force F2 and output ẋ2. This type
of two-port will be said to be in a displacement formulation as both ports have force as
input and velocity as output.

Example 145 The ports of a displacement two-port are compatible with connections to
springs and dampers, which have velocity as input and force as output. To demonstrate
this we consider the case where mass m1 is connected to a fixed point with a spring K0

and a damper D0, and mass m2 is connected to a fixed point with a spring K2 and a
damper D2. This means that the input port is connected to the one-port

F1 = − (K0x1 +D0ẋ1) (9.6)

and that the output port is connected to the one-port

F2 = − (K2x2 +D2ẋ2) (9.7)

Then the damping and stiffness matrices for the interconnected system is obtained by
inserting F1 and F2 into (9.2) and (9.3) which gives

D =

µ
D0 +D1 −D1

−D1 D1 +D2

¶
, K =

µ
K0 +K1 −K1

−K1 K1 +K2

¶
(9.8)

9.2.3 Three masses in the hybrid formulation

Consider the three hybrid two-ports

m1ẍ1 = F1 (9.9)

m2ẍ2 +D1 (ẋ2 − ẋ20) +K1 (x2 − x20) = F2 (9.10)

m3ẍ3 +D2 (ẋ3 − ẋ30) +K2 (x3 − x30) = F3 (9.11)

The two-ports have compatible ports variables, and can be connected by assigning the
input forces to be

F1 = D1 (ẋ2 − ẋ1) + K1 (x2 − x1) + τ1 (9.12)

F2 = D2 (ẋ3 − ẋ2) + K2 (x3 − x2) + τ2 (9.13)

F3 = τ3 (9.14)

and the input displacements to be

x20 = x1, x30 = x2 (9.15)

This gives the total system

m1ẍ1 +D1 (ẋ1 − ẋ2) +K1 (x1 − x2) = τ1 (9.16)

m2ẍ2 +D1 (ẋ2 − ẋ1) +K1 (x2 − x1) (9.17)

+D2 (ẋ2 − ẋ3) +K2 (x2 − x3) = τ2 (9.18)

m3ẍ3 +D2 (ẋ3 − ẋ2) +K2 (x3 − x2) = τ3 (9.19)
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In vector form this is written

Mẍ + Dẋ + Kx = τ (9.20)

where x = (x1, x2, x3)
T , τ = (τ1, τ2, τ3)

T , and

M =

 m1 0 0
0 m2 0
0 0 m2

 (9.21)

D =

 D1 −D1 0
−D1 D1 +D2 −D2

0 −D2 D2

 (9.22)

K =

 K1 −K1 0
−K1 K1 +K2 −K2

0 −K2 K2

 (9.23)

9.2.4 Three masses in the displacement formulation

In this section we will derive the result of the previous section using displacement two-
ports. This procedure is of great interest as it resembles the method that is used to
interconnect elements in the displacement formulation of the finite element method. This
will be done by connecting two systems given as the displacement two-ports

m1ẍ1 +D1 (ẋ1 − ẋ2) +K1 (x1 − x2) = τ1 (9.24)
m2

2
ẍ2 +D1 (ẋ2 − ẋ1) +K1 (x2 − x1) = F12 (9.25)

and
m2

2
ẍ2 +D2 (ẋ2 − ẋ3) +K2 (x2 − x3) = F21 (9.26)

m3ẍ3 +D2 (ẋ3 − ẋ2) +K2 (x3 − x2) = τ3 (9.27)

The interconnection is done by requiring that the second mass of system 1 has the same
position as the first mass of system 2, that is, by requiring that ẋ2 is the same for the
two systems. In this case the port variables are not compatible, so the equations of
motion must be combined. To see how the equations must be combined it is noted that
to ensure that the masses are interconnected, there must be a constraint force F (c) so
that the forces acting on the two masses are given by

F12 = F (c) +
1

2
τ2, F21 = −F (c) +

1

2
τ2 (9.28)

To derive the equations of motion of the interconnected system it is necessary to eliminate
the constraint force F (c). This can be done by simply adding the equations (9.25) and
(9.26). This gives the equations of motion

m1ẍ1 +D1 (ẋ1 − ẋ2) +K1 (x1 − x2) = τ1 (9.29)

m2ẍ2 +D1 (ẋ2 − ẋ1) +K1 (x2 − x1) (9.30)

+D2 (ẋ2 − ẋ3) +K2 (x2 − x3) = τ2 (9.31)

m3ẍ3 +D2 (ẋ3 − ẋ2) +K2 (x3 − x2) = τ3 (9.32)

which is the same result as the one derived with the hybrid formulation in the previous
section.
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9.2.5 Four masses

It is straightforward to connect one more mass to the system to have four interconnected
masses m1, m2, m3 and m4. In addition, springs can be connected to terminate the ports
of mass 1 and 4. The equation of motion for the system is found to be

Mẍ + Dẋ + Kx = τ (9.33)

Here x = (x1, x2, x3, x4)
T , τ = (τ1, τ2, τ3, τ4)

T , M = diag(m1,m2,m3,m4) and the
damping and stiffness matrices are

D =


D0 +D1 −D1 0 0
−D1 D1 +D2 −D2 0

0 −D2 D2 +D3 −D3

0 0 −D3 D3 +D4

 (9.34)

K =


K0 +K1 −K1 0 0
−K1 K1 +K2 −K2 0

0 −K2 K2 +K3 −K3

0 0 −K3 K3 +K4

 (9.35)

The total energy of the system is

V =
4X
i=1

1

2
miẋ

2
i +

2X
i=1

1

2
Ki (xi − xi+1)

2
+

1

2
K0x

2
0 +

1

2
K4x

2
4 (9.36)

The time derivative of the energy for the solutions of the system will be the powerP4
i=1 τ ivi supplied by the inputs τ i minus the power dissipated in the dampers. This is

written

V̇ =
4X

i=1

τ ivi −
3X
i=1

Di (ẋi − ẋi+1)− 1

2
D0ẋ

2
0 −

1

2
D4ẋ

2
4 (9.37)

Suppose that τ2 = τ3 = τ4 = 0. Then the system with input τ1 and output v1 will be
passive.

9.3 Vibrating string

9.3.1 Linearized model

wx, t

x
x  0 x  L

f

dx

Figure 9.3: Vibrating string of length L.
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  d

P

P  dP

dx

f

Figure 9.4: Differential string element.

A stretched string with tension P is fixed at x = 0 and x = L (Figure 9.3). The string
is supposed to have small transverse displacements w(x, t), and is excited by a transverse
force f(x, t). The equation of motion for a differential element of the string as shown in
Figure 9.4 is

ρdx
∂2w

∂t2
= (P + dP ) sin(θ + dθ)− P sin θ + fdx (9.38)

where ρdx is the mass of the element, and θ is the slope of the string. Division with dx
leads to the partial differential equation

ρ
∂2w

∂t2
=

∂

∂x
(P sin θ) + f (9.39)

For small angles we may approximate the sine function by

sin θ =
∂w

∂x
(9.40)

which gives

ρ
∂2w

∂t2
=

∂

∂x

µ
P
∂w

∂x

¶
+ f (9.41)

If the tension is constant along the string, then P is a constant and the model is

ρ
∂2w

∂t2
= P

∂2w

∂x2
+ f (9.42)

The homogeneous form
∂2w

∂t2
= c2

∂2w

∂x2
(9.43)

of (9.42) is called the wave equation where

c =

s
P

ρ
(9.44)

c is the propagation speed of the waves.

9.3.2 Orthogonal shape functions

The homogeneous problem as given by the wave equation (9.43) can be solved by separa-
tion of variables w(x, t) = q(t)φ(x). Then, according to basic textbooks on mathematics,
the following expression is found

q̈(t)

q(t)
=

c2φ00(x)

φ(x)
= −ω2 (9.45)
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where ω is a constant to be determined. This leads to the differential equations

q̈(t) + ω2q(t) = 0 (9.46)

φ00(x) +
ω2

c2
φ(x) = 0 (9.47)

We investigate the solution of the equation of the vibrating string when the end-points
are fixed, that is, when w(0, t) = w(L, t) = 0, which implies that φ(0) = φ(L) = 0. Then
there are infinitely many solutions

φk(x) =

r
2

ρL
sin

kπ

L
x, k = 1, 2, . . . (9.48)

and each solution φk(x) corresponds to the value

ωk =
kπ

L
c (9.49)

and the solution qk of
q̈k + ω2kqk = 0 (9.50)

The solution of the wave equation can then be written

w(x, t) =
∞X
k=1

qk(t)φk(x) (9.51)

Note that the shape functions are orthogonal in the sense thatZ L

0

ρφj(x)φk(x)dx = δjk (9.52)

Moreover, the derivatives of the mode shapes are orthogonal, so thatZ L

0

φ0j(x)φ0k(x)dx =

µ
kπ

L

¶2
δjk (9.53)

9.3.3 Galerkin’s method for orthogonal shape functions

The method of separation of variables works well for the wave equation when there
is no forcing term f . If there is a forcing term, then Galerkin’s method can be used
(Joshi 1989). In this method a solution w(x, t) =

P∞
j=1 qj(t)φj(x) is assumed where

φj(x) belong to some set of shape functions. Orthogonal shape functions as found by
the separation of variables will be assumed. The equation of motion is obtained by
multiplying the wave equation by a shape function φi(s) and then integrating over the
interval. This givesZ L

0

φi(x)
∞X
k=1

ρ
£
q̈j(t)φj(x)− c2qj(t)φ

00
j (x)

¤
dx =

Z L

0

φi(x)f(x, t)dx (9.54)

It is standard procedure to use partial integration for the termZ L

0

φi(x)φ00j (x)dx = −
Z L

0

φ0i(x)φ0j(x)dx + φi(x)φ0j(x)
¯̄c
0

= −
Z L

0

φ0i(x)φ0j(x)dx (9.55)
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1

1 2-1-2 0

x
h

Figure 9.5: Triangular shape functions ψj(x).

Due to the orthogonality of the shape functions and the derivatives this simplifies to

q̈i(t) + ω2i qi(t) =

Z L

0

φi(x)f(x, t)dx (9.56)

Example 146 A point force F (t) at xF can be modelled as f(x) = F (t)δ(x − xF ). In
that case the equation of motion becomes

q̈i(t) + ω2i qi(t) = φi(xF )F (t) (9.57)

We see that if φi(xF ) = 0 for some k, then the force F (t) will have no influence on qi(t).
In control terminology, this means that qi is not controllable when F is the control input.

9.3.4 Finite element shape functions

Instead of the orthogonal shape functions another set of shape functions will be intro-
duced in this section. This is done by using shape functions ψj(x) leading to a finite-
element model. First we define N points along the string that are called nodes. The
position of node j is denoted xj . The distance between the nodes is set to h. The N
piece-wise linear shape functions

ψj(x) =


x−xj−1

h , xj−1 ≤ x ≤ xj
xj+1−x

h , xj ≤ x ≤ xj+1
0, otherwise

, j = 1, 2, . . . , N (9.58)

that are shown in Figure 9.5 are used, and the solution is approximated by

w(x, t) =
NX
j=1

qj(t)ψj(x) (9.59)

Note that
ψj(xk) = δjk (9.60)

which implies that the displacement at node k is given by

w(xk, t) = qk(t) (9.61)
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We insert the approximation into the wave equation (9.42) and get

NX
k=1

£
ρq̈j(t)ψj(x)− Pqj(t)ψ

00
j (x)

¤
= f(x, t) (9.62)

We apply Galerkin’s method, which in this case involves the multiplication with ψi(x)
and integration over the interval. This givesZ L

0

ψi(x)
NX
k=1

£
ρq̈j(t)ψj(x)− Pqj(t)ψ

00
j (x)

¤
dx =

Z L

0

ψi(x)f(x, t)dx (9.63)

Partial integration gives

NX
k=1

Z L

0

ρψi(x)ψj(x)dxq̈j(t) +
NX
k=1

P

Z L

0

ψ0i(x)ψ0j(x)dxqj(t) =

Z L

0

ψi(x)f(x, t)dx (9.64)

This may be written in matrix form as

Mq̈ + Kq = F (9.65)

where q = (q1, q2, . . . , qN )T , M = {mij}, K = {kij} and F =(f1, f2, . . . , fN )T . The
components are given by

mij = ρ

Z L

0

ψi(x)ψj(x)dx (9.66)

kij = P

Z L

0

ψ0i(x)ψ0j(x)dx (9.67)

fi =

Z L

0

ψi(x)f(x, t)dx (9.68)

9.3.5 String element

The usual way of establishing a finite element model for this system is to define a string
element, and then to generate a model for the string by assembling string elements. The
string element is a model of a string of length h between two nodes. The elements of the
mass matrix Me of the element is then

m11 = ρ

Z h

0

³
1− x

h

´2
dx =

ρh

3
, m22 = m11 (9.69)

m12 = m21 = ρ

Z h

0

³
1− x

h

´ x

h
dx =

ρh

6
(9.70)

while the stiffness matrix Ke of the element has elements

k11 = P

Z h

0

µ−1

h

¶2
dx =

P

h
, k22 = k11 (9.71)

k1,2 = k1,2 = P

Z h

0

−1

h2
dx = −P

h
(9.72)
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The model for the string element is found to be

Meq̈e + Keqe = Fe (9.73)

where

qe =

µ
qe1
qe2

¶
, Fe =

µ
Fe1
Fe2

¶
(9.74)

Me =
ρh

6

µ
2 1
1 2

¶
, Ke =

P

h

µ
1 −1
−1 1

¶
(9.75)

9.3.6 Assembling string elements

Two string elements can be assembled by specifying that the second coordinate of the
first element equals the first coordinate of the second element. This is done by assigning
the coordinates to be q1 and q2 for the first element and q2 and q3 for the second element.
To keep the two elements together there must be a constraint force F (c)2 . The models for
the two elements are

Me

µ
q̈1
q̈2

¶
+ Ke

µ
q1
q2

¶
=

µ
F1

1
2F2 + F

(c)
2

¶
(9.76)

Me

µ
q̈2
q̈3

¶
+ Ke

µ
q2
q3

¶
=

µ
1
2F2 − F

(c)
2

F3

¶
(9.77)

The models of the elements are assembled by cancelling the constraint force, which is
done by adding the last line of (9.76) with the first line of (9.77). This gives

M

 q̈1
q̈2
q̈3

+ K

 q1
q2
q3

 =

 F1
F2
F3

 (9.78)

M =

 2 1 0
1 4 1
0 1 2

 , K =
P

h

 1 −1 0
−1 2 −1
0 −1 1

 (9.79)

Note that the mass matrix is obtained by adding the mass matrices of the elements in
the sense that

M =

µ
Me 0
0T 0

¶
+

µ
0 0T

0 Me

¶
(9.80)

In the same way the stiffness matrix is obtained from

K =

µ
Ke 0
0T 0

¶
+

µ
0 0T

0 Ke

¶
(9.81)

This procedure can be repeated to assemble more elements. For 5 nodes the mass
and stiffness matrix will be

M =
ρh

6


2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2

 , K =
P

h


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 (9.82)
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Example 147 The mass matrix as given by (9.66) is tridiagonal. It is called the con-
sistent mass matrix as it is derived using the shape functions. It is possible to have a
simpler model by using a lumped mass model where the mass is lumped at the nodes. This
leads to a diagonal mass matrix, which is called the nonconsistent mass matrix. In the
case of 5 nodes the nonconsistent mass matrix is

M =
ρ

h2


1
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2

 (9.83)

Then the model Mq̈+Kq = F describes the dynamics of a mass spring damper arrange-
ment consisting of N masses that are interconnected by springs in a serial arrangement.
When the consistent mass matrix is used there will in general be spring connections be-
tween all masses.

9.4 Nonlinear string dynamics

9.4.1 Kirchhoff’s nonlinear string model

If the elastic deformation w is sufficiently large, then the tension will depend on the
deformation. Let the tension be constant along the string and given by P = P0 +EI∆x
where

∆x =

Z L

0

s
1 +

µ
∂w

∂x

¶2
dx− L ≈ 1

2

Z L

0

µ
∂w

∂x

¶2
dx (9.84)

is the stretching of the string due to w. Then the homogeneous string model (9.43)
becomes

ρ
∂2w

∂t2
= P0

Ã
1 +EI

Z L

0

µ
∂w

∂x

¶2
dx

!
∂2w

∂x2
(9.85)

This is Kirchhoff’s nonlinear string model (Shahruz 1999).

9.4.2 Marine cables

z

x Towing vessel

Lead-in
cable

Depth controllers
t n

Tail
buoy

r

Streamers

Figure 9.6: Towing arrangement for a marine seismic cable.
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In this section the equation of motion for a towed marine cable will be presented. The
derivation relies results that will be presented in Section 10.2. In particular this involves
the definition of the material derivative D/Dt and the concept of material coordinates.
Towed marine cables are used in marine seismic operation to map oil and gas reservoirs
in an arrangement as indicated in Figure 9.6 Moreover, the model that will be presented
is also valid for the dynamics of anchor lines.
The position of a point on a cable is described by the spatial length p to the point

along the stretched cable, by the material length s to the point along the undeformed
cable, and the spatial position r(s, t) given in a spatial frame (x, y, z). The length p is
referred to as the length in spatial coordinates, while the length s is said to be the length
in material coordinates. The displacement of a point from its undeformed position is
denoted u = p− s. The material strain η is defined by

η =
du

ds
=

dp

ds
− 1⇒ dp

ds
= η + 1 (9.86)

We consider the cable element from s to s+ds of the unstretched cable. We call this a
material cable element as it contains the same material points as the cable is moved and
stretched. In the stretched case this cable element is from p to p+dp. The material cable
element is of constant length ds in material coordinates, and of length dp = (1 + η)ds in
spatial coordinates. The unit tangent vector of the stretched cable is

t =
∂r

dp
=

∂r

ds

ds

dp
=

1

1 + η

∂r

∂s
(9.87)

As the tangent is a unit vector it can be written

t =
∂r

ds

¯̄̄̄
∂r

∂s

¯̄̄̄−1
(9.88)

This shows that the material strain η is given by

η =

¯̄̄̄
∂r

∂s

¯̄̄̄
− 1 (9.89)

The volume of a material cable element is A0ds = Adp where A0 is the cross section
of the unstretched cable, and A is the cross section of the stretched cable. The mass of
a material cable element is constant and is given by dm = ρ0ds where ρ0 is the mass
per unit length of the unstretched cable. A detailed discussion on material and spatial
coordinates for this problem is found in (Lin and Segel 1974). The velocity v(s, t) and
the acceleration a(s, t) of a point on the cable are given by

v(s, t) =
Dr(s, t)

Dt
=

∂r(s, t)

∂t
, a(s, t) =

Dv(s, t)

Dt
=

∂2r(s, t)

∂t2
(9.90)

The equation of motion for the material cable element ds is given by

D

Dt
(vρ0ds) = ρ0ds

Dv

Dt
= ρ0ds

∂2r(s, t)

∂t2
= (P+dP )t(t, s+ds)−Pt(t, s)+f(t, s)dp (9.91)

where it is used that ρ0ds is a constant. Here P is the tension, t is the tangent vector
along the cable, and f is the force per unit length of the stretched cable. Dividing by ds
we get

ρ0
∂2r(s, t)

∂t2
=

∂

∂s
(P t) + f

dp

ds
(9.92)
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According to Hooke’s law the tension in the cable is P = EA0η where E is the Young’s
modulus, and A0 is the cross section of the unstretched cable. The force due to the
tension P in the cable can be separated into a force along the tangent t and one force
orthogonal to the tangent according to

ρ0
∂2r(s, t)

∂t2
=

∂P

∂s
t + P

∂t

∂s
+ f

dp

ds
= EA0

∂η

∂s
t + P

∂t

∂p

dp

ds
+ f

dp

ds
(9.93)

This gives

ρ0
∂2r(s, t)

∂t2
= EA0

∂2u

∂s2
t + P (1 + η)

∂t

∂p
+ f (1 + η) (9.94)

Example 148 In (Aamo and Fossen 2000) the formulation

ρ0
∂2r

∂t2
=

∂

∂s

µ
EA0

η

1 + η

∂r

∂s

¶
+ f (1 + η) (9.95)

due to (Triantafyllou 1990) was used to develop a finite-element model of anchor lines
for moored offshore vessels using Galerkin’s method with

r(t, s) =
NX
k=1

qk(t)ψk(s) (9.96)

The shape functions ψk(s) were selected as the hat functions shown in Figure 9.5.

9.5 Euler Bernoulli beam

9.5.1 Model

L
xw

z

Figure 9.7: Euler Bernoulli beam.

An Euler Bernoulli beam is a mathematical model of lateral elastic deformations in
a slender beam. The length coordinate along the beam is denoted x, and the elastic
deformation in the z direction is denoted w(x, t) as shown in Figure 9.7. The model is
derived from the equations of motion for a volume element of length dx. The bending
moment is denoted M(x, t), and the shear force is denoted V (x, t) (Figure 9.8). The
momentum balance for the Euler Bernoulli beam is given by the two equations

− (V + dV ) + fdx + V = ρdx
∂2w

∂t2
(9.97)

(M + dM)−M − (V + dV ) dx = 0 (9.98)

where f is the external force per unit length of the beam. We see that the moment of
inertia is set to zero in the moment equation. This is due to the assumption that the
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Figure 9.8: Differential element of beam.

beam is slender. A more elaborate model for thick beams is the Timoshenko beam which
includes a nonzero moment of inertia. Division of the equations by dx leads to

−∂V
∂x

+ f = ρ
∂2w

∂t2
(9.99)

∂M

∂x
= V (9.100)

Combining these two equations we get

−∂
2M

∂x2
+ f = ρ

∂2w

∂t2
(9.101)

For the Euler Bernoulli beam the bending moment is given by the constitutive equation

M(x, t) = EI(x)
∂2w

∂x2
(9.102)

where E is Young’s modulus, and I(x) is the moment of inertia about the y axis. It is
noted that (9.102) implies that the shear force is

V = EI(x)
∂3w

∂x3
(9.103)

Combination of (9.101) and (9.102) gives the partial differential equation

ρ(x)
∂2w(x, t)

∂t2
+

∂2

∂x2

·
EI(x)

∂2w(x, t)

∂x2

¸
= f(x, t) (9.104)

For the case where the moment of inertia I(x) is a constant and the external force f(x, t)
is zero the following result is obtained:

A homogeneous Euler Bernoulli beam is described by the partial differential equation

∂2w

∂t2
+ c2

∂4w

∂x4
= 0 (9.105)

where

c2 =
EI

ρ
(9.106)
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9.5.2 Boundary conditions

Clamped - free

Free - free

Clamped - clamped

Clamped - pinned

Pinned - free

Pinned - pinned

Figure 9.9: Boundary conditions for an Euler Bernoulli beam.

Typical boundary conditions for the Euler Bernoulli beam as shown in Figure 9.9 are:

1. A clamped end is defined to have zero elastic deformation and zero elastic angle.
This means that

w = 0 and
∂w

∂x
= 0 (9.107)

2. A free end has zero bending moment and zero shear force. From (9.102) and (9.103)
this is seen to imply that

∂2w

∂x2
= 0 and

∂3w

∂x3
= 0 (9.108)

3. A pinned end has zero elastic deformation and zero bending moment, so that

w = 0 and
∂2w

∂x2
= 0 (9.109)

4. An end with a point mass m will have zero bending moment, and a shear force

V = m
∂2w

∂t2
(9.110)

This gives the boundary conditions

∂2w

∂x2
= 0 and EI

∂3w

∂x3
= m

∂2w

∂t2
(9.111)

5. An end point clamped to a rigid body with mass m and moment of inertia J will
have a shear force and bending moment given by

V = m
∂2w

∂t2
, M = −J ∂2

∂t2
∂w

∂x
(9.112)

From (9.102) and (9.103) this is seen to imply that

EI
∂2w

∂x2
= −J ∂2

∂t2
∂w

∂x
and EI

∂3w

∂x3
= m

∂2w

∂t2
(9.113)
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9.5.3 Energy

For an Euler Bernoulli beam the kinetic energy is

T =
1

2

Z L

0

ρ(x)ẇ2dx (9.114)

while the potential energy is

U =
1

2

Z L

0

EI(x)(w00)2dx (9.115)

The total energy is then

W =
1

2

Z L

0

ρ(x)ẇ2dx +
1

2

Z L

0

EI (w00)2 dx (9.116)

and the time derivative of the energy along the solutions of the system is found to be

Ẇ =

Z L

0

(ẇρẅ + w00EIẇ00) dx

= EI

Z L

0

(−ẇw0000 + ẇf + w00ẇ00) dx

= − ẇEIw000|L0 +EI

Z L

0

(ẇf + ẇ0w000 + w00ẇ00) dx

= − ẇEIw000|L0 + ẇ0EIw00|L0 +EI

Z L

0

(ẇf − ẇ00w00 + w00ẇ00) dx

= − ẇV |L0 + ẇ0M |L0 +EI

Z L

0

ẇfdx (9.117)

The total energy of the Euler Bernoulli beam is

W =
1

2

Z L

0

ρ(x)ẇ2dx +
1

2

Z L

0

EI (w00)2 dx (9.118)

The time derivative along the solutions of the system is

Ẇ = − ẇV |L0 + ẇ0M |L0 +EI

Z L

0

ẇfdx (9.119)

9.5.4 Orthogonal shape functions

For a homogeneous Euler Bernoulli beam with zero external force the method of sepa-
ration of variables leads to a very useful description based on orthogonal mode shapes.
This description will be developed in the following, and it will serve as a starting point
to explain transfer function models and finite element models that will be presented at
a later stage.
In the method of separation of variables the expression

w(x, t) = φ(x)q(t) (9.120)
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is inserted into the partial differential equation (9.105). This gives

φ(x)q̈(t) + c2φ0000(x)q(t) = 0 (9.121)

Following the standard procedure this equation is reformulated as

c2φ0000(x)

φ(x)
= − q̈(t)

q(t)
= C (9.122)

where it is seen that C must be a constant as it is a function of t alone and at the same
time a function of x alone. The only nontrivial solutions for φ are found for C > 0.
Therefore the constant ω is introduced so that C = ω2. This gives the two ordinary
differential equations

q̈(t) + ω2q(t) = 0 (9.123)

φ0000(x)− β4φ(x) = 0 (9.124)

where the constant

β4 =
ω2

c2
(9.125)

has been introduced.
The first equation (9.123) is recognized as a harmonic oscillator. The solution of the

second equation (9.124) is given by

φ(x) = C1 cosβx+ C2 sinβx+ C3 coshβx + C4 sinhβx (9.126)

which has derivatives

φ0(x) = β (−C1 sinβx + C2 cosβx + C3 sinhβx + C4 coshβx) (9.127)

φ00(x) = β2 (−C1 cosβx− C2 sinβx + C3 coshβx + C4 sinhβx) (9.128)

φ000(x) = β3 (C1 sinβx− C2 cosβx + C3 sinhβx + C4 coshβx) (9.129)

Depending on which boundary conditions that apply for the beam, there will be condi-
tions on φ and its derivatives at x = 0 and x = L. The boundary conditions can then be
used to determine the constants Ci through the equations

φ(0)
1
βφ

0(0)
1
β2
φ00(0)

1
β3
φ000(0)

 =


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1




C1
C2
C3
C4

 (9.130)

and
φ(L)
1
βφ

0(L)
1
β2
φ00(L)

1
β3
φ000(L)

 =


cosβL sinβL coshβL sinhβL
− sinβL sinβL coshβL sinhβL
− cosβL − sinβL coshβL sinhβL
sinβL − cosβL sinhβL coshβL




C1
C2
C3
C4

 (9.131)

For a given set of boundary conditions there will be a set of shape functions φi(x) with
associated constants βi and natural frequencies ωi = cβ2i so that the solution is given by

w(x, t) =
∞X
i=1

φi(x)qi(t) (9.132)
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Type of end Boundary Condition 1 Boundary Condition 2

Clamped φ = 0 φ0 = 0

Free φ00 = 0 φ000 = 0

Pinned φ = 0 φ00 = 0

Mass m φ00 = 0 φ000 = −m
ρ β

4φ

Mass m and inertia J φ00 = −J
ρβ

4φ0 φ000 = −m
ρ β

4φ

Table 9.1: Boundary conditions for Euler Bernoulli beam.

Here φi(x) and qi(t) satisfy

q̈i(t) + ω2i qi(t) = 0 (9.133)

φ0000i (x)− β4iφi(x) = 0 (9.134)

The boundary conditions on the deflection w(x, t) imply the boundary conditions
given in Table 9.1 on the shape functions. Given the boundary conditions, the constants
Ci are found by formulating equations for the boundary conditions according to

Bc = 0 (9.135)

where c = (C1, C2, C3, C4)
T . Then, to have nontrivial solutions for the constants in the

vector c, it is necessary that
detB = 0 (9.136)

9.5.5 Clamped-free Euler Bernoulli beam

We will derive the solution for an Euler Bernoulli beam which is clamped at the end at
x = 0, and free at x = L. The boundary conditions are

φ(0) = 0, φ0(0) = 0, (9.137)

φ00(L) = 0, φ000(L) = 0 (9.138)

This can be written

0 =


φ(0)
1
βφ

0(0)
1
β2
φ00(L)

1
β3
φ000(L)

 =


1 0 1 0
0 1 0 1

− cosβL − sinβL coshβL sinhβL
sinβL − cosβL sinhβL coshβL


| {z }

Bcf


C1
C2
C3
C4


| {z }

c

(9.139)

Nontrivial solutions are found when detBcf= 0, which occurs when

1 + cosβL coshβL = 0 (9.140)

This transcendental equation holds for infinitely many discrete values of β, and must
be solved numerically. The solutions are denoted βi, and for each βi there corresponds
resonance frequency ωi = β2i c in agreement with (9.125), and a set of constants C1i,
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Type of beam Characteristic equation
Clamped-free cosβL coshβL + 1 = 0

Free-free and clamped-clamped cosβL coshβL− 1 = 0

Clamped-pinned and pinned-free cosβL sinhβL− sinβL coshβL = 0

Pinned-pinned sinβL = 0

Table 9.2: Characteristic equations for Euler Bernoulli beam.

C2i, C3i, C4i, and one shape function φi(x). We note from the first and second row of
(9.139) that the constants are related by C3i = −C1i and C4i = −C2i, and that the third
and fourth row of (9.139) implies that C2i can be expressed by C1i according to

C2i = αiC1i where αi =
cosβiL+ coshβiL

sinβiL+ sinhβiL
(9.141)

This shows that the shape functions are given by

φi(x) = C1i [(cosβix− coshβix) + αi (sinβix− sinhβix)] (9.142)

Usually the constant C1i is normalized so thatZ c

0

ρ [φi(x)]
2
dx = 1 (9.143)

The solution is then

w(x, t) =
∞X
i=1

qi(t)φi(x) (9.144)

where the generalized coordinate qi satisfy the differential equation

q̈i(t) + ω2i qi(t) = 0 (9.145)

Numerical values for the first modes are tabulated in textbooks like (Rao 1990), and
for the first three modes we have

β1c = 1.875104, α1 = 0.7341 (9.146)

β2c = 4.694091, α2 = 1.0185 (9.147)

β3c = 7.854757, α3 = 0.9992 (9.148)

In this example
ω2
ω1

=
β22
β21

= 6.25

Numerical values for β are tabulated in many textbooks on vibrations for simple cases
like pinned-pinned, free-free, fixed-fixed, fixed-free, fixed-pinned, and pinned-free.
The characteristic equation for different beams are given in Table 9.2.
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m1
J1

m2

0 L
x

Figure 9.10: Satellite antenna.

9.5.6 Beam fixed to an inertia and a mass

The antenna boom on a small satellite is modelled as an Euler Bernoulli beam. The
beam is modelled to be clamped at the satellite end at x = 0 to an inertial load with
mass m1 and moment of inertia J , and fixed to a mass m2 at the end of the boom at
x = L (Figure 9.10). The boundary conditions are then

φ00(0) = −J1
ρ
β4φ0(0), φ000(0) = −m1

ρ
β4φ(0) (9.149)

φ00(L) = 0, φ000(L) = −m2

ρ
β4φ(L) (9.150)

which can be written
1
β2
φ00(0) + J1

ρ β
2φ0(0)

1
β3
φ000(0) + m1

ρ βφ(0)
1
β2
φ00(L)

1
β3
φ000(L) + m2

ρ βφ(L)

 = Ba


C1
C2
C3
C4

 = 0 (9.151)

Nontrivial solutions are found for

detBa = 0 (9.152)

In the study of satellite dynamics the concept of constrained modes are often used.
These are the modes that occur when the satellite is assumed to have infinite inertia and
mass. Therefore the constrained modes for this antenna is found when m1 and J are
assumed to approach infinity. The condition for nontrivial solutions in this case is

1 + cosβc coshβc +
m2

ρ
c(cosβc− sinβc sinhβc) = 0 (9.153)

In contrast to this the unconstrained modes are the modes are found for finite m1

and J . For a small satellite we assume that m1 =78 kg, J = 4 kg m2, c = 6 m, m2 = 4
kg, EI = 28.69 N·m2 (10,000 lbf ·inch2), ρ = 1 kg/6 m = 0.17 kg/m. Then the numerical
values were found for the constrained case and the unconstrained case using Maple. The
results are shown in Table 9.3. It was found that the spacecraft with gravity boom will
have resonances with periods 41.0 s, 1.14 s, 0.34 s,. . . The computations based on the
assumption of constrained modes predicts periods 20.2 s, 1.10 s, 0.34 s. It is seen that
the lowest natural frequency computed for the constrained modes is a factor of 2 greater
than the natural frequency associated with the unconstrained mode for this example.
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Constrained modes Unconstrained modes
Mode # β ω

2π (Hz)
1
f (s) β ω

2π (Hz)
1
f (s)

0 - - - 0 0 ∞
1 0.1529 0.0488 20.2 0.1082 0.0244 41.0
2 0.6592 0.9074 1.10 0.6487 0.8787 1.14
3 1.1810 2.9125 0.34 1.1782 2.8987 0.34
4 1.7037 6.0610 0.17 1.7025 6.0525 0.17
5 2.2268 10.354 0.10 2.2262 10.3487 0.10

(9.154)

Table 9.3: Natural frequencies for satellite antenna using constrained modes and uncon-
strained modes.

9.5.7 Orthogonality of the eigenfunctions

For specified boundary conditions there will be a set of solutions φi(x) of (9.124), where
each solution φi(x) corresponds to a value βi for β so that

φ0000i (x) = β4iφi(x) (9.155)

The solutions φi(x) are called the eigenfunctions (9.124), and the associated values λi =
β4i are the eigenvalues of the system. It is assumed in the following that the eigenvalues
are distinct. Note that for each eigenfunction φi(x) there is one natural frequency

ωi = cβ2i (9.156)

of the harmonic oscillator (9.123).
Consider the eigenfunction φi(x) with eigenvalue β4i and the eigenfunction φj(x) with

eigenvalue β4j . Then Z c

0

φi(x)φ0000j (x)dx = β4j

Z c

0

φi(x)φj(x)dx (9.157)

The integral on the left side can also be evaluated by partial integration twice to beZ c

0

φi(x)φ0000j (x)dx = φi(x)φ000j (x)
¯̄c
0
− φ0i(x)φ00j (x)

¯̄c
0
+

Z c

0

φ00i (x)φ00j (x)dx (9.158)

Combination of (9.157) and (9.158) gives

β4j

Z c

0

φi(x)φj(x)dx = φi(x)φ000j (x)
¯̄c
0
− φ0i(x)φ00j (x)

¯̄c
0
+

Z c

0

φ00i (x)φ00j (x)dx (9.159)

In the same way, by interchanging i and j in the expression the result

β4i

Z c

0

φi(x)φj(x)dx = φj(x)φ000i (x)
¯̄c
0
− φ0j(x)φ00i (x)

¯̄c
0

+

Z c

0

φ00i (x)φ00j (x)dx (9.160)

appears. From (9.159) and (9.160) it is seen that if

φi(x)φ000j (x)
¯̄c
0
− φ0i(x)φ00j (x)

¯̄c
0

= φj(x)φ000i (x)
¯̄c
0
− φ0j(x)φ00i (x)

¯̄c
0

(9.161)
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the eigenfunctions will satisfy

(β4j − β4i )

Z c

0

φi(x)φj(x)dx = 0 (9.162)

Due to the assumption βi 6= βj , this implies thatZ c

0

φi(x)φj(x)dx = 0, i 6= j (9.163)

Moreover, from (9.159) and (9.160) it follows thatZ c

0

φ00i (x)φ00j (x)dx = 0, i 6= j (9.164)

Usually the eigenfunctions are normalized so that the following result is valid:

The eigenfunctions of (9.124) are orthogonal shape functions in the sense that they satisfyZ c

0

ρφi(x)φj(x)dx = δij (9.165)

In addition they satisfy Z c

0

ρφ00i (x)φ00j (x)dx = β4i δij (9.166)

where δij = 1 when i = j and δij = 0 when i 6= j.

9.5.8 Galerkin’s method for orthogonal mode shapes

We will now introduce a control force u in our model of a Euler Bernoulli beam. The
control force u is assumed to be perpendicular to the beam at position xu. This can be
modelled with the Dirac delta δ(x) in the partial differential equation:

ρc2
∂4w

∂x4
(x, t) + ρ

∂2w

∂t2
(x, t) = δ(x− xu)u (9.167)

Due to the forcing term δ(x−xu)u the method of separation of variables cannot be used
directly.
The solution w(x, t) is assumed to be a linear combination of the eigenfunctions φj(x),

j ∈ {1, 2, . . .}, and we may write

w(x, t) =
∞X
j=1

qj(t)φj(x) (9.168)

The partial differential equations can then be written
∞X
j=1

[ρc2qj(t)
∂4φj(x)

∂x4
+ ρ

∂2qj(t)

∂t2
φj(x)] = δ(x− xu)u(t) (9.169)

The partial differential equation is reformulated by insertion of (9.134) and ω2j = c2β4j ,
which gives

∞X
i=1

ρφj(x)[ω2jqj(t) + q̈j(t)] = δ(x− xu)u(t) (9.170)
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At this point Galerkin’s method is used. This involves the multiplication of equation
(9.170) with φi(x) and the integration of the result over the interval x ∈ [0, c]. This givesZ c

0

φi(x)
∞X
j=1

ρφj(x)dx[ω2jqj(t) + q̈j(t)] =

Z c

0

φj(x)δ(x− xu)dxu(t) (9.171)

For any function f(x) the Dirac delta gives
R c
0
f(x)δ(x− xu)dx = f(xu). This together

with the orthogonality of the eigenfunctions, see (9.165), lead to

ω2i qi(t) + q̈i(t) = φi(xu)u(t) (9.172)

which has the Laplace transform

qi(s) =
φi(xu)

ω2i + s2
u(s) (9.173)

We assume that the measurement y(t) is the velocity ẇ(xy, t) of the elastic deflection
at position xy, that is,

y(t) = ẇ(xy, t) (9.174)

Then the measurement can be written

y(t) =
∞X
i=1

q̇i(t)φi(xy) (9.175)

and the transfer function from u to y is seen to be

y(s)

u(s)
=
∞X
i=1

sφi(xy)φi(xu)

ω2i + s2
(9.176)

The following observations are important:

1. If input and output are collocated, which is the case whenever xu = xy = x0, then
the transfer function from u to y is passive because

Y (s)

U(s)
=
∞X
i=1

sφ2i (x0)

ω2i + s2
(9.177)

which is a parallel interconnection of passive systems. Alternatively passivity may
be established from energy considerations. This result agrees with an energy argu-
ment where V is the sum of kinetic and potential energy. Then

V̇ (t) = y(t)u(t)− d(t) (9.178)

where
R T
0
d(t)dt ≥ 0 is the dissipated energy in the system. It follows that the

system with input u and output y is passive.

2. If measurement and control are not collocated, then xu 6= xy, and it may be
that φi(xy) and φi(xu) have opposite signs for certain i. In this case the transfer
function y(s)/u(s) will not be positive real. This may cause difficulties in designing
a controller to damp out vibrations.
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3. If φi(xu) = 0, the control u will have no influence on mode i. In the state-space
terminology this means that mode i is not controllable with the control u.

4. If φi(xy) = 0, then mode i will not be noticeable in the measurement y. This means
that mode i is not observable from the measurement y.

Example 149 Consider a homogeneous beam of aluminium with a rectangular cross
section, length c = 2 m, width b = 0.05 m, height h = 0.01 m, density ρ = b · h · 2700
kg/m3 = 1.35 kg/m, Young’s modulus E = 70 · 109 N/m2 and moment of inertia I =
bh3/12 = 4.167 · 10−9 m4. The beam is clamped at x = 0 and free at x = c.
The shape functions can be found to be

φ1(x) = −0.6086 · {cos(β1x)− cosh(β1x)− 0.7341 · [sin(β1x)− sinh(β1x)]} (9.179)

and

φ2(x) = −0.6086 · {cos(β2x)− cosh(β2x)− 1.0185 · [sin(β2x)− sinh(β2x)} (9.180)

First collocation is tried with xu = xy = 2 m. Then

φ1(xu) = φ1(xy) = 1.22, φ2(xu) = φ2(xy) = −1.22

and the transfer function

y

u
(s) =

1.5s

12.82 + s2
+

1.5s

80.12 + s2
= 3.0

s(57.42 + s2)

(12.82 + s2)(80.12 + s2)
(9.181)

results, which is passive. Note that the complex conjugated zeros at s = ±j57.4 is located
between the poles in s = ±j12.8 and s = ±j80.1. A simple P controller

u = −Kpy (9.182)

will give stability, with a power dissipation of u(t)y(t) = −Kpy(t)
2. The gain Kp is only

limited by noise, quantization and discretization effects.
Next noncollocation is tried with xu = 0.5 m and xy = 2 m. Then

φ1(xu) = 0.12 φ1(xy) = 1.22

φ2(xu) = 0.51 φ2(xy) = −1.22

and the transfer function is

y

u
(s) =

0.15s

12.82 + s2
− 0.62s

80.12 + s2
= −0.47

s(47.62 − s2)

(12.82 + s2)(80.12 + s2)
(9.183)

This transfer function has a zero in the right half plane at s = 47.6. This limits the
bandwidth of the system. Alternatively, we see that the transfer function is the sum of
two transfer functions that are not very different, except that they have opposite signs.
Thus if a P controller is used in a negative feedback, this will give stabilization and power
dissipation for mode 1, while it will give destabilization and added power to mode 2. In
fact the only possibility for stabilization is that the mode with positive feedback has gain
less that unity which ensures stability according to Bode-Nyquist stability theory.
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9.6 Finite element model of Euler Bernoulli beam

9.6.1 Introduction

An alternative technique for analyzing the Euler Bernoulli beam is to use the finite-
element method. The finite-element method can be seen as a model formulation based
on the Galerkin method, where special set of shape functions are used. The characteristic
feature of the finite-element method is that the shape functions are locally defined in the
sense that they are nonzero only in short intervals of the beam. This is in contrast to the
orthogonal shape functions, which are global function on the beam. An alternative way
of seeing the finite-element method is that the beam is divided into beam elements. The
equations of motion are then derived for the beam element using a cubic shape function,
and then the beam model is obtained by connecting the beam element models using
multiport techniques. The presentation that follows will focus on the formulation using
beam elements, but the Galerkin point of view will also be presented.

9.6.2 Beam element

In a finite-element model of an Euler Bernoulli beam the basic building block of the
model is a beam element of length h. The element is defined for the interval 0 ≤ x ≤ h.
At x = 0 the shear force is V1 and the bending moment is M1, the elastic displacement
is w1, and the elastic angle is w01. This can be seen as one port with effort V1 and flow
ẇ1, and one port with effortM1 and flow ẇ01. At x = h the shear force is V2, the bending
moment is M2, the elastic deflection is w2, and the elastic angle is this is w02. This is
described as a port with effort V2 and flow ẇ2, and one port with effort M2 and flow ẇ02.
The usual finite-element model of the Euler Bernoulli beam is based on the displacement
formulation where the inputs to the model are the forces and torques, and the outputs
are the displacements and the displacement angles. In the multiport terminology this is
an admittance model where the efforts are input and the flows are outputs.

The displacement in the element is modeled as the cubic expression

w(x, t) = c0(t) + c1(t)x + c2(t)x
2 + c3(t)x

3 (9.184)

The motivation for using this expression is that in the stationary case the displacement
satisfies w0000 = 0, which has solution (9.184). The generalized coordinates ai(t) of the
beam element are defined as

a1(t) = w1(t) a2(t) = w01(t) (9.185)

a3(t) = w2(t), a4(t) = w02(t) (9.186)

Combination of (9.184), (9.185) and (9.186) leads to

w(x, t) =
4X
i=1

αi(x)ai(t) (9.187)
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where the shape functions αi(x) are given by

α1(x) = 1− 3
³x
h

´2
+ 3

³x
h

´3
(9.188)

α2(x) = h

·³x
h

´
− 2

³x
h

´2
+
³x
h

´3¸
(9.189)

α3(x) = 3
³x
h

´2
− 2

³x
h

´3
(9.190)

α4(x) = h

·
−
³x
h

´2
+
³x
h

´3¸
(9.191)

These cubic shape functions are called the Hermitian shape functions.
Galerkin’s method for the beam element leads to

Meä + Kea = f (9.192)

where the mass matrix of the element is given by

Me =

Z h

0

ρααTdx =
ρh

420


156 22h 54 −13h
22h 4h2 13h −3h2

54 13h 156 −22h
−13h −3h2 −22h 4h2

 (9.193)

and the stiffness matrix of the element is given by

Ke =

Z h

0

ρα00 (α00)T dx =
2c2ρ

h3


6 3h −6 3h
3h 2h2 −3h h2

−6 −3h 6 −3h
3h h2 −3h 2h2

 (9.194)

and f = (f1, f2, f3, f4)
T where

fi =

Z h

0

αi(x)f(x) (9.195)

Example 150 To simplify the model the mass is sometimes lumped to have a diagonal
mass matrix (Rao 1990). For translational degrees of freedom this is simply done by
lumping all mass at the nodes, while for rotational inertia the inertia can be computed
by having uniform mass distribution for half a beam on each side of the node. This gives
in this example

Me =
ρh

2


1 0 0 0

0 h2

12 0 0
0 0 1 0

0 0 0 h2

12

 (9.196)

which is the lumped mass matrix.

9.6.3 Assembling a structure

To establish the model for a beam of length L where L = Nh it is necessary to connect N
beam elements. Elements k and k + 1 can be connected by requiring that the end-point
variables satisfy ak,3 = ak+1,1 and ak,4 = ak+1,2. Then, there must be forces and torques
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of constraints to hold the two element together, and the equations of motion for elements
k and k + 1 are given by

Me
d2

dt2


ak,1
ak,2
ak,3
ak,4

+ Ke


ak,1
ak,2
ak,3
ak,4

 =


fk,1
fk,2

fk,3 + f
(c)
3

fk,4 + f
(c)
4

 (9.197)

Me
d2

dt2


ak+1,1
ak+1,2
ak+1,3
ak+1,4

+ Ke


ak+1,1
ak+1,2
ak+1,3
ak+1,4

 =


fk+1,1 − f

(c)
3

fk+1,2 − f
(c)
4

fk+1,3
fk+1,4

 (9.198)

These forces and torques of constraint are eliminated by adding rows 3 and 4 of element
k to rows 1 and 2 of element k + 1. This gives the model

Mq̈ + Kq = u (9.199)

where q = (ak,1, ak,2, ak+1,1, ak+1,2, ak+1,3, ak+1,4). The mass matrix is obtained from

M =

µ
Me 04,2
02,4 02,2

¶
+

µ
02,2 02,4
04,2 Me

¶
(9.200)

In the same way the stiffness matrix is obtained from

K =

µ
Ke 04,2
02,4 02,2

¶
+

µ
02,2 02,4
04,2 Ke

¶
(9.201)

Alternatively, the model of the two elements can be written

M̄
d2

dt2
ā + K̄ā = f̄ (9.202)

ā = (a1, . . . , ap)
T (9.203)

M̄ = block diag(Me1, . . . ,Mep), K̄ = block diag(Ke1, . . . ,Kep) (9.204)

where the connection of the elements is obtained by requiring

ā = Cq, u = CTf̄ (9.205)

where

C =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(9.206)

when N = 2. Then the mass matrix and the stiffness matrix are found from

M = CTM̄C, K = CT K̄C (9.207)
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to be

M =


m11 m12 m13 m14 0 0
m21 m22 m23 m24 0 0
m31 m32 m33 +m11 m34 +m12 m13 m14

m41 m42 m43 +m21 m44 +m22 m23 m24

0 0 m31 m32 m33 m34

0 0 m41 m42 m43 m44

 (9.208)

K =


k11 k12 k13 k14 0 0
k21 k22 k23 k24 0 0
k31 k32 k33 + k11 k34 + k12 k13 k14
k41 k42 k43 + k21 k44 + k22 k23 k24
0 0 k31 k32 k33 k34
0 0 k41 k42 k43 k44

 (9.209)

and the resulting model is
Mq̈ + Kq = u (9.210)

9.6.4 Finite element model and Galerkin’s method

A finite-element model for an Euler Bernoulli beam can alternatively be established
by applying Galerkin’s method with shape functions ψi(x) based on the element shape
functions in (9.188—9.191). For the Euler Bernoulli beam, N nodes are defined at x1 <
x2 < . . . < xN , and the deflection is described by

w(x, t) =
NX
j=1

[αj,1(x)aj,1(t) + αj,2(x)aj,2(t)] (9.211)

which is expressed in the form

w(x, t) =
2NX
j=1

ψj(x)qj(t) (9.212)

where the generalized coordinates are q = (a1,1, a1,2, . . . , aN,1, aN,2)
T and the mode shape

vector is ψ =(ψ1,1, ψ1,2, . . . , ψN,1, ψN,2)
T . The shape functions αj,1(x) and αj,2(x) for

the Euler Bernoulli beam are selected in agreement with (9.188—9.191) as the Hermitian
shape functions

αi,1(x) =


1− 3 (x−xi)

2

c2i
+ 2 (x−xi)

3

c3i
, xi ≤ x ≤ xi+1

3 (x−xi−1)
2

c2i−1
− 2 (x−xi−1)

3

c3i−1
, xi−1 ≤ x ≤ xi

0 otherwise

(9.213)

αi,2(x) =


x− 2 (x−xi)

2

ci
+ (x−xi)3

c2i
, xi ≤ x ≤ xi+1

− (x−xi−1)2ci−1
+ (x−xi−1)3

c2i−1
, xi−1 ≤ x ≤ xi

0, otherwise

(9.214)

These shape functions satisfy

ψ2k−1 = αj,1(xk) = δjk, ψ02k−1 = α0j,1(xk) = 0 (9.215)

ψ2k = αj,2(xk) = 0, ψ02k = α0j,2(xk) = δjk (9.216)
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Figure 9.11: Shape functions for Euler-Bernoulli beam.

This gives the following physical interpretation of the generalized coordinates q2k−1 =
ak,1(t) and q2k = ak,2(t):

q2k−1 = ak,1(t) = w(xk, t) (9.217)

q2k = ak,2(t) = w0(xk, t) (9.218)

Insertion of (9.212) gives

2NX
i=1

£
ρq̈j(t)ψj(x) + ρc2qj(t)ψ

0000
j (x)

¤
= b(x)u(t) (9.219)

In the Galerkin method the equation of motion is premultiplied by ψi(x) and integrated
over the interval x ∈ [0, c]. This gives the expression

Z c

0

ψi(x)
2NX
i=1

[ρc2qj(t)ψ
0000
j (x) + ρq̈j(t)ψj(x)]dx =

Z c

0

ψi(x)b(x)u(t)dx (9.220)

Partial integration twice givesZ c

0

ψi(x)ψ0000j (x)dx = ψi(x)ψ000j (x)
¯̄c
0
− ψ0i(x)ψ00j (x)

¯̄c
0

+

Z c

0

ψ00i (x)ψ00j (x)dx (9.221)

and, if we assume that

ψi(x)ψ000j (x)
¯̄c
0
− ψ0i(x)ψ00j (x)

¯̄c
0

= 0 (9.222)
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then

NX
i=1

"Z c

0

ρψi(x)ψj(x)dxq̈i(t) +

Z c

0

c2ρψ00i (x)ψ00j (x)dxqj(t)

#
=

Z c

0

ψi(x)b(x)dxu(t)

This can be written in vector form as

Mq̈ + Kq = bu (9.223)

Here q = (q1, . . . , q2N ) T is the vector of generalized coordinates, M = {mij} is the mass
matrix and K = {kij} is the stiffness matrix, and b = (b1, . . . , bN ) T with elements given
by

mij =

Z c

0

ρψj(x)ψi(x)dx (9.224)

kij =

Z c

0

c2ρψ00j (x)ψ00i (x)dx (9.225)

bi =

Z c

0

ψj(x)b(x)dx (9.226)

Note that

1. The mass matrix M and the stiffness matrix K are symmetric. Moreover, the M
and K matrices will typically be positive definite.

2. If the orthogonal mode shapes are used, then the mass matrix M and the stiffness
matrix K will be diagonal matrices.

9.7 Motor and Euler Bernoulli beam

9.7.1 Equations of motion

m

w x

z

Motor

Tm

Figure 9.12: Motor with Euler-Bernoulli beam

In this section we will study the dynamics of an Euler Bernoulli beam that is rotated
by a motor. This can be seen as a simplified model of a robotic joint with an elastic link.
The motor has moment of inertia Jm and joint angle θm, and the Euler Bernoulli beam
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has length c as shown in Figure 9.12. The position of a point x along the beam is given
by

η(x, t) = xθm(t) + w(x, t) (9.227)

where η(x, t) is the arc length from the reference position along a circle of radius x, and
w(x, t) is the elastic deflection.
For this system the dynamics are the same as for the usual Euler Bernoulli model,

except that the acceleration is ∂2η/∂t2 in place of ∂2w/∂t2. This gives

c2
∂4w

∂x4
(x, t) +

∂2η

∂t2
(x, t) = 0 (9.228)

The equation of motion for the motor shaft can be found from

ḣ(t) = Tm(t) (9.229)

where

h(t) = Jmθ̇m +

Z c

0

[xθ̇m + ẇ(x, t)]ρxdx (9.230)

is the angular momentum of the motor and beam. The equation of motion is found to
be

Jtθ̈m(t) +

Z c

0

ρxẇ(x, t)dx = Tm(t) (9.231)

where

Jt = Jm +

Z c

0

ρx2dx (9.232)

is the total inertia seen from the motor.

9.7.2 Assumed mode shapes

An elastic beam is fixed to a moving base, and the elastic deflection of the beam is
described by

w(x, t) =
∞X
j=1

φj(x)qi(t) (9.233)

where φj(x) is a set of shape functions. Typically, the orthogonal shape functions may be
available from previous analysis, or even from textbooks, and a widely used method is to
approximate the solution by assuming that the orthogonal modes of the beam itself is a
sufficiently accurate approximation in (9.233). To demonstrate how this can be done we
will use the orthogonal shape functions φj(x) of a pinned Euler Bernoulli beam, which
is an accurate approximation if the inertia of the motor is large compared to the inertia
of the beam.
The angular momentum of the motor axis and beam is

h(t) = Jmθ̇m +

Z c

0

[xθ̇m +
∞X
j=1

φj(x)q̇j(t)]ρxdx (9.234)

which gives the equation of motion

Jtθ̈m(t) +
∞X
j=1

hj q̈j(t) = Tm(t) (9.235)
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where

hj =

Z c

0

ρφj(x)xdx (9.236)

is the angular momentum coefficient for mode shape j.
Insertion of (9.227) and (9.233) into (9.228) gives

∞X
j=1

[c2φ0000j (x)qj(t) + φj(x)q̈j(t)] + xθ̈m(t) = 0 (9.237)

As the mode shapes φj are eigenfunctions that satisfy (9.124), this can be written

∞X
i=1

φj(x)[ω2jqj(t) + q̈j(t)] + xθ̈m(t) = 0 (9.238)

where the natural frequencies are given by ω2j = c2β4j . Finally, we may find the differential
equations for the generalized coordinates qi by multiplying with φi(x) and integrating
over the interval x ∈ [0, c]. This gives

Z c

0

ρφi(x)


∞X
j=1

φj(x)[ω2jqj(t) + q̈j(t)] + xθ̈m(t)

 dx = 0 (9.239)

Then, by accounting for the orthogonality of the shape functions as expressed in (9.165)
we arrive at the differential equations

ω2i qi(t) + q̈i(t) + hiθ̈m(t) = 0 (9.240)

where i has been inserted for j, and the angular momentum coefficients hi are given by

hi =

Z c

0

ρφi(x)xdx (9.241)

The model can be written
Jt h1 . . . hi . . .
h1 1 . . . 0 . . .
...

...
. . .

... . . .
hi 0 . . . 1 . . .
...

...
...

...
. . .




θ̈m
q̈1
...
q̈i
...

+


0 0 . . . 0 . . .
0 ω21 . . . 0 . . .
...

...
. . .

... . . .
0 0 . . . ω2i . . .
...

...
...

...
. . .




θm
q1
...
qi
...

 =


Tm
0
...
0
...


This type of model formulation is used to simulate the dynamics of flexible antennas
mounted on satellites (Hughes 1974).

9.7.3 Finite elements

A model for a beam mounted on a motor axis can also be derived with the finite-element
method. Again, the position of a point x along the beam is given by η(x, t) = xθm(t) +
w(x, t), and the elastic deflection of the beam is described by

w(x, t) =
2NX
j=1

ψj(x)qi(t) (9.242)
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where ψj(x) are the Hermitian shape functions used in the finite-element method. The
partial differential equation (9.228) is then approximated by

c2ψ0000(x)Tq(t) +ψ(x)T q̈i(t) + xθ̈m(t) = 0 (9.243)

and Galerkin’s method leads toZ c

0

ρψ(x)
h
c2ψ0000(x)Tq(t) +ψ(x)T q̈i(t) + xθ̈m(t)

i
dx = 0 (9.244)

Insertion of (9.221) givesZ c

0

h
c2ρψ00(x)Tψ00(x)qi(t) + ρψ(x)ψ(x)T q̈i(t) + ρψ(x)xθ̈m(t)

i
dx = 0 (9.245)

The equation of motion for the motor is approximated by

Jtθ̈m(t) +
2NX
j=1

hj q̈j(t) = Tm(t) (9.246)

where

Jt = Jm +

Z c

0

ρx2dx (9.247)

is the total inertia seen from the motor, and

hj =

Z c

0

ρψj(x)xdx (9.248)

are the influence coefficients. This leads to the model

M =

µ
Jt hT

h Mfe

¶
, K =

µ
0 0T

0 Kfe

¶
(9.249)

q =


θm
q1
...
qN

 , b =


1
0
...
0

 , h =

 h1
...
hN

 (9.250)

where the mass matrix Mfe and the stiffness matrix Kfe of the finite-element method
are given by

Mfe =

Z c

0

ρψψT dx, Kfe =

Z c

0

ρψ00
¡
ψ00
¢T

dx (9.251)

9.8 Irrational transfer functions for beam dynamics

9.8.1 Introduction

So far the dynamics of the Euler Bernoulli beam has been described using a series ex-
pansion of a solution based on shape functions. In this section it will be shown that
transfer functions for the beam dynamics can be derived directly from the partial differ-
ential equation. This is of great interest in itself, but it also gives useful information on
the dynamics of the system as there are no approximations involved. In particular, the
singularities and zeros of the dynamics can be found.
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w 2 ,V2

x

Figure 9.13: Clamped beam with excitation force V2 and deflection w2 on the tip.

9.8.2 Clamped-free beam

Consider a clamped-free beam which is clamped at x = 0 and free at x = L as shown in
Figure 9.13. The beam is excited with a force V2 at the end, and we will in the following
derive the transfer function from the tip force V2 to the tip deflection w2. Laplace
transformation of the partial differential equation (9.105) gives

∂4

∂x4
w(x, s) +

s2

c2
w(x, s) = 0 (9.252)

Define the complex variable γ(s) by the relation

γ4 = −s
2

c2
(9.253)

Then the Laplace transformation of the partial differential equation (9.266) gives the
ordinary differential equation

∂4

∂x4
w(x, s)− γ4w(x, s) = 0 (9.254)

The solution to the Laplace transformed model (9.254) is

w(x, s) = C1 cos γx + C2 sin γx+ C3 coshγx+ C4 sinh γx (9.255)

while the derivatives are

w0(x, s) = γ (−C1 sin γx + C2 cos γx + C3 sinh γx+ C4 cosh γx) (9.256)

w00(x, s) = γ2 (−C1 cos γx− C2 sin γx + C3 cosh γx+ C4 sinh γx) (9.257)

w000(x, s) = γ3 (C1 sin γx− C2 cos γx + C3 sinh γx + C4 cosh γx) (9.258)

For the clamped-free beam the boundary conditions imply that w1 = 0, w01 = θ1 = 0, and
that M2 and V2 are functions of time only. This means that w1, θ1, M2 and V2 should
be considered as input to the system, whereas w2, θ2, M1 and V1 can be considered as
outputs of the system dynamics. Note that it is critical in the method that is presented
here that the appropriate variables are selected as inputs and outputs. From (9.255—
9.258) we find that the input variables can be expressed in terms of the constant Ci

as 
w1(s)
1
γ θ1(s)
1

γ2EIM2(s)
1

γ3EIV2(s)


| {z }

u(s)

=


1 0 1 0
0 1 0 1

− cos γL − sin γL cosh γL sinh γL
sin γL − cos γL sinh γL cosh γL


| {z }

G(s)


C1
C2
C3
C4


| {z }

c

(9.259)
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while the output variables can be expressed by
w2(s)
1
γ θ2(s)
1

γ2EIM1(s)
1

γ3EIV1(s)


| {z }

y(s)

=


cos γL sin γL cosh γL sinh γL
− sin γL cos γL sinh γL cosh γL
−1 0 1 0
0 −1 0 1


| {z }

K(s)


C1
C2
C3
C4


| {z }

c

(9.260)

Then, as G(s) is nonsingular, we can find the transfer function matrix H(s) from the
expression

y(s) = H(s)u(s) = K(s)G(s)−1u(s) (9.261)

where u(s), y(s), G(s), and K(s) are defined in (9.259) and (9.260). Using a symbolic
program like MATLAB or MAPLE, we find that the transfer function from the tip force
V2 to the tip deflection w2 is given by

w2(s)

V2(s)
=

1

γ3EI

cos γL sinh γL− sin γL cosh γL

1 + cos γL cosh γL
(9.262)

The singularities of the transfer function are found by equating the denominator to zero.
This gives

1 + cos γL cosh γL = 0 (9.263)

which is the characteristic equation for the clamped-free beam. This means that the
natural frequencies of the irrational transfer functions are given by the natural frequencies
found from the analysis based on the orthogonal mode shapes. This makes sense, as both
methods are exact. The zeros of the transfer function are found from

cos γL sinh γL− sin γL cosh γL = 0 (9.264)

which is the characteristic equation for the clamped-pinned beam. This can be explained
as the dynamics associated with the zeros gives small amplification from the force V2(s)
to the deflection w2(s). The clamped-pinned beam has zero deflection w2(s), and it
seems reasonable that this is reflected in the location of the zeros.

9.8.3 Motor and beam

In this section transfer functions for a motor and an Euler Bernoulli beam of length L
will be derived. The results are based on (Wie and Bryson 1987) and (Gevarter 1970).
The starting point for the derivation is the definition of the variable

η(x, t) = w(x, t) + xθ(t) (9.265)

which leads to the partial differential equation

∂4

∂x4
η(x, t) +

1

c2
∂2

∂t2
η(x, t) = 0 (9.266)

which is the same as for the beam model. The position variable and the angles at the
end-points are given by

η1(s) = η(0, s), η2(s) = η(L, s) (9.267)

θ1(s) = η0(0, s), θ2(s) = η0(L, s) (9.268)
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while the shear forces and moments at the end-points are given by

1

EI
V1(s) = η000(0, s),

1

EI
V2(s) = η000(L, s) (9.269)

1

EI
M1(s) = η00(0, s),

1

EI
M2(s) = η00(L, s) (9.270)

The beam is pinned to the motor at x = 0 and is free at x = L, which leads to the
boundary conditions

η(0, t) = η00(L, t) = η000(L, t) = 0 (9.271)

η00(0, t) =
1

EI
M1(t) = TL(t) (9.272)

where TL(t) is the torque from the motor shaft on the beam.
We will now develop a transfer function model of the form y(s) = H(s)u(s) of the

motor and beam. First we have to select the input and output variables of the model.
The input and output variables are η1, η2, θ1, θ2, V1, V2, M1 and M2. The boundary
conditions (9.271) and (9.272) imply that η1, M2 and V2 are zero, and that M1 is a
function of time only. Therefore these variables must be in the input vector u of the
transfer function model. The remaining four variables η2, θ1, θ2, and V1 are in the
output vector y.
The partial differential equation (9.266) for η is the same as the partial differential

equation (9.105) for w. Therefore, the solution η(x, s) and its derivatives with respect to
x will be given by (9.255—9.258), and the input and output variables can be expressed by

1
γ2EIM1(s)

η1(s)
1

γ3EIV2(s)
1

γ2EIM2(s)


| {z }

u(s)

=


−1 0 1 0
1 0 1 0

sin γL − cos γL sinh γL cosh γL
− cos γL − sin γL cosh γL sinh γL


| {z }

K(s)


C1
C2
C3
C4


| {z }

c

(9.273)

and 
1
γ θ1(s)

η2(s)
1
γ θ2(s)
1

γ3EIV1(s)


| {z }

y(s)

=


0 1 0 1

cos γL sin γL cosh γL sinh γL
− sin γL cos γL sinh γL cosh γL

0 −1 0 1


| {z }

G(s)


C1
C2
C3
C4


| {z }

c

(9.274)

The matrix G(s) is nonsingular, we can find the transfer function matrix H(s) from the
expression

y(s) = H(s)c(s) = K(s)G(s)−1u(s) (9.275)

where u(s), y(s), G(s), and K(s) are defined in (9.259) and (9.260). Using a symbolic
program like MATLAB or MAPLE, we find that the transfer function from the moment
to the angle at x = 0 is given by

θ1
M1

(s) =
1

EI

1 + cos γL cosh γL

γ (sin γL cosh γL− cos γL sinh γL)
(9.276)

The zeros and the singularities are easily found for this transfer function as the numerator
is equal to zero whenever the characteristic equation for the clamped-free beam is satis-
fied, whereas the denominator is zero when the characteristic equation of the pinned-free
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Zeros Singularities
γL s

c/L2 γL s
c/L2

1.875104 ±j3.516 0 ±0
4.694091 ±j22.034 3.926602 ±j15.418
7.854757 ±61.697 7.068583 ±j49.964
10.995541 ±j120.9019 10.210176 ±j104.2477

(9.277)

Table 9.4: The first zeros and singularities for the transfer function from M1(s) to θ1(s).

beam is satisfied. These solutions are tabulated in standard textbooks like (Rao 1990).
Then the zeros and singularities are given by Table 9.4.
The singularities and zeros are along the imaginary axis as shown in Figure 9.14.

This agrees with the fact that the transfer function sθ1/M1 is positive real, which can
be shown from energy arguments. The transfer function from the moment at x = 0 to

Figure 9.14: Singularities and zeros for the transfer function from the motor torque to
M1 the motor angle θ1. The singularities are marked with crosses, and the zeros are
marked with circles.

the deflection at the other side of the beam is given by

η2
M1

(s) =
1

EI

sin γL+ sinh γL

γ2 (sin γL cosh γL− cos γL sinh γL)
(9.278)

The singularities are the same as for the transfer function (9.276), while it is possible
to verify that the numerator expression sin z + sinh z = 0 has solutions of the type
z = ρ(1 + j) where ρ is the solution of tan ρ + tanh ρ = 0. This gives the zeros and
singularities shown in Table 9.5.
Note that this transfer function has zeros in the right half plane as shown in Fig-

ure 9.15.
The beam is connected to the motor by requiring

Jms
2θ1 = T −M1 (9.280)

which gives

θ(s) =
1 + cos γL cosh γL

Jms2 (1 + cos γL coshγL) +EIγ (sin γL cosh γL− cos γL sinh γL)
T (s) (9.281)



398 CHAPTER 9. MECHANICAL VIBRATIONS

Zeros Singularities
γL s

c/L2 γL s
c/L2

2.365 (1 + j) ±11.1865 0 ±0
5.498 (1 + j) ± 60.4560 3.926602 ±j15.418
8.639 (1 + j) ±149.2646 7.068583 ±j49.964

(9.279)

Table 9.5: The first zeros and singularities for the transfer function from the motor torque
M1(s) to tip position η2(s) .

Figure 9.15: Singularities and zeros of the transfer function from the motor torque M1

to the end-point position η2. The singularities are marked with crosses, and the zeros
are marked with circles.
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Chapter 10

Kinematics of Flow

10.1 Introduction
Balance equations are differential equations that are derived from conservation laws for
control volumes. The conservation laws include the conservation of mass, momentum,
angular momentum, and energy. Fluid flow phenomena are important in the derivation of
the balance laws of this chapter, and therefore the presentation starts with the kinematics
of fluid flow. Then the transport theorem is presented, and it is shown how the transport
theorem can be used to derive balance equations for typical control volumes. Balance
equations for mass, momentum, angular momentum and energy are then developed using
the mathematical tools presented in the first part of the chapter.

10.2 Kinematics

10.2.1 The material derivative

Let x1, x2, x3 be the coordinates of a Cartesian frame with with orthogonal unit vectors
�a1,�a2,�a3. A scalar function φ = φ(t, x1, x2, x3) of time and position is called a scalar
field. The time derivative of a scalar field φ is, according to the usual definition of the
derivative,

dφ

dt
=

∂φ

∂t
+

∂φ

∂x1

dx1
dt

+
∂φ

∂x2

dx2
dt

+
∂φ

∂x3

dx3
dt

We will also be dealing with vector fields u = u(t, x1, x2, x3) where u =(u1, u2, u3)
T . The

time derivative of a vector field u is

du

dt
=

∂u

∂t
+

∂u

∂x1

dx1
dt

+
∂u

∂x2

dx2
dt

+
∂u

∂x3

dx3
dt

The time derivative dφ
dt of the scalar field φ clearly depends on the time derivatives

ẋi = dxi
dt of the position coordinates xi. This means that it must be specified for which

time function x(t) the derivative is taken. Two cases are common: One is the spatial
derivative which is the derivative at a specific point x = x0 where x0 is a constant vector.
Then the position coordinates xi are constants, and

dφ

dt

¯̄̄̄
x=x0

=
∂φ

∂t

401
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x1

x2

x3

x, t
xt

v

ux,t

Figure 10.1: Coordinate frame with the motion x(t) of a particle.

In the same way the spatial derivative of a vector field is

du

dt

¯̄̄̄
x=x0

=
∂u

∂t

The other usual case is the material derivative, which is the time derivative when follow-
ing a particular particle of the fluid. Then ẋ = v, where v =(v1, v2, v3)

T is the velocity
of the fluid. The material derivative is widely used, and this motivates the introduction
of the notation

Dφ

Dt
:=

dφ

dt

¯̄̄̄
ẋ=v

,
Du

V t
:=

du

dt

¯̄̄̄
ẋ=v

The material derivative of a scalar field φ is defined by

Dφ

Dt
:=

∂φ

∂t
+

∂φ

∂x1
v1 +

∂φ

∂x2
v2 +

∂φ

∂x3
v3 (10.1)

while the material derivative of a vector field u is given by

Du

V t
=

∂u

∂t
+

∂u

∂x1
v1 +

∂u

∂x2
v2 +

∂u

∂x3
v3

10.2.2 The nabla operator

The nabla vector operator �∇ is defined in the Cartesian coordinate system by

�∇ = �a1
∂

∂x1
+ �a2

∂

∂x2
+ �a3

∂

∂x3
(10.2)

When the vector operator �∇ is applied to a scalar field φ, we get the gradient vector

�∇φ =
∂φ

∂x1
�a1 +

∂φ

∂x2
�a2 +

∂φ

∂x3
�a3 (10.3)
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The nabla vector operator may be represented by a column vector as

∇ : =

 ∂
∂x1
∂
∂x2
∂
∂x3

 (10.4)

It follows that

∇φ =


∂φ
∂x1
∂φ
∂x2
∂φ
∂x3

 , ∇uT =

½
∂uj
∂xi

¾
(10.5)

It is then straightforward to show that

�v · �∇φ = vT∇φ =
∂φ

∂x1
v1 +

∂φ

∂x2
v2 +

∂φ

∂x3
v3 (10.6)

With some care it is also found that

vT∇u =
¡
vT∇¢u =

∂u

∂x1
v1 +

∂u

∂x2
v2 +

∂u

∂x3
v3 (10.7)

In the vector notation with �u = u1�a1 + u2�a2 +3 �a3, then

�v · �∇�u = (�v · �∇)�u = v1
∂�u

∂x1
+ v2

∂�u

∂x2
+ v3

∂�u

∂x1
(10.8)

The material derivative of a scalar field φ and a vector field u can be written

Dφ

Dt
:=

∂φ

∂t
+ vT∇φ, Du

Dt
:=

∂u

∂t
+ vT∇u (10.9)

or, alternatively, in vector form as

Dφ

Dt
=

∂φ

∂t
+ �v · �∇φ, D�u

Dt
=

∂�u

∂t
+ �v · �∇�u (10.10)

10.2.3 Divergence

The divergence of a vector field �u = u1�a1 + u2�a2 + u3�a3 is the scalar

�∇ · �u=∇Tu =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

(10.11)

The divergence appears in many results. In particular, its usefulness is due to the diver-
gence theorem:

The Divergence Theorem: Consider a volume V with a closed surface ∂V and an outwards
pointing surface normal �n, where �n is a unit vector. Let dV be a volume element and
dA a surface element. Then, for any vector field �u = �u (x) we haveZZ

∂V (t)

�u · �ndA =

ZZZ
V (t)

�∇ · �udV (10.12)
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x1

x2

x3 u

n

V

Figure 10.2: Volume V with outwards pointing surface normal n and the vector u.

Example 151 A result related to the divergence theorem isZZ
∂V (t)

φ�ndA =

ZZZ
V (t)

�∇φdV (10.13)

The first component of this vector equation follows from the divergence theorem by letting
�u=φ�a1, and the second and third element is found in a similar way.

Example 152 The divergence of the vector φ�u is

�∇ · (φ�u) =
∂φu1
∂x1

+
∂φu2
∂x2

+
∂φu3
∂x3

=
∂φ

∂x1
u1 +

∂φ

∂x2
u2 +

∂φ

∂x3
u3 + φ

µ
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

¶
(10.14)

and we see that
�∇ · (φ�u) = (�∇φ)·�u + φ(�∇ · �u) (10.15)

10.2.4 Curl

The curl of a vector �u = �u (x) is the vector

�∇× �u =

¯̄̄̄
¯̄ �a1 �a2 �a3

∂
∂x1

∂
∂x2

∂
∂x3

u1 u2 u3

¯̄̄̄
¯̄ =

3X
i=1

3X
j=1

εijk�ai
∂uk
∂xj

(10.16)

The coordinate form is seen to be

∇×u =

 0 − ∂
∂x3

∂
∂x2

∂
∂x3

0 − ∂
∂x1

− ∂
∂x2

∂
∂x1

0

 u1
u2
u3

 =

 ∂u3
∂x2
− ∂u2

∂x3
∂u1
∂x3
− ∂u3

∂x1
∂u2
∂x1
− ∂u1

∂x2

 (10.17)

where ∇× is the skew symmetric form of ∇. The curl of a vector is used in Stokes’
Theorem:
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x1

x2

x3 u n

ds

S

Figure 10.3: Surface S with surface normal n and tangential differential vector ds along
the closed boundary ∂S.

Stokes’ Theorem: Consider a surface S with a boundary ∂S, which is a closed curve.
Let d�s be the differential position increment which is tangent to the curve ∂S. Let dA
be an area element on the surface, and let �n be a surface normal so that the direction
of d�s corresponds to a counter-clockwise rotation around �n. Then for any vector field
�u = �u(x) we have I

∂S

�u·d�s=
ZZ

S

³
�∇× �u

´
· �ndA

We see from Stokes’ Theorem that if the surface S is taken to be dA, then

1

dA

I
∂S

�u·d�s=
³
�∇× �u

´
· �n (10.18)

The condition �∇× �u=�0 implies thatI
∂S

�u·d�s = 0 (10.19)

This is equivalent to the existence of a scalar function ψ(x) called the potential of �u (x),
so that �u(x) =�∇ψ(x). This is shown in basic textbooks on vector analysis. Here we just
comment that this is a consequence of the result

ψ(x2)−ψ(x1) =

Z x2

x1

�∇ψ(x)·d�s (10.20)

Example 153 The skew symmetric form of the column vector form ∇×u is found to be

¡∇×u
¢×

=

½
∂ui
∂xj
− ∂uj

∂xi

¾
(10.21)
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particle
motion

x1

x2

x3

t 0

t

1

2

3

Figure 10.4: The spatial coordinate frame (x1, x2, x3) and the material coordinate frame
(ξ1, ξ2, ξ3). At time t0 the two frames coincide, then the matrial frame moves with the
particles of the fluid so that each particle has the same coordinates ξ1, ξ2, ξ3 for all t.

Example 154 The following results can be verified on the component level:

�∇ ·
³
�∇× �u

´
= 0 (10.22)

�∇×
³
�∇φ
´

= 0 (10.23)

�∇× (φ�u) =
³
�∇φ
´
× �u + φ�∇× �u (10.24)

1

2
(�u · �u) =

³
�u · �∇

´
�u + �u×

³
�∇× �u

´
(10.25)

�∇2�u = �∇
³
�∇ · �u

´
− �∇×

³
�∇× �u

´
(10.26)

10.2.5 Material coordinates

For fluids and deformable bodies the concept of spatial coordinates and material coordi-
nates is useful. The spatial coordinates x = (x1, x2, x3)

T define a spatial grid which is
constant. In contrast to this, the material coordinates ξ = (ξ1, ξ2, ξ3)

T define a material
grid where each particle of the fluid has a given position in the grid. Then, as the fluid
deforms, the material grid deforms with the fluid so that each particle maintains its po-
sition in the grid. At initial time t0 the spatial coordinates and the material coordinates
coincide, that is, ξ(t0) = x(t0). For t ≥ t0 the material coordinates will be a function of
the spatial coordinates and vice versa, so that

ξ = ξ [x(t), t] and x = x [ξ(t), t] (10.27)

10.2.6 The dilation

The dilation or expansion of a fluid (Aris 1989) is closely related to the divergence of
the velocity, which will be shown in this section. A control volume V (t) is considered.
The control volume is assumed to contain the same fluid particles as it moves with the
flow as indicated in Figure 10.5. This means that the mass contained in the volume is
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x1

x2

x3

Vt0 

Vt

Figure 10.5: Material control volume containing the same set of particles for all t. The
material volume V moves along with the particles of the fluid, and may be deformed and
stretched.

x1

x2

x3

V
v

dA
n

Figure 10.6: Material control volume V where the change in volume due to the velocity
v of a surface element dA is indicated.

constant, while the volume and the surface may change with the flow. Such a control
volume will be called a material control volume. An area element dA(t) of the surface
∂V (t) of V (t) moves with the velocity �v. Therefore, the motion of the area element dA
results in a change of volume with a rate �v ·�ndA where �n is the outwards surface normal
at dA. Integrating over the whole surface ∂V (t) of the control volume results in

DV

Dt
=

ZZ
∂V (t)

�v · �ndA (10.28)

Then the divergence theorem leads to

DV

Dt
=

ZZZ
V (t)

�∇ · �vdV (10.29)

It is seen that if the divergence �∇ · �v is negative for all of V (t), then the time derivative
dV (t)
dt will be negative and the control volume will contract and become smaller in size.
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Likewise, if the divergence is positive for all V (t), the control volume will expand. An
interesting result appears if the control volume is taken to be a infinitesimal material
volume element dV (t) which is an infinitesimal volume element containing the same
particles as the fluid flows. Then the divergence �∇ ·�v can be taken to be a constant over
the control volume, and the time derivative of dV is the material derivative. Then the
divergence theorem gives the following result:

The time derivative of a material volume element dV is given by

D (dV )

Dt
=
³
�∇ · �v

´
dV (10.30)

This shows that the material volume element will diverge if the divergence of velocity is
positive, and that it will contract is the divergence is negative.

Example 155 Consider the specific volume

V̂ :=
dV

dm
=

1

ρ
(10.31)

which is widely used in thermodynamics. Here dV is the volume of the mass element dm,
and ρ is the density. The material derivative of V̂ becomes

DV̂

Dt
=

D

Dt

µ
dV

dm

¶
=

1

dm

D (dV )

Dt
=

³
�∇ · �v

´
dV

dm
=
³
�∇ · �v

´
V̂ (10.32)

where �v is the velocity vector.

10.3 Orthogonal curvilinear coordinates

10.3.1 General results

So far we have been working with a Cartesian coordinate system (x1, x2, x3) with orthog-
onal unit vectors�i1,�i2,�i3 along the coordinate axes. Other useful coordinate systems are
cylindrical coordinates and spherical coordinates, which are examples of orthogonal curvi-
linear coordinate systems. The material in this section is based on (Milne-Thomson 1996,
p. 62). The section can be skipped at a first reading. An orthogonal curvilinear coordi-
nate system (y1, y2, y3) is a coordinate system where the surfaces defined by y1 = y1P ,
y2 = y2P , y3 = y3P intersect orthogonally when y1P , y2P and y3P are constants. The
point of intersection between the planes is denoted by P . If we draw the surfaces cor-
responding to y1 = y1P , y2 = y2P , y3 = y3P and y1 = y1P + ∆y1, y2 = y2P + ∆y2,
y3 = y3P +∆y3 we get a figure which to the first order approximation is a parallel piped
where one corner is the point P . The edges of the parallel piped are of length h1∆y1,
h2∆y2 and h3∆y3 where h1, h2 and h3 are functions of the coordinates. To proceed we
introduce a Cartesian coordinate system (z1, z2, z3) with origin in the point P and with
orthogonal unit vectors �j1,�j2,�j3 along the coordinate axes (y1, y2, y3), which coincide
with the edges of the parallel piped. It is assumed that the unit vectors �j1,�j2,�j3 form a
right handed system. In the (z1, z2, z3) system the length of the edges are denoted ∆z1,
∆z2 and ∆z3. This means that

∆zi = hi∆yi (10.33)
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and that the volume of the parallel piped is

∆V = ∆z1∆z2∆z3 = h1h2h3∆y1∆y2∆y3 (10.34)

The nabla operator at the point P described in the Cartesian coordinate system
(z1, z2, z3) is given by

�∇=
∂

∂z1
�j1 +

∂

∂z2
�j2 +

∂

∂z3
�j3 (10.35)

and, if φ is any scalar field, the gradient of φ at the point P is

�∇φ=
∂φ

∂z1
�j1 +

∂φ

∂z2
�j2 +

∂φ

∂z3
�j3 (10.36)

The gradient can be expressed in the orthogonal curvilinear coordinates (y1, y2, y3) using

�∇φ =
∂φ

∂y1

∂y1
∂z1

�j1 +
∂φ

∂y2

∂y2
∂z2

�j2 +
∂φ

∂y3

∂y3
∂z3

�j3

=
1

h1

∂φ

∂y1
�j1 +

1

h2

∂φ

∂y2
�j2 +

1

h3

∂φ

∂y3
�j3 (10.37)

and we may conclude that the nabla vector can be expressed in orthogonal curvilinear
coordinates as

�∇ =
�j1
h1

∂

∂y1
+

�j2
h2

∂

∂y2
+

�j3
h3

∂

∂y3
(10.38)

The divergence at the point P of a vector

�u = u1�j1 + u2�j2 + u3�j3 (10.39)

is

�∇ · �u = �∇ ·
3X

i=1

ui�ji =
3X

i=1

h³
�∇ui

´
·�ji + ui

³
�∇ ·�ji

´i
(10.40)

while the curl is

�∇× �u = �∇×
3X

i=1

ui�ji =
3X

i=1

h³
�∇ui

´
×�ji + ui

³
�∇×�ji

´i
(10.41)

Here we have used the identities

�∇ · (φ�a) =
³
�∇φ
´
· �a + φ

³
�∇ · �a

´
(10.42)

�∇× (φ�a) =
³
�∇φ
´
× �a + φ

³
�∇× �a

´
(10.43)

To compute the expressions for the divergence and the curl we need some intermediate
results, namely expressions for the divergence and curl of the unit vectors �ji. We do this
by introducing a potential given by φ = y1 with gradient

�∇y1 =
�j1
h1

(10.44)

Then from the identity �∇×
³
�∇φ
´

=
³
�∇× �∇

´
φ = �0 we get

�0 = �∇×
³
�∇y1

´
= �∇×

Ã
�j1
h1

!
= �∇

µ
1

h1

¶
×�j1 +

1

h1

³
�∇×�j1

´
(10.45)
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which implies that the curl of the unit vector �j1 is

�∇×�j1 = h1�∇
µ

1

h1

¶
×�j1

= h1

µ
− 1

h21

¶µ
1

h1

∂h1
∂y1

�j1 +
1

h2

∂h1
∂y2

�j2 +
1

h3

∂h1
∂y3

�j3

¶
×�j1

=
�j2
h1h3

∂h1
∂y3
−

�j3
h1h2

∂h1
∂y2

(10.46)

The curl of �j2 and �j3 is found in the same way, and following expressions for the curl of
the unit vectors result:

�∇×�j1 =
�j2
h1h3

∂h1
∂y3
−

�j3
h1h2

∂h1
∂y2

(10.47)

�∇×�j2 =
�j3
h2h1

∂h2
∂y1
−

�j1
h2h3

∂h2
∂y3

(10.48)

�∇×�j3 =
�j1
h3h2

∂h3
∂y2
−

�j2
h3h1

∂h3
∂y1

(10.49)

The divergence of the unit vector �j1 is found from

�∇ ·�j1 = �∇ ·
³
�j2 ×�j3

´
=

³
�∇×�j2

´
·�j3 −�j2 ·

³
�∇×�j3

´
=

1

h2h1

∂h2
∂y1
− 1

h3h1

∂h3
∂y1

=
1

h1h2h3

∂ (h2h3)

∂y1
(10.50)

The divergence of �j2 and �j3 is found in the same way, and we can conclude that

�∇ ·�j1 =
1

h1h2h3

∂ (h2h3)

∂y1
(10.51)

�∇ ·�j2 =
1

h1h2h3

∂ (h3h1)

∂y2
(10.52)

�∇ ·�j3 =
1

h1h2h3

∂ (h1h2)

∂y3
(10.53)

With these results it is a straightforward, although it is a time-consuming exercise,
to verify that the divergence of a vector in orthogonal curvilinear coordinates is

�∇ · �u =
1

h1h2h3

·
∂

∂y1
(u1h2h3) +

∂

∂y2
(u2h3h1) +

∂

∂y3
(u3h1h2)

¸
(10.54)

while the curl is

�∇× �u =
1

h1h2h3

¯̄̄̄
¯̄ h1�j1 h2�j2 h3�j3

∂
∂y1

∂
∂y2

∂
∂y3

h1u1 h2u2 h3u3

¯̄̄̄
¯̄ (10.55)
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We also present the result for the Laplacian �∇2φ of a scalar field φ, which is found by

letting �u = �∇φ. Then �∇2φ = �∇ · �u, and it is seen that

�∇2φ =
1

h1h2h3

·
∂

∂y1

µ
∂φ

∂y1

h2h3
h1

¶
+

∂

∂y2

µ
∂φ

∂y2

h3h1
h2

¶
+

∂

∂y3

µ
∂φ

∂y3

h1h2
h3

¶¸
(10.56)

Example 156 For spherical coordinates (r, φ, θ) the orthogonal unit vectors �jr,�jφ,�jθ
form a right handed system, and we have hr = 1, hφ = r and hθ = r sinφ. The vector �u
is written

�u = ur�jr + uφ�jφ + uθ�jθ (10.57)

while the gradient of a scalar field ψ is

�∇ψ =
∂ψ

∂r
�jr +

1

r

∂ψ

∂φ
�jφ +

�jθ
r sinφ

∂ψ

∂θ
(10.58)

We find that the divergence of �u is

�∇ · �u =
1

r2
∂
¡
urr

2
¢

∂r
+

1

r sinφ

∂ (uφ sinφ)

∂φ
+

1

r sinφ

∂uθ
∂θ

(10.59)

while the curl is

�∇× �u =
1

r2 sinφ

¯̄̄̄
¯̄ �jr r�jφ r sinφ�jθ

∂
∂r

∂
∂φ

∂
∂θ

ur ruφ r sinφuθ

¯̄̄̄
¯̄ (10.60)

10.3.2 Cylindrical coordinates

For cylindrical coordinates (r, θ, z) the orthogonal unit vectors �jr,�jθ,�jz form a right
handed system, and we have hr = 1, hθ = r and hz = 1. The vector �u is written

�u = ur�jr + uθ�jθ + uz�jz (10.61)

the expression for �∇ is
�∇ = �jr

∂

∂r
+
�jθ
r

∂

∂θ
+�jz

∂

∂z
(10.62)

The divergence of the vector �u is found to be

�∇ · �u =
1

r

∂ (urr)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

(10.63)

while the curl is

�∇× �u =
1

r

¯̄̄̄
¯̄ �jr r�jθ �jz

∂
∂r

∂
∂θ

∂
∂z

ur ruθ uz

¯̄̄̄
¯̄ (10.64)

The Laplacian of the scalar field ψ is

�∇2ψ =
1

r

·
∂

∂r

µ
∂ψ

∂r
r

¶
+

∂

∂θ

µ
∂ψ

∂θ

1

r

¶
+

∂

∂z

µ
∂ψ

∂z
r

¶¸
(10.65)

=
∂2ψ

∂r2
+

1

r2
∂2ψ

∂θ2
+

∂2ψ

∂z2
+

1

r

∂ψ

∂r
(10.66)
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The velocity �v may also be written

�v = v1�i1 + v2�i2 + v3�i3 (10.67)

= vr�jr + vθ�jθ + vz�jz (10.68)

where the unit vectors �i1,�i2,�i3 of the Cartesian system (x1, x2, x3) are constant vectors,
while the unit vectors �jr and �jθ of the cylindrical coordinate system changes as the
particle moves. The material derivative is

D�v

Dt
=

Dv1
Dt

�i1 +
Dv2
Dt

�i2 +
Dv3
Dt

�i3 (10.69)

=
Dvr
Dt

�jr +
Dvθ
Dt

�jθ +
Dvz
Dt

�jz + vr
D�jr
Dt

+ vθ
D�jθ
Dt

(10.70)

where the time derivatives of the unit vectors are

D�jr
Dt

=
∂�jr
∂t

+
vθ
r

∂�jr
∂θ

=
vθ
r
�jθ (10.71)

D�jθ
Dt

=
∂�jθ
∂t

+
vθ
r

∂�jθ
∂θ

= −vθ
r
�jr (10.72)

∂�jr
∂θ

= �jθ,
∂�jθ
∂θ

= −�jr (10.73)

This gives the following expressions for the material derivative of the vector �v:

D�v

Dt
=

µ
Dvr
Dt
− v2θ

r

¶
�jr +

µ
Dvθ
Dt

+
vrvθ
r

¶
�jθ +

Dvz
Dt

�jz (10.74)

and for the scalar field ψ:

Dψ

Dt
=

∂ψ

∂t
+ �v · �∇�v =

∂ψ

∂t
+ vr

∂ψ

∂r
+

vθ
r

∂ψ

∂θ
+ vz

∂ψ

∂z
(10.75)

The Laplacian of the velocity is found from

�∇2�v =
³
�∇2v1

´
�i1 +

³
�∇2v2

´
�i2 +

³
�∇2v2

´
�i3 (10.76)

= �∇2
³
vr�jr

´
+ �∇2

³
vθ�jθ

´
+ �∇2

³
vz�jz

´
(10.77)

To proceed we need the Laplacian of the components in the cylindrical coordinate system,
which are given by

�∇2
³
vr�jr

´
=

∂2vr
∂r2

�jr +
1

r2

Ã
∂2vr

∂θ2
�jr + 2

∂vr
∂θ

∂�jr
∂θ

+ vr
∂2�jr

∂θ2

!
+

∂2vr
∂z2

�jr +
1

r

∂vr
∂r

�jr

=

µ
∂2vr
∂r2

+
1

r2
∂2vr

∂θ2
+

∂2vr
∂z2

+
1

r

∂vr
∂r
− vr

r2

¶
�jr +

2

r2
∂vr
∂θ

�jθ (10.78)

�∇2
³
vθ�jθ

´
=

∂2vθ
∂r2

�jθ +
1

r2

Ã
∂2vθ

∂θ2
�jθ + 2

∂vθ
∂θ

∂�jθ
∂θ

+ vθ
∂2�jθ

∂θ2

!
�jθ

=

µ
∂2vθ
∂r2

+
1

r2
∂2vθ

∂θ2
+

∂2vθ
∂z2

+
1

r

∂vθ
∂r
− vθ

r2

¶
�jθ − 2

r2
∂vθ
∂θ

�jr (10.79)

�∇2
³
vz�jz

´
=

∂2vz
∂r2

�jz +
1

r2
∂2vz

∂θ2
�jz +

∂2vz
∂z2

�jz +
1

r

∂vz
∂r

�jz



10.4. REYNOLDS’ TRANSPORT THEOREM 413

This leads to the following expression for the Laplacian of the velocity in cylindrical
coordinates:

�∇2�v =

µ
∂2vr
∂r2

+
1

r2
∂2vr

∂θ2
+

∂2vr
∂z2

+
1

r

∂vr
∂r
− 2

r2
∂vθ
∂θ
− vr

r2

¶
�jr

+

µ
∂2vθ
∂r2

+
1

r2
∂2vθ

∂θ2
+

∂2vθ
∂z2

+
1

r

∂vθ
∂r

+
2

r2
∂vr
∂θ
− vθ

r2

¶
�jθ

+

µ
∂2vz
∂r2

+
1

r2
∂2vz

∂θ2
+

∂2vz
∂z2

+
1

r

∂vz
∂r

¶
�jz (10.80)

10.4 Reynolds’ transport theorem

10.4.1 Introduction

In the derivation of balance equations we will typically define a control volume that
will depend on the geometry of the specific problem. The modeling procedure will then
typically involve the calculation of the rate of change of mass, momentum or energy in
the control volume. In connection with this calculation Reynolds’ transport theorem is of
great use. In the following we will present the theorem and show how it can be adapted
to the case where the control volume is a material volume, a spatially fixed volume, or a
general control volume with a moving boundary.

10.4.2 Basic transport theorem

The concept of a control volume Vc is used in the derivation of models based on conserva-
tion laws. In this section we will present an important kinematic result called Reynolds’
transport theorem (Aris 1989), (White 1999). Reynolds’ transport theorem shows the
relation between the time derivative of the volume integralZZZ

Vc(t)

φ(x, t)dV (10.81)

and the time derivative of φ(x, t). The boundary of Vc(t) is denoted ∂Vc(t), and the
velocity of a point on the boundary ∂Vc(t) is denoted �vc. We recall the following standard
result from calculus:

d

dt

Z b(t)

a(t)

f(x, t)dx =

Z b(t)

a(t)

∂f(x, t)

∂t
dx+ f (b, t)

db

dt
− f (a, t)

da

dt
. (10.82)

In analogy with this, the time derivative of the integral in (10.81) is equal to the vol-
ume integral of the time derivative of the integrand, and one term due to the changing
boundary of the volume Vc(t).

For a general time-varying control volume Vc the transport theorem is given by

d

dt

ZZZ
Vc(t)

φ(x, t)dV =

ZZZ
Vc

∂φ(x, t)

∂t
dV +

ZZ
∂Vc

φ�vc · �ndA (10.83)

The last term can be explained as follows: The volume element dA on the surface
∂Vc(t) has velocity �vc, and the rate of change of the integral due to this is φ�vc · �ndA
where �n is the outwards unit normal of the surface. Integration over the whole surface
gives the total rate of change due to the change in the volume Vc(t).
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10.4.3 The transport theorem for a material volume

Of particular interest is Reynolds’ transport theorem for a material volume Vm(t). The
reason for this is that balance laws will typically be formulated for material volumes. By
material volume it is meant a volume containing a specific set of particles. It is assumed
that initially, say at t = t0, these particles filled the volume Vm(t0) = V0, while at time
t the same particles fill the volume Vm(t) = V . If we apply Reynolds transport theorem
with Vc = Vm, then vc(t) is equal to the particle velocity v(t) and Reynolds transport
theorem gives

d

dt

ZZZ
Vm(t)

φ(x, t)dV =

ZZZ
Vm(t)

∂φ(x, t)

∂t
dV +

ZZ
∂Vm(t)

φ�v · �ndA (10.84)

To avoid the need to explain whether the volume is material or not, we define the notation

D

Dt

ZZZ
V

φ(x, t)dV :=

ZZZ
V

∂φ(x, t)

∂t
dV +

ZZ
∂V

φ�v · �ndA (10.85)

Note that in this notation, the volume V need not be a material volume, it is merely
assumed that some material volume Vm(t) coincides with V at time t.

The result can be further developed by applying the divergence theorem to the last
term on the right side of (10.85), and by using (10.10) and (10.15):

Reynolds’ transport theorem for a material volume coinciding with V at time t is given
in material form as

D

Dt

ZZZ
V

φ(x, t)dV =

ZZZ
V

·
Dφ(x, t)

Dt
+ φ

³
�∇ · �v

´¸
dV (10.86)

and in divergence form as

D

Dt

ZZZ
V

φ(x, t)dV =

ZZZ
V

·
∂φ(x, t)

∂t
+ �∇(φ�v)

¸
dV (10.87)

10.4.4 The transport theorem and balance laws

As we will see in the following there are important physical laws that can be formulated
in terms of the material derivative given by (10.85). In particular, this is the case for the
mass balance, the momentum balance, the angular momentum balance, and the energy
balance. In the derivation of a model, however, we will often use a control volume that
is not a material volume, but rather a volume that is determined from the geometry of
the problem. From (10.83) and (10.85) we have the following result

For a general control volume Vc(t) where a point on the surface has velocity �vc the
transport theorem gives

d

dt

ZZZ
Vc

φ(x, t)dV =
D

Dt

ZZZ
Vc

φ(x, t)dV −
ZZ

∂Vc

φ (�v − �vc) · �ndA (10.88)
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If the volume Vf is fixed in spatial coordinates, we get

d

dt

ZZZ
Vf

φ(x, t)dV =

ZZZ
Vf

∂φ(x, t)

∂t
dV, Vf is fixed. (10.89)

as there is no term due to a changing boundary. Combining this with (10.85) we find:

For a fixed volume Vf the transport theorem givesZZZ
Vf

∂φ(x, t)

∂t
dV =

D

Dt

ZZZ
Vf

φ(x, t)dV −
ZZ

∂Vf

φ�v · �ndA (10.90)

.



416 CHAPTER 10. KINEMATICS OF FLOW



Chapter 11

Mass, momentum and energy
balances

11.1 The mass balance

11.1.1 Differential form

We will now derive the continuity equation using the principle of mass conservation,
which states that the mass of a material volume must be a constant. The mass of a
material volume Vm(t) is

m =

ZZZ
Vm(t)

ρdV (11.1)

where ρ is the fluid density. This means that principle of mass conservation can be
expressed in the form

D

Dt

ZZZ
V

ρdV = 0 (11.2)

Then Reynolds’ transport theorem with φ = ρ leads toZZZ
V

·
Dρ

Dt
+ ρ(�∇ · �v)

¸
dV = 0 (11.3)

in material form and ZZZ
V

·
∂ρ

∂t
+ �∇ · (ρ�v)

¸
dV = 0 (11.4)

in divergence form.
As the volume V is arbitrary, the integrand in both integral forms (11.3) and (11.4)

of the continuity equation must be identically zero, and this leads to the differential
formulation of the continuity in material form

Dρ

Dt|{z}
rate of change of

density in material

volume element

+ ρ
³
�∇ · �v

´
| {z }

rate of change of density

due to divergence of

material volume element

= 0 (11.5)

417
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and in divergence form,

∂ρ

∂t|{z}
rate of change of

density in spatial

volume element

+ �∇ · (ρ�v)| {z }
rate of change of density

due to convection out of

spatial volume element

= 0 (11.6)

Example 157 It is possible to derive the divergence form of the continuity equation from
the material form using

�∇ · (ρ�v) =
³
�∇ρ
´
· �v + ρ(�∇ · �v) (11.7)

and the definition of the material derivative.

11.1.2 Integral form

For a fixed volume Vf we find from (10.90) that

d

dt

ZZZ
Vf

ρdV| {z }
rate of change

of mass in

fixed volume

= −
ZZ

∂Vc

ρ�v · �ndA| {z }
net increase of

mass by

convection

, Vf is constant (11.8)

where �n is a unit normal pointing out of the volume Vf .
From (10.88) we have the following equation for a control volume Vc where �vc is the

velocity of the surface ∂Vc of the volume:

d

dt

ZZZ
Vc

ρdV =
D

Dt

ZZZ
Vc

ρdV −
ZZ

∂Vc

ρ (�v − �vc) · �ndA (11.9)

Using the principle of mass conservation as expressed in (11.2) we arrive at the result

d

dt

ZZZ
Vc

ρdV = −
ZZ

∂Vc

ρ (�v − �vc) · �ndA (11.10)

11.1.3 Control volume with compressible fluid

Consider a control volume Vc which may be time varying, and which is filled with a
compressible fluid. Moreover, assume that the density ρ is the same all over the control
volume. The fluid is assumed to be compressible with bulk modulus β so that

dρ

ρ
=

dp

β
(11.11)

Then from (10.88) we have the mass balance in the form

d

dt

ZZZ
Vc

ρdV| {z }
rate of change

of mass in

control volume

=
D

Dt

ZZZ
Vc

ρdV| {z }
This term equals

zero in view of

(11.2)

−
ZZ

∂Vc

ρ (�v − �vc) · �ndA| {z }
net mass

flow into

control volume

(11.12)
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This equation states that the time derivative of the mass in Vc is equal to the net mass
flow into the control volume, which makes sense. We denote the mass flow into the
volume by w1 = ρq1, and the mass flow out of the volume by w2 = ρq2, where q1 and q2
are the corresponding volumetric flows. Then the mass balance can be written

d

dt
(ρVc) = w1 − w2 = ρ(q1 − q2) (11.13)

Moreover, assume that the density ρ is the same all over the control volume. The fluid
is assumed to be compressible with bulk modulus β so that

dρ

ρ
=

dp

β
⇒ ρ̇ =

ρ

β
ṗ (11.14)

Then the mass balance of a control volume Vc with compressible fluid with bulk modulus
β can be written

Vc
β
ṗ+ V̇c = q1 − q2 (11.15)

11.1.4 Mass flow through a pipe

A fluid of constant density is flowing through a pipe of cross section A with velocity �v
along the direction of the pipe, which is the x direction with unit vector �i. It is assumed
that the velocity is constant over the cross section, and given by �v = v�i. If the flow is
into the volume, then the outwards-pointing surface normal is �n = −�i, and the mass flow
is

w = −
ZZ

A

ρ�v · �ndA = −
ZZ

A

ρ�v · �ndA = ρvA (11.16)

If the velocity varies over the cross section of the pipe, then the mass flow is

w = −
ZZ

∂Vc

ρ�v · �ndA = ρ

Z
vdA = ρv̄A (11.17)

where v̄ is the average velocity.
Let the control volume be Vc = AL, which is the fixed volume from x1 = 0 to x2 = L

of the pipe. Then the boundary ∂Vc of the volume Vc is the wall of the pipe plus the
cross sections at x1 and at x2. The outwards-pointing normal vector is �n = −�i at x1 and
�n =�i at x2. Then the mass balance is

d

dt
mc = ρ1v̄1A− ρ2v̄2A = w1 − w2 (11.18)

where

mc =

ZZZ
Vc

ρdV (11.19)

is the mass inside the control volume.

Example 158 We consider gas of density ρ in a fixed volume V shown in Figure 11.1
with inlet through a pipe of cross section A1 and outlet through a pipe of cross section
A2. We suppose that ρ is constant over the fixed volume V , while the density is ρ1 at the
inlet. We assume that the velocity in the inlet pipe is in the x direction and of magnitude



420 CHAPTER 11. MASS, MOMENTUM AND ENERGY BALANCES

w1 w2

A1 A2
V,

x

Figure 11.1: Volume V with mass flow w1 into the wolume and w2 out of the volume.

v1. In the same way, the velocity in the outlet pipe is assumed to be in the x direction
and of magnitude v2. The velocity is assumed to be constant over the cross section of the
pipe. Then the balance equation of mass is

V
dρ

dt
= A1ρ1v̄1 −A2ρv̄2 (11.20)

which may also be written
dm

dt
= w1 − w2. (11.21)

Here m = ρV is the mass contained in the volume, w1 = A1ρ1v1 is the mass flow into
the volume, and w2 = A2ρ2v2 is the mass flow out of the volume.

Example 159 Water of constant density ρ is flowing into a tank of cross section A with
mass flow w1 and flows out with mass flow w2. The water level is h. The mass balance
is

d

dt
(ρAh) = w1 − w2 (11.22)

which can be written
ḣ =

1

ρA
(w1 − w2) (11.23)

11.1.5 Continuity equation and Reynolds’ transport theorem

It turns out that by combining the continuity equation with Reynold’s transport theorem
we can derive alternative forms of Reynold’s transport theorem. This is useful in the
development of the momentum balance in Section 11.2.1.
First it is noted that the divergence form (10.87) of Reynolds’ transport theorem for

the function ρφ gives

D

Dt

ZZZ
V

ρφdV =

ZZZ
V

·
∂ (ρφ)

∂t
+ �∇ · (ρφ�v)

¸
dV (11.24)

Then it is used that the material form (10.86) of Reynolds’ transport theorem gives

D

Dt

ZZZ
V

ρφdV =

ZZZ
V

·
D (ρφ)

Dt
+ ρφ(�∇ · �v)

¸
dV

=

ZZZ
V

½
ρ
Dφ

Dt
+ φ

·
Dρ

Dt
+ ρ(�∇ · �v)

¸¾
dV (11.25)

The last two terms of the integrand cancel, which can be seen from the continuity equation
(11.5). This gives the following important result for a volume V .
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The continuity equation in combination with the transport theorem gives the result

D

Dt

ZZZ
V

ρφdV =

ZZZ
V

ρ
Dφ

Dt
dV (11.26)

By comparing this with (11.24) and accounting for the fact that the volume V is arbitrary,
it is found that

ρ
Dφ

Dt
=

∂ (ρφ)

∂t
+ �∇ · (ρφ�v) (11.27)

Note that the last term on the right hand side of (11.27) is a divergence term. The
importance of this is made clear by integrating the equation over a volume V and using
the divergence theorem. This givesZZZ

V

ρ
Dφ

Dt
dV =

ZZZ
V

∂ (ρφ)

∂t
dV +

ZZ
∂V

ρφ (�v · �n) dA (11.28)

where V can be any volume, and �n is the outwards pointing surface normal. We see that
the first term on the right side is the rate of change of the quantity of ρφ in the volume,
while the second term on the right side is the flow of ρφ into the volume over the volume
boundary.
We note that φ may be the component of a vector u, that is, φ = ui which leads to

the following vector equations

The continuity equation and the transport theorem for a vector u gives the results

D

Dt

ZZZ
V

ρ�udV =

ZZZ
V

ρ
D�u

Dt
dV (11.29)

and

ρ
D�u

Dt
=

∂ (ρ�u)

∂t
+ �∇ · (ρ�v�u) (11.30)

The last term in (11.30) is verified in a Cartesian coordinate system with orthogonal
unit vectors �ai with the following computation:

�∇ · (ρ�v�u) =
X
k

∂

∂xk
�ak ·

ρ
X
j

vj�aj
X
i

ui�ai

 =
X
i

∂

∂xj
(ρvjui)�ai (11.31)

The integral form of (11.30) is found to beZZZ
V

ρ
D�u

Dt
dV =

ZZZ
V

∂ (ρ�u)

∂t
dV +

ZZ
∂V

ρ�u (�v · �n) dA (11.32)

This result has a nice structure, and the terms on the right side has the same physical
interpretation as in the scalar case.
Finally we note that from the expressions in (10.10) of the material derivative, the

following alternative expressions are obtained
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∂ (ρφ)

∂t
+ �∇ · (ρφ�v) = ρ

Dφ

Dt
= ρ

µ
∂φ

∂t
+ �v · �∇φ

¶
(11.33)

∂ (ρ�u)

∂t
+ �∇ · (ρ�v�u) = ρ

D�u

Dt
= ρ

µ
∂�u

∂t
+ �v · �∇�u

¶
(11.34)

11.1.6 Multi-component systems

To describe systems with chemical reactions we may need the continuity equation for a
volume with several components, and where different mass components are generated or
used in the chemical reactions. The presentation is adopted from the introductory part
of (de Groot and Mazur 1984). We consider a fluid with n components where there may
be r chemical reactions between the components. The mass mk of component k in a
material volume V satisfies

d

dt
mk =

rX
j=1

ZZZ
V

νkjJjdV (11.35)

where νkjJj is the rate of production of component k per unit volume in reaction j. Using
the transport theorem, this givesZZZ

V

·
∂ρk
∂t

+ �∇ · (ρk�vk)
¸
dV =

rX
j=i

ZZZ
V

νkjJjdV (11.36)

where ρk is the density of component k, and vk is the velocity of component k. As the
volume V is arbitrary, it follows that the continuity equation of component k is

∂ρk
∂t

+ �∇ · (ρk�vk) =
rX
j=i

νkjJj (11.37)

Since mass is conserved in each of the chemical reactions it follows that

nX
k=i

νkjJj = 0 (11.38)

Then, by adding the continuity equations of all components the continuity equation

∂ρ

∂t
+ �∇ · (ρ�v) = 0 (11.39)

where ρ is the total density

ρ =
nX

k=1

ρk (11.40)

and v is the barycentric velocity , which is defined as the velocity of the center of mass

�v:=
nX

k=1

ρk�vk
ρ

(11.41)
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Define the barycentric material derivative by

D

Dt
=

∂

∂t
+ �v · �∇ (11.42)

where v is the barycentric velocity. Insertion into the continuity equation (11.37) for
component k gives

Dρk
Dt
− �v · �∇ρk + �∇ · (ρk�vk) =

rX
j=i

νkjJj (11.43)

The last term on the left side is expanded to give

Dρk
Dt
− �v · �∇ρk + �∇ · (ρk�v) + �∇ · [ρk (�vk − �v)] =

rX
j=i

νkjJj (11.44)

By defining the diffusion flow of component k as

�jk = ρk (�vk − �v) (11.45)

and, accounting for (10.15), we find the following result:

The continuity equation for component k is found to be

Dρk
Dt

= −ρk
³
�∇ · �v

´
− �∇ ·�jk +

rX
j=i

νkjJj (11.46)

while from (11.39) and (11.42) the continuity equation for the total density is

Dρ

Dt
+ ρ

³
�∇ · �v

´
= 0 (11.47)

Example 160 In terms of mass fractions

ck =
ρk
ρ

(11.48)

the continuity equation for component k becomes

ρ
Dck
Dt

= −�∇ ·�jk +
rX
j=i

νkjJj (11.49)

which is found by inserting ρk = ρck in the continuity equation (11.46) for component k
and then use (11.47).

11.2 The momentum balance

11.2.1 Euler’s equation of motion

We consider a material volume element dV of a fluid with density ρ and velocity �v. The
momentum of the volume element is ρ�vdV . Newton’s law for this set of particles is

D

Dt
(ρ�vdV ) = d�F . (11.50)
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x1

x2

x3

n

tn 

Figure 11.2: The stress vector in an inviscid fluid is parallel to the surface normal.

where d�F is the force acting on the differential volume dV . Note that the material
derivative is used, as Newton’s law applies to a material volume element. The mass ρdV
of the particles in the material volume element is constant, and it follows that

D

Dt
(ρ�vdV ) =

D

Dt
(ρdV )�v + ρ

D�v

Dt
dV = ρ

D�v

Dt
dV (11.51)

We may therefore write Newton’s law in the form

ρ
D�v

Dt
dV = d�F (11.52)

The force d�F denotes the total force on the volume element, which is the mass force plus
the surface force. When this is integrated over the material volume V we getZZZ

V

ρ
D�v

Dt
dV =

ZZZ
V

d�F = �F (r) (11.53)

where �F (r) is the resultant force acting on the volume V . The surface forces cancel out
inside the volume due to Newton’s third law of action and reaction. This is referred to
as the principle of local equilibrium of the stresses. Because of this the total force �F (r)

is given by the sum of surface forces acting on ∂V plus the mass force on the volume.
Assume that the fluid is inviscid in which case the only surface forces are the pressure
forces. This gives

�F (r) = −
ZZ

∂V

p�ndA+

ZZZ
V

ρ�fdV (11.54)

where ρ�f is the mass force, and −p�ndA is the surface force in the form of pressure forces.
The divergence theorem and (10.13) then givesZZZ

V

ρ
D�v

Dt
dV =

ZZZ
V

³
−�∇p+ ρ�f

´
dV (11.55)

The volume V is arbitrary, and this leads to Euler’s equation of motion
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Euler’s equation of motion for an inviscid fluid is given by

ρ
D�v

Dt
= −�∇p+ ρ�f (11.56)

Alternative formulations of Euler’s equation found from (11.34) are the divergence form

∂ (ρ�v)

∂t
+ �∇ · (ρ�v�v) = −�∇p + ρ�f (11.57)

and the formulation

ρ
∂�v

∂t
+ ρ

³
�v · �∇

´
�v = −�∇p + ρ�f (11.58)

Example 161 We consider the one-dimensional case where the velocity is v in the x
direction. Then, if the pressure gradient is zero, the mass forces are zero, and ρ is a
constant, Euler’s equation as given by (11.58) gives

∂v

∂t
+ v

∂v

∂x
= 0 (11.59)

which is known as Burger’s equation (Evans 1998). This simple equation is interesting
as it may have analytical solutions that can be used to check the accuracy of numerical
solution techniques, and it may exhibit shocks where the velocity gradient approaches
infinity.

11.2.2 The momentum equation for a control volume

From (11.29) we have the following expression

D

Dt

ZZZ
V

ρ�vdV =

ZZZ
V

ρ
D�v

Dt
dV (11.60)

From (10.88) we have the following equation for a control volume Vc

d

dt

ZZZ
Vc

ρ�vdV =
D

Dt

ZZZ
Vc

ρ�vdV −
ZZ

∂Vc

ρ�v (�v − �vc) · �ndA (11.61)

where �v is the velocity of the fluid and �vc is the velocity of the surface ∂Vc of the control
volume. Combining these two equations with (11.53) we get

d

dt

ZZZ
Vc

ρ�vdV| {z }
rate of change

of momentum

in control

volume

= �F (r)|{z}
resultant force

on fluid in

control

volume

−
ZZ

∂Vc

ρ�v (�v − �vc) · �ndA| {z }
net increase of

momentum

by convection

(11.62)

Example 162 For the system in Example 158 the momentum conservation in the x
direction gives

d

dt

ZZZ
V

vρdV = F + p1A1 − p2A2 + v1w1 − v2w2 (11.63)
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where F is the force in the x direction acting on the gas from the tank, p1A1 is the force
due to pressure on the inlet, and p2A2 is the force due to pressure at the outlet. It is
assumed that the velocity is constant over the cross section.

11.2.3 Example: Waterjet

Pump
n n

A1 A2

w w

x

Figure 11.3: Schematic diagram of a waterjet.

We consider a waterjet (Figure 11.3) where water enter through the intake which is
a pipe with cross section A1, and flows out through an outlet pipe of cross section A2.
A pump is used to force the water through the waterjet. The water flows axially in the
pipes with velocity v =v1i = −v1n at the inlet and v =v2i = v2n at the outlet where i
is the unit vector in the x direction. Stationary conditions are assumed. Moreover, the
water is assumed to be incompressible, so that the mass flow in is equal to the mass flow
out. Then the continuity equation gives

A1ρv1 = A2ρv2 = w (11.64)

where w is the mass flow. We assume that the pressure forces over the cross sections A1
and A2 of the pipes can be left out. Then the momentum equation in the x direction
gives

F + v1A1ρv1 − v2ρA2v2 = 0. (11.65)

We define the thrust T of the waterjet as the force from the fluid on the casing. The
thrust is given by T = −F , and we get the result

T = −
µ

1− A2
A1

¶
wv2 ≈ −wv2 (11.66)

where it is assumed that A2 ¿ A1. We see that if the outlet area is much smaller than
the inlet area, then the thrust is equal to mass flow times outlet velocity, and that the
thrust is directed in the opposite direction of the flow through the waterjet. Suppose that
the outlet cross section is reduced. Then if the pump is sufficiently powerful so that the
mass flow w is unchanged, then v2 = w/ (A2ρ) will increase, and the thrust T ≈ −wv2
will increase in magnitude.

11.2.4 Example: Sand dispenser and conveyor

Sand is dispensed from a container with mass flow w down on a conveyor belt as shown in
Figure 11.4. The conveyor belt is driven by a motor torque T acting on a shaft of radius
r with angular velocity ωm. The velocity of the conveyor belt is therefore v = ωmr.
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w
m ,T

Figure 11.4: Sand of mass flow w falling down on a conveyor belt.

Here the mass m and the momentum p = mv of the sand are conserved quantities. The
balance equation for the mass is

d

dt
m = w − we, (11.67)

while the balance equation for the momentum is

d

dt
(mv) = −vwe + F (11.68)

Here F is the force from the conveyor belt on the sand. The equation of motion for the
belt is

Jω̇m = T − Fr (11.69)

where J is the inertia experienced by the motor. The equation of motion can be expressed
in terms of the velocity to give

J

r2
v̇ =

1

r
T − F. (11.70)

The momentum equation gives

ṁv +mv̇ = −vwe + F (11.71)

and insertion of the mass balance and the equation of motion givesµ
m +

J

r2

¶
v̇ =

1

r
T − vw (11.72)

The results seem reasonable as the belt is slowed down when sand with zero horizontal
velocity falls down on the belt.

11.2.5 Irrotational Bernoulli equation

The convective term ρ(�v · �∇)�v in (11.58) can be written³
�v · �∇

´
�v=�∇

µ
1

2
�v2
¶
− �v ×

³
�∇× �v

´
(11.73)

which can be verified by evaluation the components on both sides. It follows that for
irrotational flow, which occurs for �∇× �v = �0, the Euler equation can be written

∂�v

∂t
+ �∇

µ
1

2
�v2
¶
− �f +

1

ρ
�∇p = �0 (11.74)
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Suppose that the fluid is incompressible so that ρ is a constant. Moreover, assume that
the mass force is the gradient �f = −�∇(gz) of the gravitational potential gz, where z is
the coordinate in the vertical upwards direction. As �∇ × �v = �0 there will be a velocity
potential φ so that �v = �∇φ. Then Euler’s equation can be written as the gradient
equation

�∇
·
∂φ

∂t
+

1

2
�v2 + gz +

p

ρ

¸
= 0 (11.75)

where it is used that ρ is a constant for incompressible fluids. This implies that

∂φ

∂t
+

1

2
�v2 +

p

ρ
+ gz = constant (11.76)

which is the irrotational Bernoulli equation. In the stationary case we then have

1

2

¡
�v22 − �v21

¢
+

(p2 − p1)

ρ
+ (z2 − z1) g = 0 (11.77)

for irrotational flow of an inviscid and incompressible fluid.

Example 163 The velocity term can be expressed using the gradient of the velocity po-
tential, which gives

∂φ

∂t
+

1

2

³
�∇φ
´
· �∇φ +

p

ρ
+ gz = constant (11.78)

11.2.6 Bernoulli’s equation along a streamline

It is seen from (11.58) and (11.73) that the Euler equation can be written

∂�v

∂t
+ �∇ ·

µ
1

2
�v2
¶
− �v ×

³
�∇× �v

´
− �f +

1

ρ
�∇p = �0 (11.79)

To proceed we need to eliminate the term �v × (�∇ × �v). There are two ways to do this
that give interesting results (White 1999). The first approach, which was discussed in
the previous section, is to require that �∇× �v=�0, which is the case for irrotational flow.
The second approach, which will be investigated here, is to integrate the expression on
the left hand side of (11.79) along a streamline.
Consider the following integral form of the Euler equation (11.79):Z ·

∂�v

∂t
+ �∇ ·

µ
1

2
�v2
¶
− �v ×

³
�∇× �v

´
− �f +

1

ρ
�∇p
¸
· d�x=0 (11.80)

where the differential d�x is parallel to the velocity and satisfies d�x/dt = �v. Then

�v ×
³
�∇× �v

´
· d�x= 0 (11.81)

and the integral expression becomesZ ·
∂�v

∂t
+ �∇ ·

µ
1

2
�v2
¶
− �f +

1

ρ
�∇p
¸
· d�x=0 (11.82)

We assume that �f = −g�a3, and denote the vertical coordinate z = x3, and write |d�x| =
ds. This gives Z 2

1

∂ |�v|
∂t

ds +

Z 2

1

d

µ
1

2
�v2
¶

+

Z 2

1

gdz +

Z 2

1

dp

ρ
=0 (11.83)
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Figure 11.5: Streamline x(t) with two points 1 and 2 on the streamline.

where 1 and 2 denotes two points on the same streamline. Two of the integrals are exact,
and we find that Z 2

1

∂ |�v|
∂t

ds +
1

2

¡
�v22 − �v21

¢
+

Z 2

1

dp

ρ
+ g (z2 − z1)=0 (11.84)

which is Bernoulli’s equation for frictionless flow along a streamline. Under stationary
conditions ∂ |�v| /∂t = 0, and

1

2

¡
�v22 − �v21

¢
+

Z 2

1

dp

ρ
+ (z2 − z1) g = 0 (11.85)

For incompressible flow ρ is a constant and

1

2

¡
�v22 − �v21

¢
+

(p2 − p1)

ρ
+ (z2 − z1) g = 0, 1 and 2 on a streamline (11.86)

which is the Bernoulli equation for stationary frictionless flow along a streamline for an
incompressible fluid. We see that if z1 = z2, then the pressure along a streamline will
decrease when the velocity increases.
The additional assumption that was made for the irrotational Bernoulli’s equation

was that the flow is irrotational. The equation (11.77) is valid for arbitrary points 1 and
2 in the fluid, whereas Bernoulli’s equation (11.86) along a streamline is only valid if the
points 1 and 2 are on a streamline.

11.2.7 Example: Transmission line

A hydraulic transmission line is a pipe of cross section A and length L with a compressible
fluid. The dynamic model for a hydraulic transmission line is developed from the mass
balance and momentum balance of a differential control volume Adx where A is the cross
sectional area of the pipe and x is the length coordinate along the pipe. It is assumed
that the density of the fluid is not varying over the cross section, so that ρ = ρ(x, t). The
mass flow is

w(x, t) =

Z
A

ρvdA = ρv̄A (11.87)
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q q  dq

x x  dx

A

,p

Figure 11.6: Volume element for hydraulic transmission line.

where v̄ is the average velocity. The mass balance is taken for the fixed differential control
volume Adx from x to x + dx. The mass flow into the volume is w at x, while the mass
flow out of the volume is w+dw at x+dx. The mass balance is then found from (11.18)
to be

Adx
∂ρ

∂t
= w − (w + dw) = −dw

Dividing by Adx we get
∂ρ

∂t
= − 1

A

∂w

∂x
(11.88)

A change of variables from density ρ to pressure p is achieved in the mass balance using
the constitutive equation dp = (β/ρ)dρ where β is the bulk modulus of the fluid. This
gives

∂p

∂t
= − β

ρA

∂w

∂x

The momentum equation is found from (11.63) to be

∂

∂t
(ρv̄)Adx = Ap−A(p+ dp) +

Z
A

ρv2dA−
Z
A

£
ρv2 + d

¡
ρv2
¢¤
dA− Fdx (11.89)

where Fdx is the friction force. This gives

∂w

∂t
= −A∂p

∂x
−A

∂

∂x

Z
A

ρv2dA− F (11.90)

We will assume that the average velocity v̄ is close to zero, so that the second term on
the right side can be set to zero. The model becomes

∂p

∂t
= − β

ρA

∂w

∂x
(11.91)

∂w

∂t
= −A∂p

∂x
− F (11.92)

These equations are usually formulated in terms of the pressure p and the volumetric
flow q by treating the density as a constant ρ0 so that w = ρ0q.
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Figure 11.7: Incompressible fluid flowing through a pipe of cross section A1 with a
restriction with cross section A2.

The transmission line model linearized around q = 0 and ρ = ρ0 is given by

∂p

∂t
= − β

A

∂q

∂x
(11.93)

∂q

∂t
= −A

ρ0

∂p

∂x
− F

ρ0
(11.94)

11.2.8 Liquid mass flow through a restriction

We consider a liquid, that is an incompressible fluid, which flows through a pipe with cross
sectional area A1 with a restriction with cross sectional area A as shown in Figure 11.7.
The continuity equation implies that the mass flow w1 = ρq2 at the inlet is the same as
the mass flow w2 = ρq2 at the outlet. As the fluid is incompressible, this implies that
also the volumetric flow is the same at the inlet and the outlet, so that the volumetric
flow q is given by

q = v1A1 = v2A2 (11.95)

Bernoulli’s equation (11.86) gives

1

2
v21 +

p1
ρ

=
1

2
v22 +

p2
ρ

(11.96)

which gives

p1 − p2 =
ρ

2

¡
v22 − v21

¢
=

ρ

2

"
1−

µ
A2
A1

¶2#
v22

=

"
1−

µ
A2
A1

¶2#
ρq22
2A2

(11.97)

This gives the following result:
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Figure 11.8:

Frictionless and incompressible flow through a restriction A2 in a pipe with cross section
A1 is given by

q = A2

vuut2

ρ

(p1 − p2)

1−
³
A2

A1

´2 (11.98)

If the flow is from a volume, then A1 →∞, and the expression becomes

q = A2

r
2

ρ
(p1 − p2) (11.99)

This expression (11.98) is adjusted with the discharge coefficient Cd to account for the
effect that the cross section of the flow will be somewhat smaller than the cross section
A2 of the restriction. This gives

q = CdA2

vuut2

ρ

(p1 − p2)

1−
³
A2

A1

´2 (11.100)

At very low flow rates the friction will be the dominating physical phenomenon. Then
Bernoulli’s equation is no longer valid, and the flow becomes linear in the pressure dif-
ference. This is discussed in Section 4.2.2.

11.2.9 Example: Water turbine

Model

In this section we will study the dynamics of a hydroelectric power system consisting of
a pipe that transports water from a reservoir with water level h to an impulse turbine
with a Pelton wheel (White 1999) at water level 0. Between the outlet of the pipe and
the turbine there is a control device that sets the cross section A of the water flowing
into the turbine. The cross section A is the input control variable of the system, while
the turbine torque Tt is the output. The turbine torque is of interest as the equation of
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motion for the turbine shaft is
Jtω̇t = Tt − TL (11.101)

where Jt is the moment of inertia of the turbine shaft, ωt is the turbine shaft speed and
TL is the load torque which will typically be the driving torque for an electrical generator.
The model will be developed by deriving the model for the pipe, the model for the control
device, and the model for the turbine. Then the complete model is obtained by connecting
the three component models. This approach makes it easy at a later stage to change the
pipe model from an incompressible flow model to a compressible flow model. Also this
approach will hopefully give some structure to the presentation so that the reader will
not get lost in the many equations.
The pipe is of length L, and has inlet at the elevation h where the inlet pressure is

zero. The outlet of the pipe has pressure pp and volumetric flow q. We treat the pipe
as a two-port with pressure and volumetric flow as port variables. The pressure at the
line ends are the inputs to the model of the pipe. The inlet pressure is supposed to be
the constant ambient pressure pa = 0. Therefore, the flow q at the outlet of the pipe
will depend on the outlet pressure pp. To get a result that will be valid for different pipe
models, we will at this stage assume that the linearized dynamics of the pipe are given
by the transfer function

Hpq(s) :=
−∆pp
∆q

(s) (11.102)

where ∆q = q− q0 and ∆pp = pp − pp0 are deviations from a constant solution (q0, pp0).
Note that the negative pressure change −∆pp is used in the definition of the transfer
function to ensure that the Hpq(s) has positive gain.
The inlet of the control device has a constant cross section Ap, and the inlet pressure

is pp. At the outlet of the control device the cross section is controlled to A, the pressure
is p, and water velocity is v = q/A. It is assumed that the outlet pressure p is small
and constant so that p = 0 can be used. It is assumed that the mass of the water in
the control device is small so that Bernoulli’s equation applies to describe the relation
between the inlet pressure and velocity and the outlet pressure and velocity. According
to (11.96) this gives

pp =
ρ

2

µ
q2

A2
− q2

A2p

¶
(11.103)

Linearization of the control device equation (11.103) around the nominal area A0 and a
corresponding nominal flow q0 gives

∆pp =
ραq0
A20
∆q − ρq20

A30
∆A

where α = 1−A20/A
2
p. Dividing by ∆q and rearranging we find that

ρq20
A30

∆A

∆q
(s) =

ραq0
A20

+
−∆pp
∆q

(s) (11.104)

The transfer function from the control input A to the flow q is then found to be given
by

HqA(s) :=
∆q

∆A
(s) =

q0
αA0

1

1 +
A2
0

αρq0
Hpq(s)

(11.105)

where we have used (11.102). We note that the control device can be connected to a
particular pipe by inserting the transfer function Hpq(s) of the pipe.
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The shaft torque Tt for an impulse turbine with a Pelton wheel is given by (White
1999)

Tt = 2rtρq(v − rtωt) = 2rtρ

µ
q2

A
− qrtωt

¶
(11.106)

where rt is the radius of the wheel. We will treat the shaft speed ωt as a constant in the
linearization of the shaft torque. Linearization of the turbine torque equation (11.106)
will then give

∆T = 2rtρ
q20
A20

µ
β
A0
q0
∆q −∆A

¶
(11.107)

where

β = 2− rtωt0A0
q0

is a constant of linearization. The transfer function from the control input A to the
turbine torque is then found to be

∆Tt
∆A

(s) = 2rtρ
q20
A20

µ
β
A0
q0

HqA(s)− 1

¶
(11.108)

Insertion of HqA(s) from (11.105) gives

∆Tt
∆A

(s) = 2rtρ
q20
A20

β

α

1

1 +
A2
0

αρq0
Hpq(s)

− 1


and some algebra leads to the transfer function in the form (Hutarew 1969), (Ervik 1971)

∆Tt
∆A

(s) =
2rtρ

γ

q20
A20

1− γ
A2
0

αρq0
Hpq

1 +
A2
0

αρq0
Hpq

(11.109)

where the constant γ is given by

γ =
1

β
α − 1

≈ 1

1− rptωt0A0

q0

The power on the turbine shaft is P = Tωt, and if we assume α = 1, then it is a
straightforward exercise to show that β = 1.5 and γ = α/(1.5−α) ≈ 2 at full load where
the power is maximized.

Water turbine with incompressible water supply

The pipe is of length L and cross section Ap, and the reservoir has water level h. The
water is assumed to be incompressible with density ρ. The volumetric flow is q, and the
velocity of the water is vp = q/Ap. The equation of motion for water in the pipe is

Lρq̇ = mgh+Ap (p0 − pp) (11.110)

where mgh is the constant gravity force in the flow direction that acts on the water in
the pipe, p0 is the constant ambient pressure, and pp is the pressure at the end of the
pipe. Laplace transformation leads to the pipe transfer function

Hpq(s) :=
−∆pp
∆q

(s) =
ρLs

Ap
(11.111)
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Note that the negative pressure is used in the definition of the transfer function Hpq(s)
to achieve a transfer function with a positive gain. The transfer function HqA(s) can
then be found from (11.105) to be

HqA(s) =
q0
αA0

1

1 + µTr
2 s

where we have defined the time constant Tr and the nondimensional flow constant µ by

Tr = 2
LA20qmax
αq20Ap

, µ =
q0
qmax

(11.112)

The transfer functions for the complete system is found from (11.109) to be

∆Tt
∆A

(s) =
2

γ

rtρq
2
0

A20

¡
1− γµTr

2 s
¢¡

1 + µTr
2 s
¢ (11.113)

At full load with µ = 1 and γ = 2, the transfer function is

∆Tt
∆A

(s) =
rtρq

2
0

A20

(1− Trs)¡
1 + Tr

2 s
¢ (11.114)

Example 164 Francis or Kaplan type turbines are reaction turbines that are driven by
power transfer from the water flow. The shaft torque is

Tft =
P

ωt
(11.115)

where

P = qρ

µ
1

2
v2
¶

=
ρ

2

q3

A2
(11.116)

is the power supplied to the turbine. Linearization of the power expression gives

∆P =
ρ

2

q20
A20

µ
3∆q − 2

q0
A0
∆A

¶
(11.117)

Then the transfer function from A to P can be found from

∆P

∆A
(s) =

ρ

2

q20
A20

µ
3HqA(s)− 2

q0
A0

¶
by inserting (11.105). This givesµ

1 +
A20
ραq0

Hpq(s)

¶
∆P

∆A
(s) =

ρq30
A30

µ
3

α
− 2− 2

A20
ραq0

Hpq(s)

¶
and, using the reasonable approximation α = 1, we arrive at the well-known power trans-
fer function (Hutarew 1969)

∆P

∆A
(s) =

ρq30
A30

(1− µTrs)¡
1 + µTr

2 s
¢ (11.118)

where Tr and µ are given in (11.112).
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Water turbine with compressible water supply

We now include compressibility effects in the supplying pipe. The inlet of the pipe is
open, so the transfer function from the volumetric flow w = ρq at the lower end of the
pipe to the pressure p at the same place is given by (4.180) and (4.195) as

Hpq =
−∆p
∆q

(s) =
ρc

Ap
tanh

L

c
s (11.119)

Note that Hpq (s) tends to the incompressible solution ρLs/Ap when c→∞, which corre-
sponds to the incompressible case where β →∞. We find that when the compressibility
effects of the water in the pipe is included the transfer functions to torque and power
becomes

∆Tt
∆A

(s) =
2

γ

rtρq
2
0

A20

³
1− γ

A2
0

αq0
c
Ap

tanh L
c s
´

³
1 +

A2
0

αq0
c
Ap

tanh L
c s
´ (11.120)

11.2.10 Example: Waterhammer

L,A
v P

Figure 11.9: The waterhammer effect occurs when the pipe is suddenly closed at P .

The waterhammer effect (Merritt 1967), (Holmboe and Rouleau 1967) occurs when
fluid is flowing through a pipe, and the pipe is suddenly closed for example by a valve
(Figure 11.9). A fluid with velocity v and density ρ flowing in a pipe of length L and
cross section A will have a kinetic energy

K =
1

2
ρV v2 (11.121)

where V = LA is the volume of the fluid. We note that for a material volume V of a set
of particle with mass m and density ρ = m/V the volume differential is

dV = d

µ
m

ρ

¶
= −m

ρ2
dρ = −m

ρ2
ρ

β
dp = −V

β
dp (11.122)

Then it follows that if the fluid is instantaneously stopped the kinetic energy K will give
an increase ∆P due to compression, which is given by

∆P = −
Z 2

1

pdV =

Z 2

1

p
V

β
dp =

1

2

V

β

¡
p22 − p21

¢
(11.123)

where p1 is the pressure just before the pipe is closed, and p2 is the pressure just after
the pipe is closed. From K = ∆P the pressure increase is seen to beq

p22 − p21 = ρcv (11.124)
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where c =
p
β/ρ is the sonic speed. In the case that the initial pressure p1 is small, this

is approximated by
p2 = ρcv (11.125)

Example 165 For water c = 1500 m/s and ρ = 103 kg/m3, and p2 = 1.5 · 106 Pa
m/s · v, or

p2 = 15 atmm/s ·v, so that 5 m/s gives a pressure rise of 75 bar. For hydraulic fluids c = 1250

m/s and ρ = 800 kg/m3 which gives p2 = 10 atmm/s · v so that 5 m/s gives a pressure rise of
50 bar.

11.3 Angular momentum balance

11.3.1 General expression

The angular momentum equation is important in the modeling of compressors and tur-
bines. Whereas the momentum equation is derived from Newton’s law for an infinitesimal
material volume, the angular momentum equation is derived from Euler’s law of angular
momentum

ρ
D

Dt
(�r × �v) dV = �r × d�F (11.126)

for a material volume element dV . Here �r is the position vector of the volume element
from a specified point o. The force d�F denotes the resultant force on the volume element,
which is the mass force plus the surface force. When this is integrated over the material
volume V we get ZZZ

V

ρ
D

Dt
(�r × �v) dV =

D

Dt

ZZZ
V

�r × ρ�vdV = �No (11.127)

where
�No =

ZZZ
V

�r × d�F (11.128)

is the moment about the point o.

The angular momentum equation is given by

D

Dt

ZZZ
V

�r × ρ�vdV = �No (11.129)

For a general control volume Vc the angular momentum equation is written

d

dt

ZZZ
Vc

�r × ρ�vdV +

ZZ
∂Vc

(�r × ρ�v) (�v − �vc) · �ndA = �No (11.130)

where �vc is the velocity of a point on the surface of Vc.

11.3.2 Centrifugal pump with radial blades

A pump is a device where power is supplied from the pump axis to a fluid to make the
fluid flow with a mass flow w. The pump axis may be driven by an electrical motor, an
engine or a turbine. We will first consider a centrifugal pump with radial blades acting
on an incompressible fluid (Figure 11.10). The pump has angular shaft velocity ω. The
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Figure 11.10: Centrifugal pump with radial blades.

fluid enters in the center, and flows through an arrangement of radial blades with inner
blade tips at a radius r1 and outer blade tips at a radius r2. We define a frame with
orthogonal unit vectors �er, �eθ, �ez where �er is in the radial direction, �eθ in the tangential
direction, and �ez is along the pump axis. We note that the inner tip speed of the blades
is �U1 = r1ω�eθ while the outer tip speed of the blades is �U2 = r2ω�eθ. We will assume that
the fluid flow is constant and with a mass flow

w = 2πr1bv1r = 2πr2bv2r (11.131)

where b is the width of the pump, v1r is the radial fluid velocity at the blade inlet, and
v2r is the radial fluid velocity at the blade outlet. We will consider the moment about
the pump axis, which means that the point o is in the center of the pump, so that we
have �r1 = r1�er at the blade inlet and �r2 = r2�er at the outlet. The fluid velocity at the
blade inlet is denoted �v1 and the velocity at the blade outlet is denoted �v2 where

�v1 =
w

2πr1b
�er + r1ω�eθ, �v2 =

w

2πr2b
�er + r2ω�eθ (11.132)

This gives
�r1 × �v1 = r21ω�ez, �r2 × �v2 = r22ω�ez (11.133)

The control volume Vc is taken to be the volume between the blade inlet and the blade
outlet. This is a volume that is fixed in space, so that �vc = �0. The outwards pointing
surface normal is �n = −�eθ at the inlet and �n = �eθ at the outlet. The angular momentum
balance (11.130) givesZZZ

Vc

∂

∂t

¡
ρr2ω�ez

¢
dV + w

¡
r22ω − r21ω

¢
�ez = �Tp (11.134)
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where �Tp = Tp�ez is the load torque on the shaft. This gives

Jf ω̇ + wω
¡
r22 − r21

¢
= Tp (11.135)

where

Jf =
πbρ

2

¡
r42 − r41

¢
=

mf

2

¡
r21 + r22

¢
(11.136)

is the moment of inertia due to the fluid, and mf = πbρ
¡
r22 − r21

¢
is the mass of the fluid

in Vc. We see that the stationary shaft torque needed to pump a mass flow of w is

Tp = wω
¡
r22 − r21

¢
(11.137)

The shaft power is
Pp = Tpω = wω2

¡
r22 − r21

¢
(11.138)

11.3.3 Euler’s turbomachinery equation

In a more well-designed centrifugal pump the blades will be curved, and the blades will
have an inlet angle β1 and outlet angle β2. The velocity �v1 at the inlet and the velocity
�v2 at the blade outlet is written

�v1 = v1r�er + v1t�eθ, �v2 = v2r�er + v2t�eθ (11.139)

We get
�r1 × �v1 = r1v1t�ez, �r2 × �v2 = r2v2t�ez (11.140)

Then, proceeding as in the previous section, we get the shaft power

Tp = w (r2v2t − r1v1t) (11.141)

The shaft power is found to be

Pp = Tω = wω (r2v2t − r1v1t) (11.142)

A turbine is a device where a fluid delivers power to the turbine shaft by changing
the momentum of the fluid. This means that a turbine converts kinetic energy in a fluid
to mechanical energy in the form of rotational energy of the shaft. We note that for the
centrifugal pump the shaft torque T is zero when the shaft speed ω is zero. This shows
that the centrifugal pump with radial blades cannot be used as a turbine.

11.3.4 Pump instability

The direction of the velocity vectors �v1 and �v2 are described by the flow angles

tanα1 =
v1t
v1r

, tanα2 =
v2t
v2r

(11.143)

We define �W1 and �W2 by

�v1 = �U1 + �W1, �v2 = �U2 + �W2 (11.144)

�W1 = W1r�er +W1t�eθ, �W2 = W1r�er +W1t�eθ (11.145)

At the blade outlet the fluid flow will be along the blade, so that the velocity �W2 will
have direction given by the blade outlet angle β2. At design speed a design rule is to
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select the inlet blade angle β1 so that the inlet flow will be along the blade at the inlet,
so that �W1 will have direction given by β1. Then

W1t = −v1rcotanβ1, W2t = −v2rcotanβ2 (11.146)

will be the tangential fluid velocities relative to the blades. We will consider the situation
when there is no pre-whirl , which means that the tangential speed at the blade inlet is
zero. Then

v1t = 0 ⇒ tanβ1 =
v1r
U1

(11.147)

and the torque is found to be

T = wr2 (U2 − v2rcotanβ2)

= wr2

µ
ωr2 − w

2πr2bρ
cotanβ2

¶
(11.148)

Suppose that the pump is delivering an incompressible fluid to a pipe of cross section
A and length L. The velocity at the inlet of the pipe is denoted v, and it is assumed that
the mass flow is

w = ρAv (11.149)

The equation of motion for the fluid is

ρALv̇ = F − Fout (11.150)

where Fout is the force acting at the pipe outlet. We assume that the shaft power Tω
is converted to kinetic power Fv for the fluid in the pump so that Tω = Fv. Then the
force F at the inlet of the pipe is found to be

F =
ω

v
T = ρA

ω

w
T = ρAωr2

µ
ωr2 − Av

2πr2b
cotanβ2

¶
(11.151)

and the equation of motion becomes

ρALv̇ = ρAω2r22 − v
ρA2ω

2πb
cotanβ2 − Fout (11.152)

The force consist of a term that is proportional to ω2 which can be considered as the
forcing term. In addition there is the second term on the right side of (11.152) which is
proportional to the outlet fluid velocity v. If β2 > 90◦, which is the case if the blade have
a backsweep at the outlet, then the velocity term will have the same effect as viscous
friction, and has a stabilizing effect. However, if the blades are swept forward, then
β2 > 90◦, and the second term on the right side of (11.152) will give the same effect as
a positive velocity feedback, which may cause the system to be unstable.

Example 166 The pump delivers an incompressible fluid through a pipe of cross section
A to a basin. The fluid level in the basin is denoted h. Water flows out of the basin
through at throttle with mass flow wt(h) = C

√
h. The model for the system is

v̇ = − A

2πbL
ωcotanβ2v −

g

L
h +

r22ω
2

L
(11.153)

ḣ =
A

Ab
v − 1

Abρ
wt (h) (11.154)
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where the pump velocity ω2 is considered to be the control input. This can be achieved by
velocity control of the motor driving the pump. Linearization gives

v̇ = a11v + a12h+ bω2 (11.155)

ḣ = a21v + a22h (11.156)

and the characteristic equation of the linearized system is found to be

λ2 − (a11 + a22)λ− a12a21 = 0 (11.157)

Stability results whenever

a11 + a22 = − A

2πbL
ωcotanβ2 −

1

Abρ

dwt

dh
< 0 (11.158)

which is the case if

cotanβ2 < −
2πbLω

ρAAb

dwt

dh
(11.159)

This means that if the blade outlets are backswept so that cotanβ2 ≥ 0, then the system
will be stable. Forward swept blade outlets may cause instability depending on the system
parameters.

Example 167 Under stationary conditions is may be assumed that the mechanical power
Tω from the shaft is converted to power Fv supplied to the fluid, so that

F =
ω

v
T (11.160)

In transients there will be energy loss until the stationary flow pattern is established. It is
reasonable to assume that these transient flow will last for at least the time time it takes
a fluid particle to flow through the pump, and in some cases up to 5 times of this time.
Then a reasonable model for the transients in the shaft torque is

Ḟ =
1

αTtrans

³ω
v
T − F

´
(11.161)

where Ttrans can be taken to be the transport time of a fluid particle through the pump,
and α is in the range from 1 to 5.

11.4 The energy balance

11.4.1 Material volume

A material volume has a fixed set of particles. Therefore the total energy of a material
volume is conserved. This means that the rate of change of the total energy of a material
volume is equal to the net rate of energy supplied to the volume. We assume here that
the total energy in a volume element dV is ρedV where

e = u +
1

2
�v2 + φ (11.162)

is the specific energy, u is the specific internal energy, (1/2)�v2 is the specific kinetic energy,
and φ is the specific potential energy. We assume that the body forces are derived from
the potential φ in the sense that

�∇φ = −�f ⇒ Dφ

Dt
=
³
�∇φ
´
· �v= −�f · �v (11.163)
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The material time derivative of the total energy in a volume V is equal to the net rate of
energy supplied to the volume. Suppose that the net supplied energy is the sum of the
heat flow into the volume due to the heat flux density �jQ plus the power added from the
pressure force −p�n acting on the surface. This is written

D

Dt

ZZZ
V

ρedV = −
ZZ

∂V

p�v · �ndA−
ZZ

∂V

�jQ · �ndA (11.164)

The volume V is arbitrary, and it follows from the divergence theorem that

ρ
D

Dt

µ
u +

1

2
�v2 + φ

¶
| {z }
rate of change

in internal, kinetic

and potential energy

for material

volume element

= − �∇ · (p�v)| {z }
pressure work

on the surface of

the volume element

− �∇ ·�jQ| {z }
heat

conduction

(11.165)

The divergence form is found by changing the left hand side as follows:

ρ
De

Dt
=

∂

∂t
(ρe) + �∇ · (ρe�v) (11.166)

If we leave out the potential energy, then (11.163) can be used to express the energy
equation in the form

ρ
D

Dt

µ
1

2
�v2 + u

¶
| {z }
rate of change

in internal and

kinetic energy

for material

volume element

= − �∇ · (p�v)| {z }
pressure work

on the surface of

the volume element

− �∇ ·�jQ| {z }
heat

conduction

+ ρ�v · �f| {z }
work of body

forces on volume

element

(11.167)

Example 168 If the pressure is constant over the volume, then the pressure work can
be written ZZ

∂V

p�v · �ndA = p

ZZ
∂V

�v · �ndA = p
DV

Dt
(11.168)

which means that the pressure work is equal to the pressure times the time derivative of
the material volume.

11.4.2 Fixed volume

If the volume V is fixed then the energy balance can be written in the material form
using

D

Dt

ZZZ
V

ρedV =
d

dt

ZZZ
V

ρedV +

ZZ
∂V

ρe�v · �ndA (11.169)
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Insertion of (11.164) gives the result

d

dt

ZZZ
V

ρedV = −
ZZ

∂V

ρ

µ
e+

p

ρ

¶
�v · �ndA−

ZZ
∂V

�jQ · �ndA (11.170)

where the first term on the right side is the convected energy plus the pressure work on
the volume. At this stage it is useful to introduce the specific enthalpy h which is defined
by

h = u +
p

ρ
(11.171)

Then the energy balance can be written

d

dt

ZZZ
V

ρ

µ
u +

1

2
�v2 + φ

¶
dV| {z }

rate of change

of energy

in fixed volume

= −
ZZ

∂V

ρ

µ
h +

1

2
�v2 + φ

¶
�v · �ndA| {z }

convected enthalpy,

kinetic energy and

potential energy

−
ZZ

∂V

�jQ · �ndA| {z }
heat

conduction

(11.172)

Note that in the convection term the enthalpy h enters in place of the internal energy u
as the pressure work is included in the convection term.

Example 169 Suppose that the specific energy of the system in Example 158 is simply
e = u, which means that the kinetic and potential energy can be neglected. Moreover,
suppose that there is no heat flow into the volume, that is, �jQ = �0, that there is no mass
or energy generation in the volume, and that ρ and u are constants over the volume.
Then the energy balance is

V
d

dt
(uρ) = u1A1ρ1v1 − uA2ρv2 + p1A1v1 − pA2v2 (11.173)

which gives
d

dt
E = h1w1 − hw2 (11.174)

where we used E = mu where m = ρV , and where we have used the enthalpy h = u+p/ρ.
We may obtain an equation for the specific internal energy u by expanding the left side.
This gives

mu̇ + ṁu = h1w1 − hw2. (11.175)

Combining this with the mass balance

ṁ = w1 − w2 (11.176)

we get a differential equation for the specific internal energy in the form

mu̇ = h1w1 − hw2 − u (w1 − w2) (11.177)
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Figure 11.11: Water tank heated by a coil filled with steam.

which gives
u̇ =

w1
m

(h1 − u)− w2
m

p

ρ
(11.178)

We will later see that this leads to a differential equation for the temperature by using
h = cpT and u = cvT .

Example 170 This example and the next example are adopted from (Bird, Stewart and
Lightfoot 1960, p. 473). A cylindrical tank with cross section A is filled with a liquid with
a mass flow w (Figure 11.11). The volume of the liquid in the tank is V = Az where z
is the height of the liquid surface. The liquid in the tank is heated with a coil filled with
steam of temperature Ts. The heat transfer coefficient per length unit of the coil from the
coil to the liquid is G. The tank is stirred so that the temperature of the liquid in the tank
is uniform. The energy of the liquid is supposed to be u = cpT . The mass and energy
balances are

d

dt
(ρV ) = w (11.179)

d

dt
(ρuV ) = wu1 +Gz (Ts − T ) . (11.180)

The first term on the right side of the energy balance is the convected internal energy,
while the second term is a heat conduction term as in the general expression (11.172).
The energy balance can be written out asµ

d

dt
ρV

¶
cpT + ρV cp

dT

dt
= wcpT1 +Gz (Ts − T ) . (11.181)

Insertion of the mass balance in the energy balance gives

ρV cp
dT

dt
= wcpT1 − wcpT +Gz (Ts − T ) (11.182)
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Figure 11.12: Heated tank.

and some straightforward manipulations lead to the model

ż =
w

ρA
(11.183)

Ṫ =
w

ρAz
(T1 − T ) +

G

ρAcp
(Ts − T ) . (11.184)

Example 171 A liquid is heated by pumping it through a tank with an electrical heating
element supplying the power P as shown in Figure 11.12. The temperature of the liquid
in the tank is T, the density ρ is constant, and the volume of the tank is V . The inlet
has mass flow w1 and temperature T1, while the outlet has mass flow w2. The liquid
flowing through the outlet has the temperature T of the liquid in the tank. The energy of
the liquid in the tank is mcpT where m = ρV is the mass of the liquid in the tank. The
mass balance implies that

w1 = w2 = w (11.185)

The energy balance is then

d

dt
(mcpT ) = cpw (T1 − T ) + P. (11.186)

From the mass balance we have ṁ = 0, and we get

Ṫ =
w

m
(T1 − T ) +

P

cpm
. (11.187)

11.4.3 General control volume

For a general control volume Vc Reynolds’ transport theorem (10.88) gives

d

dt

ZZZ
Vc

ρedV =
D

Dt

ZZZ
Vc

ρedV −
ZZ

∂Vc

ρe (�v − �vc) · �ndA (11.188)

From equation (11.164) we have the following expression for the material derivative of
the energy:

D

Dt

ZZZ
Vc

ρedV = −
ZZ

∂Vc

p�v · �ndA−
ZZ

∂Vc

�jQ · �ndA (11.189)
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Combining the two equations we find that

d

dt

ZZZ
Vc

ρedV = −
ZZ

∂Vc

ρ

µ
e+

p

ρ

¶
(�v − �vc) · �ndA

−
ZZ

∂Vc

p�vc · �ndA−
ZZ

∂Vc

�jQ · �ndA (11.190)

The first term on the right side is the convected energy plus the pressure work on the
volume. The specific enthalpy h = u + p/ρ is inserted. Then the energy balance can be
written

d

dt

ZZZ
Vc

ρ

µ
u +

1

2
�v2 + φ

¶
dV| {z }

rate of change

of energy

in control volume

= −
ZZ

∂Vc

ρ

µ
h +

1

2
�v2 + φ

¶
(�v − �vc) · �ndA| {z }

convected enthalpy,

kinetic energy and

potential energy

−
ZZ

∂Vc

p�vc · �ndA| {z }
pressure work

due to change in

control volume

−
ZZ

∂Vc

�jQ · �ndA| {z }
heat

conduction

(11.191)

Note that the velocity in the convection term is �v − �vc which is the particle velocity
relative to the surface of the control volume Vc.

Example 172 If the pressure is constant over the volume then the pressure work on the
surface of the control volume can be writtenZZ

∂Vc

p�vc · �ndA = p

ZZ
∂Vc

�vc · �ndA = pV̇c (11.192)

11.4.4 The heat equation

Heat conduction in a solid is described by the heat equation. The energy appears in the
form of internal energy u = cpT , and energy flow is due to heat conduction according to
the constitutive equation in the form of Fourier’s law

�jQ = −α�∇(ρcpT ) (11.193)

where the α is the thermal diffusivity in m2/s. The energy balance is simply

ρ
∂u

∂t
= −�∇ ·�jQ (11.194)

which in combination with Fourier’s law with constant α and ρ gives

∂T

∂t
− α∇2T = 0 (11.195)

where ∇2 = �∇ · �∇ is the Laplacian operator.
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11.4.5 Transfer function for the heat equation

The heat equation in one dimension for the temperature T (x, t) in a bar from x = 0 to
x = L is given by

∂T (x, t)

∂t
− α

∂2T (x, t)

∂x2
= 0 (11.196)

Suppose that the bar is insulated at x = 0, and that the heat flux jQ is controlled at
x = L according to jQ = −αρcpu where u is the control variable. Then the boundary
conditions are

∂T (0, t)

∂x
= 0,

∂T (L, t)

∂x
= u (11.197)

Laplace transformation of (11.196) gives

∂2T (x, s)

∂x2
− s

α
T (x, s) = 0 (11.198)

which has the solution

T (x, s) = A cosh

µr
s

α
x

¶
+B sinh

µr
s

α
x

¶
(11.199)

with derivative

∂T (x, s)

∂x
= A

r
s

α
sinh

µr
s

α
x

¶
+B

r
s

α
cosh

µr
s

α
x

¶
(11.200)

The boundary condition at x = 0 gives B = 0, and the boundary condition at x = L
gives

A

r
s

α
sinh

µr
s

α
L

¶
= u (11.201)

so that the temperature is given by

T (x, s) =
cosh

¡p
s
αx
¢p

s
α sinh

¡p
s
αL
¢u(s) (11.202)

The transfer function from the heat flux to the temperature at x = L is found to be

T (L, s)

u(s)
=

cosh
¡p

s
αL
¢p

s
α sinh

¡p
s
αL
¢ (11.203)

The zeros of the transfer function are found from

L

r
s

α
= j

³
kπ +

π

2

´
⇒ s

α
= − 1

L2

³
kπ +

π

2

´2
(11.204)

while the singularities are given by

L

r
s

α
= jkπ ⇒ s

α
= − 1

L2
(kπ)

2 (11.205)

Numerical values are given in Table 11.1.
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Zeros Singularities

L
p

s
α L2 sα L

p
s
α L2 sα

1. 570 8 −2. 467 4 0 0

4. 712 4 −22. 207 3. 141 6 −9. 869 6

7. 854 0 −61.685 6. 283 2 −39. 478

10.995541 −120.9019 9. 424 8 −88. 826

(11.206)

Table 11.1: Singularites for the one-dimensional heat equation when the beam is insulated
at x = 0, and the heat flux is controlled at x = L.

Example 173 The heat equation is studied for the bar of the previous example, but the
boundary condition at x = L is changed so that the bar is in contact with a reservoir with
temperature u, which is the control input. The heat-transfer coefficient is β. Then the
boundary conditions are changed to

∂T (0, t)

∂x
= 0,

∂T (L, t)

∂x
= β[u− T (L, t)] (11.207)

The boundary condition at x = 0 gives B = 0, while the boundary condition at x = L in
combination with (11.199) givesr

s

α
A sinh

µr
s

α
L

¶
= β

·
u(s)−A cosh

µr
s

α
L

¶¸
This implies that

A =
βp

s
α sinh

¡p
s
αL
¢

+ β cosh
¡p

s
αL
¢u(s) (11.208)

and insertion in (11.199) gives the transfer function

T (L, s)

u(s)
=

cosh
¡p

s
αL
¢

1
β

p
s
α sinh

¡p
s
αL
¢

+ cosh
¡p

s
αL
¢ (11.209)

11.5 Viscous flow

11.5.1 Introduction

So far the balance equations for momentum and energy have been developed for inviscid
fluids, that is, for fluids without viscosity. In some problems, viscous effects may be
important, and in the following balance equations for the viscous case will be developed.
The mathematical level is somewhat more advanced than for the inviscid case. The
main reason for this is the appearance of the viscous stress tensor which necessitates the
introduction of tensor notation.

11.5.2 Tensor notation

The derivation of certain important results in fluid mechanics are best done in tensor
notation (Aris 1989), (Lovelock and Rund 1989). This involves a systematic notation
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for doing vector operations at the component level. We will see in the following that
tensor notation is of particular use in connection with the computation of gradients and
divergence of complicated vector expressions. All tensors in the following are Cartesian.
Let a be a Cartesian frame with orthogonal unit vectors �a1,�a2,�a3 and let �u be a vector
and �D be a dyadic given by

�u =
3X
i=1

ui�ai, �D =
3X

i=1

3X
j=1

dij�ai�aj (11.210)

where ui = �u · �ai is component i of �u and dij = �ai · �D · �aj is component i, j of �D. The
vector �u and the dyadic �D are uniquely defined by their components. This means that
we may represent �u by its generic component ui and we may represent �D by its generic
component dij .

The generic component ui = �u · �ai of a vector �u is a first order Cartesian tensor, while
the generic component dij = �ai · �D ·�aj of a dyadic �D is a second order Cartesian tensor.

We introduce the summation convention where the summation symbol may be left
out when it is summed over a repeated index in a product as in the scalar product

uivi :=
3X
i=1

uivi = uTv (11.211)

The summation convention also applies to the vector expression

�u =
3X
i=1

ui�ai = ui�ai (11.212)

and the dyadic expression

�D =
3X
i=1

3X
j=1

dij�ai�aj = dij�ai�aj (11.213)

In addition we will use a notation where subscript , i denotes partial differentiation
with respect to xi , so that

φ,i :=
∂φ

∂xi
and vi,j :=

∂vi
∂xj

(11.214)

In addition, subscript , ij denotes partial differentiation with respect to xi and xj , that
is,

φ,ij :=
¡
φ,i
¢
,j

=
∂2φ

∂xi∂xj
and vi,jk := (vi,j),k =

∂2vi
∂xj∂xk

(11.215)

We let the summation convention apply to differentiation expressions so that

vj,ji :=
3X

j=1

vj,ji =
∂

∂xi

³
∇Tv

´
and vi,jj :=

3X
j=1

vi,jj =∇2vi (11.216)
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Example 174 The tensor form of the material derivative of a scalar φ is

Dφ

Dt
=

∂φ

∂t
+ viφ,i (11.217)

while the material derivative of a vector u with elements ui is

Dui
Dt

=
∂ui
∂t

+ vjui,j (11.218)

Example 175 The divergence of velocity �∇ · �v can written

�∇ · �v=
3X

i=1

vi,i = vi,i (11.219)

while the scalar product between the �v and the gradient of a scalar ψ can be written

�v · �∇ψ =
3X

i=1

viψ,i = viψ,i (11.220)

Theorem 1 The divergence theorem (10.12) can be written in tensor notation asZZ
∂V (t)

uinidA =

ZZZ
V (t)

ui,idV (11.221)

Moreover, the related result (10.13) is writtenZZ
∂V (t)

φnidA =

ZZZ
V (t)

�∇φ,idV (11.222)

Example 176 The Laplacian of a scalar φ is

∇2φ =
3X
i=1

φ,ii = φ,ii (11.223)

where ∇2 = �∇ · �∇= ∂
∂xi

∂
∂xi

is the Laplacian operator.

Example 177 The Hessian matrix of a scalar φ is

∇∇Tφ =

 ∂
∂x1

∂
∂x1

∂
∂x1

∂
∂x2

∂
∂x1

∂
∂x3

∂
∂x2

∂
∂x1

∂
∂x2

∂
∂x2

∂
∂x2

∂
∂x3

∂
∂x3

∂
∂x1

∂
∂x3

∂
∂x2

∂
∂x3

∂
∂x3

φ =

 φ,11 φ,12 φ,13
φ,21 φ,22 φ,23
φ,31 φ,32 φ,33

 (11.224)

where ∇∇T =
n

∂
∂xi

∂
∂xj

o
is the Hessian operator in matrix form.

Example 178 The scalar �∇·(φ�u), which is the divergence of the vector φ�u can be written
in tensor notation as (φui),i. From the usual rule for the differentiation of products it
follows that

(φui),i = φ,iui + φui,i (11.225)

which is the tensor form of (10.15).
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Example 179 Matrix multiplication is conveniently expressed in tensor notation. Let
x = {xi}, y = {yi}, A = {aij}, B = {bij} C = {cij}, and D = {dij}. Then it is
straightforward to verify that

y = Ax ⇔ yi = aijxj (11.226)

C = AB ⇔ cij = aikbkj (11.227)

D = ATB ⇔ dij = akibkj (11.228)

E = ABT ⇔ eij = aikbjk (11.229)

11.5.3 The velocity gradient tensor

Viscous forces appear in fluids because of velocity gradients. To describe velocity gradi-
ents it is convenient to introduce the velocity gradient tensor defined by

vi,j =
∂vi
∂xj

(11.230)

This is the tensor form of the velocity gradient dyadic

�∇�v = vi,j�ai�aj (11.231)

while the corresponding matrix form is (∇vT )T .

The velocity gradient tensor vi,j is written

vi,j = eij +Ωij (11.232)

where
eij :=

1

2
(vi,j + vj,i) (11.233)

is the symmetric rate of strain tensor , which is also called the deformation tensor, and

Ωij :=
1

2
(vi,j − vj,i) (11.234)

is the skew-symmetric part of the velocity gradient tensor.

The matrix form of the rate of strain tensor is written

E := {eij} =

½
1

2
(vi,j + vj,i)

¾
(11.235)

while

Ω := {Ωij}=

½
1

2
(vi,j − vj,i)

¾
(11.236)

Example 180 Define ds by
ds2 = dxidxi (11.237)

which means that ds is the length of the differential vector dx = (dx1, dx2, dx3)
T . Then

the material derivative of ds2 is found to be

1

2

D

Dt
(ds)2 =

1

2

D

Dt
(dxidxi) = dxi

D

Dt
dxi

= dxi
D

Dt

∂xi
∂ξj

dξj = dxi
∂vi
∂ξj

dξj (11.238)
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Figure 11.13: Rigid body with velocity �vo of point o and angular velocity �ω.

where ξj are the material coordinates. Then, because

∂vi
∂ξj

dξj =
∂vi
∂xj

dxj (11.239)

it follows that
1

2

D

Dt
(ds)

2
= dxieijdxj (11.240)

We see that the deformation tensor eij is related to the stretching of the differential dx.

11.5.4 Example: The velocity gradient for a rigid body

Consider a rigid body with angular velocity �ω(t) and velocity �vo and position �ro(t) of
some specified point o, which is fixed in the rigid body. We consider a fixed point p in
the rigid body with position �r(t, x1, x2, x3). The velocity of the point p is

�v (t, x1, x2, x3) = �vo (t) + �ω (t)× �r(t, x1, x2, x3) (11.241)

where �r = �x− �ro. The velocity gradient �∇�v which describes the velocity variations over
the rigid body is

�∇�v = �∇�vo + �∇ (�ω × �r) = �ω × �∇�r = �ω × �∇�x = �ω× · �∇�x = �ω× · �I
= �ω× (11.242)

Here we have used the fact that �vo, �ro and �ω are functions of time only, and that
�∇�r = �∇�x = �I. We see that for rigid-body motion the velocity gradient tensor is skew
symmetric and given by

�∇�v = �ω× (11.243)

This means that for rigid body motion we have

Ω = ω×, eij = 0 (11.244)

The opposite is also true: If the rate of strain tensor eij is zero, then the motion is a
rigid body motion. From this we conclude that a nonzero rate of strain tensor eij is a
measure of how much the velocity field differs from rigid body motion, and in this sense
eij is related to the rate of deformation of the fluid.
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Figure 11.14: Volume V with surface normal �n and stress vector �t(n).

Example 181 We recognize 2Ω in (11.236) as the skew symmetric form of the curl
vector ∇×v as given in (10.21). This means that¡∇×v

¢×
=2Ω (11.245)

From this and (11.244) we conclude that for rigid body motion we have

�∇× �v = 2�ω (11.246)

and ³
�∇× �v

´×
= 2�∇�v (11.247)

11.5.5 The stress tensor

The forces acting on a material volume V (t) are divided into mass forces
RRR

V
ρ�fdV and

surface forces
RR

∂V
�t(n)dA. Here �t(n) is the stress vector and �t(n)dA is the contact force

acting on the area element dA. The subscript (n) indicates that the stress vector �t(n) is
acting on a surface with outwards surface normal �n as shown in Figure 11.14. The stress
vector �t(n) can be expressed in the form

�t(n) = �n · �T
where �T is the dyadic form of the the stress tensor Tij . We note that the corresponding
matrix representation is T = {Tij}. By convention, the element Tij denotes the contact
force in the j direction exerted on a plane with surface normal in the i direction.
It is not straightforward to handle divergence terms involving the stress tensor in

vector form. Because of this we use the more powerful tensor notation in component
form, where the summation convention is used. Then, component i of the stress vector
�t(n) is written

t(n)i = Tjinj (11.248)

where the summation over j is implied by the summation convention. The divergence
theorem (11.221) leads to the equationZZ

∂V

TjinjdA =

ZZZ
V

Tji,jdV (11.249)
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where the notation

Tji,j =
∂Tji
∂xj

=
3X

j=1

∂Tji
∂xj

(11.250)

is used. In vector form this is writtenZZ
∂V

�t(n)dA =

ZZ
∂V

�n · �TdA =

ZZZ
V

³
�∇ · �T

´
dV (11.251)

The stress tensor can generally be written

�T = −p�I + �τ (11.252)

where p is the pressure and �τ is the viscous stress tensor . We note that the equivalent
tensor form is

Tij = −pδij + τ ij (11.253)

where δij is the Kronecker delta which is given by δii = 1 and δij = 0 for i 6= j. From

Tji,j = − (pδij),j + τ ji,j = −p,i + τ ji,j (11.254)

we find that
�∇ · �T = −�∇p+ �∇ · �τ (11.255)

and we may use (11.251) to establish the following useful relation:ZZ
∂V

�t(n)dA =

ZZZ
V

³
−�∇p + �∇ · �τ

´
dV (11.256)

which has the component formZZ
∂V

t(n)idA =

ZZZ
V

(−p,i + τ ji,j) dV (11.257)

Example 182 We note that the matrix form of the main equations of this section is
given by

T = −pI + τ (11.258)³
∇TT

´T
= −∇p+

³
∇T τ

´T
(11.259)

and ZZ
∂V

t(n)dA =

ZZZ
V

·
−∇p+

³
∇T τ

´T¸
dV (11.260)

Remark 4 Some authors use �T = −p�I−�τ , which means that they use the opposite sign
for the viscous stress tensor.

11.5.6 Cauchy’s equation of motion

The resultant force acting on a fluid of volume V is the sum of the surface forces and the
body forces, which is written

�F (r) = −
ZZ

∂V

�t(n)dA +

ZZZ
V

ρ�fdV (11.261)
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The divergence theorem gives

�F (r) =

ZZZ
V

³
�∇ · �T + ρ�f

´
dV (11.262)

and by combining this with the momentum balance (11.53) the result isZZZ
V

ρ
D�v

Dt
dV =

ZZZ
V

³
�∇ · �T + ρ�f

´
dV (11.263)

As the volume V is arbitrary, this leads to Cauchy’s equation of motion

ρ
Dvi
Dt

= Tji,j + ρfi (11.264)

ρ
D�v

Dt
= �∇ · �T + ρ�f (11.265)

which is stated both in component and vector form.
We express the stress tensor in terms of the pressure p and the viscous stress tensor

τ ij as given in (11.253).

Cauchy’s equation of motion for a fluid with viscosity is given in tensor form and vector
form as

ρ
Dvi
Dt

= −p,i + τ ji,j + ρfi (11.266)

ρ
D�v

Dt
= −�∇p + �∇ · �τ + ρ�f (11.267)

Cauchy’s equation of motion can be written in divergence form by inserting (11.30). This
gives

∂ (ρ�v)

∂t
+ �∇ · (ρ�v�v) =− �∇p+ �∇ · �τ + ρ�f (11.268)

Example 183 The component form of Cauchy’s equation of motion (11.266) is

ρ
Dv1
Dt

= − ∂p

∂x1
+

∂τ11
∂x1

+
∂τ21
∂x2

+
∂τ31
∂x3

+ ρf1 (11.269)

ρ
Dv2
Dt

= − ∂p

∂x2
+

∂τ12
∂x1

+
∂τ22
∂x2

+
∂τ32
∂x3

+ ρf2 (11.270)

ρ
Dv3
Dt

= − ∂p

∂x3
+

∂τ13
∂x1

+
∂τ23
∂x2

+
∂τ33
∂x3

+ ρf3 (11.271)

Example 184 The momentum equation for a multi-component fluid is

ρ
D�v

Dt
= �∇ · �T +

nX
k=1

ρk
�fk (11.272)

We see that the only difference from a single-component fluid is in the term related to
the mass forces �fk.
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11.5.7 Newtonian fluids

The results that have been derived in the previous sections for the stress tensor are
kinematic and are valid for any fluid. The constitutive equations give expressions for
the stress tensor of a particular fluid. Fluids can be arranged in different classes of
fluids depending on which constitutive equations they satisfy. An example of this are
the Newtonian fluids, which include water and oil. It is shown that the insertion of
the viscous stress tensor of an incompressible Newtonian fluid in Cauchy’s equation of
motion leads to the Navier-Stokes equation.
Some notable fluids are not Newtonian. One example is blood, and another is the

mud used in oil drilling. Non-Newtonian fluids will not be further discussed, but it is
remarked that the equations of motion for such fluids can be obtained by inserting the
viscous stress tensor of the specific fluid into Cauchy’s equation of motion (11.266).

Newtonian fluids are fluids where the stress tensor is given by

�τ = λ
³
�∇ · �v

´
�I+2µ�E (11.273)

where λ and µ are the Lamé coefficients, and �E=eij�ai�aj is the rate of strain tensor
defined by (11.233).

The component form of the constitutive equation (11.273) is

τ ij = λvk,kδij + 2µeij (11.274)

We note that for a Newtonian fluid the stress tensor is symmetric, so that τ ji = τ ij . To
evaluate the term τ ji,j = τ ij,j in Cauchy’s equation of motion (11.266) we first calculate

eij,j =
1

2
(vi,j + vj,i),j =

1

2
(vi,jj + vj,ij) =

1

2
(vi,jj + vj,ji) (11.275)

This gives

τ ij,j = (λvk,kδij),j + 2µeij,j

= λvk,ki + µvj,ji + µvi,jj (11.276)

We may change indices in vj,ji by noting that j is a dummy index so that vj,ji = vk,ki.
This gives

τ ij,j = (λ + µ) vk,ki + µvi,jj (11.277)

In vector form this is written

�∇ · �τ = (λ + µ) �∇
³
�∇ · �v

´
+ µ�∇2�v (11.278)

Example 185 Let the velocity field be given by v = (cx22, 0, 0)
T , or equivalently, by

�v = cx22�a1 (11.279)

where �a1,�a2,�a3 are orthogonal unit vectors along the x1, x2, x3 axes of a Cartesian co-
ordinate frame. The position is given by x = (x1, x2, x3)

T . Then the velocity gradient
tensor is

�∇�v =

µ
�a1

∂

∂x1
+ �a2

∂

∂x2
+ �a3

∂

∂x3

¶
cx22�a1

= 2cx2�a2�a1 (11.280)
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The deformation tensor is the symmetric part of the velocity gradient tensor and is given
by

�E = cx2�a2�a1 + cx2�a1�a2 (11.281)

The divergence is found to be
�∇ · �v = 0 (11.282)

while the Laplacian is

�∇2�v =

µ
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

¶
cx22�a1 = 2c�a1 (11.283)

Then the viscous stress tensor is

�τ = 2µcx2�a2�a1 + 2µcx2�a1�a2 (11.284)

We see that the term �∇ · �τ in the equation of motion is given by
�∇ · �τ = µ�∇2�v = 2µc�a1 (11.285)

Consider the surface with the surface normal �n = �a2. Then the stress vector on that
surface is

�t(n) = �n · �τ = 2µcx2�a1 (11.286)

The stress vector is seen to be in the direction of the flow.

Example 186 It is common practice to use an assumption due to Stokes, which involves
setting the relation between the Lamé coefficients so that

λ +
2

3
µ = 0 (11.287)

We will explain the motivation for this relation. Denote the mean of the diagonal terms
of the stress tensor Tij by −p̄. By noting that the divergence is related to the diagonal
terms of the rate of strain tensor according to

�∇ · �v=vk,k = ekk (11.288)

we find that

−p̄ :=
1

3
Tii = −p+ (λ +

2

3
µ)ekk (11.289)

The reasoning that leads to (11.287) starts with the observation that for incompressible
fluids ekk = 0, which implies that p̄ = p. If it is assumed that (11.287) is valid, then
p̄ = p also for compressible fluids. More details on this is found in (Aris 1989).

Example 187 The constitutive equation for a Newtonian fluid originates from three
assumptions (Aris 1989): First it is assumed that the stress tensor is linear in the velocity
gradient tensor, which means that the viscous stress tensor can be written

τ ij = Nijklvk,l (11.290)

for some four-dimensional tensor Nijkl. Second, it is assumed that Nijkl is isentropic.
This implies that Nijkl can be expressed in terms of the Lamé parameters λ, µ and κ as

Nijkl = λδijδkl + µ(δikδjl + δilδjk) + κ(δikδjl − δilδjk) (11.291)

Third, symmetry is assumed in the sense that τ ij = τ ji, which implies that κ = 0. This
gives the constitutive equation for a Newtonian fluid as

λδijδkl + µ(δikδjl + δilδjk)vk,l = λδijvk,k + µ(vi,j + vj,i) (11.292)
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11.5.8 The Navier-Stokes equation

If it is assumed that a fluid is Newtonian, then the momentum equation in the form of
Cauchy’s equation of motion is found by inserting (11.278) into (11.266)

Cauchy’s equation of motion for a Newtonian fluid is given by

ρ
D�v

Dt
= −�∇p + (λ + µ)�∇

³
�∇ · �v

´
+ µ

³
�∇2�v

´
+ ρ�f (11.293)

We note that the tensor form is

ρ
Dvi
Dt

= −p,i + (λ + µ) vk,ki + µvi,jj + ρfi (11.294)

We may write this out in each of the three orthogonal directions as

ρ
Dv1
Dt

= − ∂p

∂x1
+ (λ + µ)

∂

∂x1

³
�∇ · �v

´
+ µ

³
�∇2�v

´
+ ρf1 (11.295)

ρ
Dv2
Dt

= − ∂p

∂x2
+ (λ + µ)

∂

∂x2

³
�∇ · �v

´
+ µ

³
�∇2�v

´
+ ρf2 (11.296)

ρ
Dv3
Dt

= − ∂p

∂x3
+ (λ + µ)

∂

∂x3

³
�∇ · �v

´
+ µ

³
�∇2�v

´
+ ρf3 (11.297)

The divergence form of momentum equations for a Newtonian fluid is found to be

∂ (ρ�v)

∂t
+ �∇ · (ρ�v�v) = −�∇p+ (λ+ µ)�∇

³
�∇ · �v

´
+ µ�∇2�v + ρ�f (11.298)

or, in tensor form,

∂ (ρvi)

∂t
+ (ρvivj),j = −p,i + (λ + µ)vk,ki + µvi,jj + ρfi (11.299)

In the incompressible case the divergence of the velocity is zero, and the equation of
motion is found by inserting �∇ · �v = 0 into (11.293). This leads to the Navier-Stokes
equation.

Cauchy’s equation of motion for an incompressible Newtonian fluid is given by

ρ
D�v

Dt
= −�∇p+ µ�∇2�v + ρ�f (11.300)

This is the classical Navier-Stokes equation

The tensor form of the classical Navier-Stokes equation is

ρ
Dvi
Dt

= −p,i + µvi,jj + ρfi (11.301)

The Euler equation for inviscid flow appears by setting the viscous forces to zero by
inserting µ = 0. Control of the Navier-Stokes equation is treated in great detail in
(Aamo and Krstíc 2003).
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Example 188 Insertion of the identity

�∇2�v = �∇
³
�∇ · �v

´
− �∇×

³
�∇× �v

´
(11.302)

gives the alternative form

ρ
D�v

Dt
= −�∇p + (λ+ 2µ)�∇

³
�∇ · �v

´
− µ�∇×

³
�∇× �v

´
+ ρ�f (11.303)

of the momentum equations for a Newtonian fluid. It is interesting to note how the
divergence �∇ · �v and the curl �∇ × �v of the velocity appear in the two terms due to the
stress tensor. If the fluid is incompressible, then the divergence term is zero, and if there
is potential flow, then the curl term is zero.

Example 189 In cylindrical coordinates the Navier-Stokes equation is found by applying
the results of Section 10.3.2 to the coordinate-free form

ρ
D�v

Dt
= −�∇p+ µ�∇2�v + ρ�f (11.304)

of (11.300) where
�v = vr�jr + vθ�jθ + vz�jz (11.305)

and

�∇ = �jr
∂

∂r
+
�jθ
r

∂

∂θ
+�jz

∂

∂z
(11.306)

This results in

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z
− v2θ

r
= −1

ρ

∂p

∂r

+
µ

ρ

µ
∂2vr
∂r2

+
1

r2
∂2vr

∂θ2
+

∂2vr
∂z2

+
1

r

∂vr
∂r
− 2

r2
∂vθ
∂θ
− vr

r2

¶
(11.307)

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

= − 1

ρr

∂p

∂θ

+
µ

ρ

µ
∂2vθ
∂r2

+
1

r2
∂2vθ

∂θ2
+

∂2vθ
∂z2

+
1

r

∂vθ
∂r

+
2

r2
∂vr
∂θ
− vθ

r2

¶
(11.308)

∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

= −1

ρ

∂p

∂z

+
µ

ρ

µ
∂2vz
∂r2

+
1

r2
∂2vz

∂θ2
+

∂2vz
∂z2

+
1

r

∂vz
∂r

¶
(11.309)

Further details on the systematic derivation of these equations are found in (Aris 1989)
where also results for spherical coordinates are presented.

11.5.9 The Reynolds number

The Navier-Stokes equation can be made dimensionless by using the dimensionless vari-
ables

v∗ =
v

U
, x∗ =

x

L
, t∗ =

tU

L
, p∗ =

p

ρU2
, ∇∗ = ∇L, f∗ =

fL

U2
(11.310)
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where U is a characteristic velocity and L is a characteristic length. This gives

ρ
Dv∗

Dt∗
U2

L
= −∇∗p∗ ρU

2

L
+ µ (∇∗)2 v∗

U

L2
+ ρf∗

U

L2
(11.311)

which simplifies to
Dv∗

Dt∗
= −∇∗p∗ + f∗ +

1

Re
(∇∗)2 v∗ (11.312)

where Re is the Reynolds number given by

Re =
UL

ν
(11.313)

and
ν =

µ

ρ
(11.314)

is the kinematic viscosity. It is seen from (11.312) that the Reynolds number indicates
the relative importance of viscosity compared to inertial forces.

11.5.10 The equation of kinetic energy

The kinetic energy 1
2ρv

2 is not a conserved quantity. However, an equation for the kinetic
energy can be found from the momentum equation by observing that

ρ
D

Dt

µ
1

2
�v2
¶

= �v ·
µ
ρ
D�v

Dt

¶
(11.315)

This means that the equation for the kinetic energy can be found by premultiplying
Cauchy’s equation of motion (11.267) by �v, which gives

ρ
D

Dt

µ
1

2
�v2
¶

= ρ�v · �f − �v · �∇p+ �v ·
³
�∇ · �τ

´
(11.316)

= ρvifi − vip,i + τ ij,ivj (11.317)

In the last term on the right hand side we have interchanged the i and j index, which is
possible as the term is a scalar, so that viτ ji,j = τ ij,ivj .
From the product rule of differentiation of products it is straightforward to verify the

expression
(τ ijvj),i = τ ij,ivj + τ ijvj,i (11.318)

The vector form of (11.318) is not quite as simple to derive, but we state the result,
which is

�∇ · (�τ · �v) = �v ·
³
�∇ · �τ

´
+ �τ :

³
�∇�v
´

(11.319)

where : is the double dot product defined for four vectors �u,�v, �w, �z by

�u�v : �w�z = (�u · �w) (�v · �z) (11.320)

For two dyadics �D = dij�ai�aj and �E = eij�ai�aj this gives

�D : �E = dijeij (11.321)

For matrix representations D = {dij} and E = {eij} the double dot product is defined
in the same way as the scalar D : E =dijeij .
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Equation (11.319) is verified in a Cartesian frame a by the dyadic computations

�∇ · (�τ · �v) =
∂

∂xk
�ak · τ ijvj�ai =

∂

∂xi
(τ ijvj) = (τ ijvj),i (11.322)

�v ·
³
�∇ · �τ

´
= vl�al ·

µ
∂

∂xk
�ak · τ ij�ai�aj

¶
=

∂τ ij
∂xi

vj = τ ij,ivj (11.323)

�τ :
³
�∇�v
´

= τdij�ai�aj :
∂vl
∂xk

�ak�al = τ ij
∂vj
∂xi

= τ ijvj,i (11.324)

To complete the discussion we mention that the matrix formulation of the result can be
shown on the component level to be

∇T (τv) =
³
∇Tτ

´
v + τ :

³
∇vT

´
(11.325)

where at least the second term on the right side is not obvious in a derivation based on
the use of the matrix notation.
Combination of (11.319) and (11.316) gives the following result:

The equation for the kinetic energy can be written

ρ
D

Dt

µ
1

2
�v2
¶

| {z }
rate of change

in kinetic energy

for material

volume element

= ρ�v · �f| {z }
work of body

forces on volume

element

− �∇ · (p�v)| {z }
pressure work

on volume

element surface

+ p
³
�∇ · �v

´
| {z }
reversible

conversion

to internal

energy

+ �∇ · (�τ · �v)| {z }
viscous work

on surface of

volume element

− �τ :
³
�∇�v
´

| {z }
irreversible viscous

conversion to

internal energy

(11.326)

Using the divergence theorem we find that the integral for of the equation for kinetic
energy is

D

Dt

ZZZ
Vc

ρ

2
�v2dV =

ZZZ
Vc

h
ρ�v · �f + p

³
�∇ · �v

´
− �τ :

³
�∇�v
´i

dV+

ZZ
∂Vc

�v·(−p�n + �n · �τ) dA

Example 190 Still another expression for the left hand side of (11.326) is found from
(11.24):

ρ
D

Dt

µ
1

2
�v2
¶

= ρ

·
∂

∂t

µ
1

2
v2
¶

+ �∇ ·
µ

1

2
�v2
¶
�v

¸
(11.327)

Example 191 For a Newtonian fluid the stress tensor is symmetric, and the term τ :³
∇vT

´
= τ : E is found to be positive from the calculation

�τ :
³
�∇�v
´

= λ
³
�∇ · �v

´
�I : �E + 2µ�E : �E

= λ (eii)
2 + 2µeijeij (11.328)

which clearly shows that �τ :
³
�∇�v
´
≥ 0.
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Example 192 Let the velocity field be given by v = (cx22, 0, 0)
T , or equivalently, by

�v = cx22�a1 (11.329)

where �a1,�a2,�a3 are orthogonal unit vectors along the x1, x2, x3 axes of a Cartesian coor-
dinate frame. The position is given by x = (x1, x2, x3)

T . Then the deformation tensor
is

�E = cx2�a2�a1 + cx2�a1�a2 (11.330)

irreversible conversion to internal energy is found from (11.328) to be

�τ :
³
�∇�v
´

= λ (eii)
2 + 2µeijeij = 4µc2x22 (11.331)

which clearly is nonnegative. The viscous work on the surface corresponds to the diver-
gence term

�∇ · (�τ · �v) =

µ
∂

∂x1
�a1 +

∂

∂x2
�a2 +

∂

∂x3
�a3

¶
· (2µcx2�a2�a1 + 2µcx2�a1�a2) · cx22�a1

=

µ
∂

∂x1
�a1 +

∂

∂x2
�a2 +

∂

∂x3
�a3

¶
· 2µc2x32�a2

= 6µc2x22 (11.332)

Example 193 If the stress tensor Tij is symmetric, then

Tjivi,j =
1

2
(Tjivi,j + Tijvj,i) = Tijeij (11.333)

where eij is the rate of strain tensor. This gives

�T :
³
�∇�v
´

= �T : �E, �T symmetric (11.334)

11.5.11 The energy balance for a viscous fluid

The material time derivative of the total energy in a volume V is equal to the heat flow
into the volume due to the heat flux density �jQ plus the power added from the contact
stress

�t(n) = −p�n + �n · �τ (11.335)

acting on the surface. This is written

D

Dt

ZZZ
V

ρedV = −
ZZ

∂V

p�v · �ndA +

ZZ
∂V

�v · (�n · �τ) dA−
ZZ

∂V

�jQ · �ndA (11.336)

The volume V is arbitrary, and it follows from the divergence theorem that

ρ
De

Dt

µ
u +

1

2
�v2 + φ

¶
| {z }
rate of change

in internal, kinetic

and potential energy

for material

volume element

= − �∇ · (p�v)| {z }
pressure work

on the surface of

the volume element

+ �∇ · (�τ · �v)| {z }
viscous work

on the surface of

the volume element

− �∇ ·�jQ| {z }
heat

conduction
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Example 194 The equation for the internal energy is found by subtracting (11.326)
from this equation, which gives

ρ
Du

Dt| {z }
rate of change

in internal energy

for material

volume element

= − p
³
�∇ · �v

´
| {z }
reversible

conversion

to internal

energy

+ �τ :
³
�∇�v
´

| {z }
irreversible viscous

conversion to

internal energy

− �∇ ·�jQ| {z }
heat

conduction

(11.337)

11.5.12 Fixed volume

If the volume Vf is fixed then Reynolds’ transport theorem (10.90) gives

d

dt

ZZZ
Vf

ρedV =
D

Dt

ZZZ
Vf

ρedV −
ZZ

∂Vf

ρe�v · �ndA (11.338)

Insertion of (11.336) gives the result

d

dt

ZZZ
Vf

ρedV = −
ZZ

∂Vf

ρ

µ
e+

p

ρ

¶
�v · �ndA +

ZZ
∂Vf

�v · (�n · �τ) dA−
ZZ

∂Vf

�jQ · �ndA
(11.339)

where the first term on the right side is the convected energy plus the pressure work on
the volume. Then the energy balance can be written

d

dt

ZZZ
Vf

ρ

µ
u +

1

2
�v2 + φ

¶
dV| {z }

rate of change

of energy

in fixed volume

= −
ZZ

∂Vf

ρ

µ
h+

1

2
�v2 + φ

¶
�v · �ndA| {z }

convected enthalpy,

kinetic energy and

potential energy

+

ZZ
∂Vf

�v · (�τ · �n) dA| {z }
viscous work

on volume surface

−
ZZ

∂Vf

�jQ · �ndA| {z }
heat

conduction

(11.340)

Note that in the convection term the enthalpy h enters in place of the internal energy u
as the pressure work is included in the convection term.

11.5.13 General control volume

For a general control volume V Reynolds’ transport theorem (10.88) gives

d

dt

ZZZ
Vc

ρedV =
D

Dt

ZZZ
Vc

ρedV −
ZZ

∂Vc

ρe (�v − �vc) · �ndA (11.341)

From equation (11.336) we then find that

d

dt

ZZZ
Vc

ρedV = −
ZZ

∂Vc

ρ

µ
e+

p

ρ

¶
(�v − �vc) · �ndA−

ZZ
∂Vc

p�vc · �ndA

+

ZZ
∂Vc

�v · (�n · �τ) dA−
ZZ

∂Vc

�jQ · �ndA (11.342)
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where the first term on the right side is the convected energy plus the pressure work on
the volume. Insertion of h = u + p/ρ gives

d

dt

ZZZ
Vc

ρ (e) dV| {z }
rate of change

of energy

in control volume

=−
ZZ

∂Vc

ρ

µ
h+

1

2
�v2 + φ

¶
(�v − �vc) · �ndA| {z }

convected enthalpy,

kinetic energy and

potential energy

−
ZZ

∂Vc

p�vc · �ndA| {z }
pressure work

due to change in

control volume

+

ZZ
∂Vc

�v · (�τ · �n) dA| {z }
viscous work

on volume surface

−
ZZ

∂Vc

�jQ · �ndA| {z }
heat

conduction

(11.343)

Note that the velocity in the convection term is �v − �vc which is the particle velocity
relative to the surface of the control volume Vc.



Chapter 12

Gas dynamics

12.1 Introduction
The balance equations must be combined with thermodynamic results in the modeling
of systems where gas flow plays an important part. This is the case in the modeling of
engines, gas turbines and compressors, and for pipeline dynamics in the production and
transport of oil and gas. Engines, turbines and compressors are designed so that losses
due to viscosity and heat conduction are kept at a minimum. It will be shown in the
following that such losses will be associated with the generation of entropy in the system.
Because of this a well designed and optimized system will typically have gas dynamics that
are close to isentropic. On background of this observation the concept of isentropic gas
dynamics will be developed in the beginning of this chapter, and the results on isentropic
gas dynamics will be used to formulate balance equations for important systems with gas
dynamics.

12.2 Energy, enthalpy and entropy

12.2.1 Energy

We consider a gas of mass m in a control volume V . The energy of the gas in the mass
element dm is called the specific energy e, which is supposed to be given by

e = u +
1

2
�v2 + φ (12.1)

where u is the specific internal energy , 12�v
2 is the specific kinetic energy , and φ is the

specific potential energy. The energy E of the total volume is given by

E =

ZZZ
V

eρdV =

ZZZ
V

uρdV +

ZZZ
V

1

2
�v2ρdV +

ZZZ
V

φρdV (12.2)

= U +K +Φ (12.3)

where U is the internal energy, K is the kinetic energy and Φ is the potential energy.

12.2.2 Enthalpy

Enthalpy appears in convection terms in the energy balance to account for the convection
of internal energy plus pressure work. This is seen in Example 169 and in equation

465
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(11.343). The specific enthalpy is of great importance in gas flow problems where both
internal energy and pressure work appear. This is the case in the modeling of compressors
and turbines used in turbochargers, jet engines and power plants, and in the description
of pipelines for gas transport. Note that enthalpy is not a conserved quantity.
The inverse of density ρ appears in many equations, and it is customary to define the

specific volume V̂ as volume per mass unit, which is the inverse of density. In accordance
with the notation used for other specific quantities, we would have liked to use v for
specific volume, but we already used v for velocity. Therefore we use the notation

V̂ =
1

ρ
(12.4)

The specific enthalpy is defined by

h = u + pV̂ (12.5)

where V̂ = 1/ρ is the specific volume. Enthalpy is not a conserved quantity.

From the definition of specific enthalpy (12.5) we see that

dh = du + pdV̂ + V̂ dp (12.6)

12.2.3 Specific heats

The internal energy for an ideal gas is a function of the temperature, and we define the
specific heat cv(T ) by

du = cv(T )dT (12.7)

In many cases cv(T ) will be a constant, and in that case a change in the specific internal
energy is given by

∆u = cv∆T (12.8)

For an ideal gas we have pV̂ = RT , where R is the universal gas constant, and it
follows that

h = u +RT, ideal gas (12.9)

This implies that also the specific enthalpy will be a function of temperature for an ideal
gas. We define the specific heat cp(T ) by

dh = cp(T )dT (12.10)

From (12.9) is follows that

dh = du +RdT, ideal gas (12.11)

and, consequently, for any gas that satisfy the ideal gas law we have the relation

cp(T ) = cv(T ) +R, ideal gas (12.12)

If cv(T ) is a constant, then a change in enthalpy is given by

∆h = cp∆T (12.13)

We define κ to be the ratio between cp and cv:

κ :=
cp
cv

(12.14)

The numerical value for air is κ = 1.4.
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Example 195 For an ideal gas we have the following useful expressions:

R

cv
=

cp − cv
cv

=

cp
cv
− 1

1
= κ− 1, ideal gas (12.15)

and
R

cp
=

cp − cv
cp

=

cp
cv
− 1
cp
cv

=
κ− 1

κ
, ideal gas (12.16)

12.2.4 Entropy

The concept of entropy provides us with a number of useful modeling tools for thermody-
namic systems. The reason for this is that in engines, turbines and compressors, entropy
can be seen as a book-keeping tool for certain energy-loss phenomena. In particular, if a
component is designed so that no entropy is being generated in connection with gas flow,
then this means that there is no energy loss due to viscosity or heat conduction. This
will be highly desirable for most system components as this will typically imply that the
thermal efficiency is high. If a process is designed so that no entropy is being generated,
then the process is said to be isentropic. The design of systems that are isentropic or
close to isentropic will therefore be the goal of the mechanical design. Then, as a suc-
cessful design will be isentropic or close to isentropic, it can often be assumed in the
development of the dynamic modeling that the gas flow is isentropic. This is very useful
in the development of the balance equations. It is interesting to note that in this context,
the important question for the control engineer is whether entropy is being generated or
not, while the absolute value of the entropy is not an issue. Therefore, we will describe
entropy in terms of its differential, and we will not be concerned about its absolute value.
The entropy of a mass element dm is called the specific entropy and is denoted s.

The specific entropy is defined in terms of its differential ds by

Tds = du + pdV̂ (12.17)

Combination of this definition and (12.6) gives the following alternative expression:

Tds = dh− V̂ dp (12.18)

12.2.5 The entropy equation

The entropy equation which will be derived in this section is quite interesting, as it
gives a mathematical formulation of the second law of thermodynamics. This material
is included to make it easier for the reader to understand the physical interpretation of
entropy in the setting of the present chapter. The entropy equation is derived using the
mass balance and the equation for internal energy. In addition, the derivation relies on
the fact that certain forms of energy transfer can only run in one direction. In particular,
heat flow is always in the direction of decreasing temperature, and internal work due to
viscosity in combination with velocity gradients will always lead to a reduction of kinetic
energy and an increase of internal energy.
From the definition (12.17) of entropy we have

T
Ds

Dt
=

Du

Dt
+ p

DV̂

Dt
(12.19)



468 CHAPTER 12. GAS DYNAMICS

The continuity equation (11.5) gives

ρ
DV̂

Dt
= ρ

D

Dt

µ
1

ρ

¶
= −1

ρ

Dρ

Dt
=
³
�∇ · �v

´
(12.20)

Insertion of this equation and (11.337) into (12.19) gives the following form of the entropy
equation:

ρ
Ds

Dt| {z }
rate of change

in entropy in

material volume

element

= − 1

T
�∇ · j̇Q| {z }

change in entropy

due to heat

conduction

+
1

T
�τ :
³
�∇�v
´

| {z }
increase in entropy

from irreversible

viscous dissipation

(12.21)

This can be further developed into a formulation which offers a more detailed inter-
pretation by applying the product rule for differentiation to the first term on the right
side.

This entropy equation is given by

ρ
Ds

Dt| {z }
rate of change

in entropy in

material volume

element

= − �∇ ·
Ã
�jQ
T

!
| {z }

change in entropy

due to heat flow

− 1

T 2
�jQ · �∇T| {z }

increase in entropy

due to heat

conduction within

volume element

+
1

T
�τ :
³
�∇�v
´

| {z }
increase in entropy

from irreversible

viscous dissipation

within volume element

(12.22)
The physical interpretation offered in the equation is supported by the integral form

D

Dt

ZZZ
V

ρsdV = −
ZZ

∂V

Ã
�jQ
T

!
· �ndA+

ZZZ
V

µ
− 1

T 2
�jQ · �∇T +

1

T
�τ :
³
�∇�v
´¶

dV

(12.23)

An illustration of the different phenomena is given in Figure 12.1. The heat generation
�τ : (�∇�v) due to viscous dissipation of mechanical energy will always be positive. Moreover,
it has been established that the heat flow will always have a negative component along
the temperature gradient. These two results are summed up as

�τ :
³
�∇�v
´
≥0, �jQ · �∇T ≤ 0 (12.24)

Using the inequalities of (12.24) we then get the Clausius-Duhem inequality (Lin and
Segel 1974) which we state both in differential and integral form:

ρ
Ds

Dt
≥ −�∇ ·

Ã
�jQ
T

!
(12.25)

D

Dt

ZZZ
V

ρsdV ≥ −
ZZ

∂V

Ã
�jQ
T

!
· �ndA (12.26)

The Clausius-Duhem inequality is often referred to as the second law of thermodynamics.
Note, however, that a more precise formulation of the second law of thermodynamics is
either of the equations (12.22) or (12.23) together with (12.24).
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jQ
T

V,,s

1
T  : v  jQ

T2  T

Figure 12.1: The rate of change of entropy in the material control volume V depends on
the entropy flow jQ/T into the material volume due to heat flow over the boundary, and
on the internal entropy production terms −jTQ∇T/T 2 and τ : ∇vT /T , where the first
term is related to temperature gradients and heat flow, and the second term is due to
velocity gradients in combination with viscosity.

  

 

V,,s

 : 
v
T 

jQT
T2

Figure 12.2: Isolated tank of volume V . The internal entropy production terms are
indicated.

Example 196 Consider a constant control volume V (Figure 12.2) filled with gas and
with no exchange of gas with the outside. The walls of the volume are assumed to be
isolated so that there is no heat conduction over the boundary ∂V . Then (12.26) give

D

Dt

ZZZ
V

ρsdV ≥ 0 (12.27)

which shows that the total entropy is constant or increasing. This result can be made
more precise by using equation (12.23) which gives

D

Dt

ZZZ
V

ρsdV = −
ZZZ

V

1

T 2
�jQ · �∇TdV +

ZZZ
V

1

T
�τ :
³
�∇�v
´
dV (12.28)

We see from this equation and (12.24) that the entropy of the gas in an isolated tank
with no gas exchange with the outside cannot decrease, and that the entropy will increase
if there are either temperature gradients �∇T , or velocity gradients �∇�v.
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jQ

V

wi

,V

m,T

wo

Figure 12.3: Cylinder with variable volume V due to a moving piston. The inlet mass
flow in wi, the outlet massflow is wo, and the heat flow into the volume is jQ.

Example 197 In Fourier’s law of heat conduction

�jQ = −k�∇T (12.29)

the heat flow is proportional to the negative temperature gradient. This gives

�jQ · �∇T = −k
³
�∇T
´2

(12.30)

which clearly is negative.

12.2.6 Internal energy equation in terms of temperature

We consider a cylinder of variable volume V = Ax filled with an ideal gas. The tem-
perature T and the pressure p are assumed to be constant over the volume. Gas with
temperature Ti and pressure pi is flowing into the volume with mass flow wi = ρiqi,
where qi is the volumetric flow and ρi is the density. Gas is flowing out of the volume
with mass flow wo = ρqo where qo is the volumetric flow out of the volume. The mass
balance is

d

dt
m = wi − wo (12.31)

We assume that the kinetic and potential energy is zero so that E = U = mu. Then the
energy balance is

d

dt
(mu) = hiwi − hwo − pAẋ + jQ (12.32)

where jQ is the heat flow. We assume that cv and cp are constants, so that u = cvT and
h = cpT . This gives

dm

dt
cvT +mcvṪ = cpTiwi − cpTwo − pAẋ+ jQ (12.33)
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Insertion of the mass balance (12.31) gives

cvT (wi − wo) +mcvṪ = cpTiwi − cpTwo − pAẋ + jQ (12.34)

which leads to

mcvṪ = cpwiTi − [cvwi + (cp − cv)wo]T − pAẋ + jQ (12.35)

Finally, it is noted that for an ideal gas, pV = mRT , and therefore pA = mRT/x.
Insertion of this and the use of (12.15) leads to the energy balance in the form

Ṫ =
κwi

m
Ti − wi + (κ− 1)wo

m
T − (κ− 1)

ẋ

x
T +

1

mcv
jQ (12.36)

12.2.7 Energy balance in terms of pressure

For an ideal gas with constant cv the internal energy can be written

U = mcvT =
cv
R
pV =

1

κ− 1
pV. (12.37)

The energy balance is assumed to be

dU

dt
= hiwi − hwo − pAẋ + jQ (12.38)

and we get
1

κ− 1

³
ṗV + pV̇

´
= hiwi − hwo − pAẋ + jQ (12.39)

which is simplified to

ṗV = (κ− 1) (hiwi − hwo + jQ)− κpAẋ. (12.40)

The specific enthalpy can be written

h = cpT =
cp
R
pV̂ =

κ

κ− 1
pV̂ (12.41)

which gives

ṗV = κ
³
piV̂iwi − pV̂ wo

´
+ (κ− 1) jQ − κpAẋ (12.42)

We introduce the input volumetric flow qi = V̂iwi and the output volumetric flow qo =
V̂ wo and get the expression

ṗ = −κqo
V
p+ κ

qi
V
pi − κ

ẋ

x
p+ (κ− 1)

jQ
V
. (12.43)

Example 198 An alternative way of writing this is

V

κp
ṗ = −qo + qi

pi
p
−Aẋ +

(κ− 1)

κp
jQ (12.44)

which is reminiscent of the mass balance for a hydraulic control volume.
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12.2.8 Piston motion

The equation of motion for the piston is

mpẍp = pA− FL (12.45)

where FL is the load force. Suppose that the piston is connected to a crankshaft with
a rod, and that the kinematic relation between the piston velocity ẋ and the crankshaft
velocity ωcs is given by

ẋ = r(θcs)ωcs (12.46)

where θcs is the crankshaft angle. Then the equation of motion for the crankshaft is

Jω̇cs = Fr(θ)− TL (12.47)

where TL is the load torque. The crankshaft is a mechanical two-port where one port
has input F and output ωcs, and one port with input TL and output ωcs.
Flexibility in the crankshaft can easily be included. This is done by inserting an

elastic transmission and an inertia which is modelled as a mechanical two-port given by

J1ω̇1 = TL − T1 (12.48)

TL = D1 (ωm − ω1) +K1 (θm − θ1) . (12.49)

where ω1 is the shaft speed of the load shaft. This means that the transmission is
modelled as a torsional spring with spring constantK1 in parallel with a torsional damper
with damping coefficient D1. The input port has effort TL and flow ωm, while the output
port has effort T1 and flow ω1.

12.3 Isentropic conditions

12.3.1 Isentropic processes

Isentropic processes are important in a wide range of applications. Isentropic processes
are processes where there is no entropy production in the sense that ds = 0. In view
of (12.21) isentropic processes can occur if there is no heat conduction and no internal
viscous work. From (12.17) and (12.18) we see that ds = 0 implies

du = −pdV̂ (12.50)

dh = V̂ dp (12.51)

For gases that satisfy the ideal gas law pV̂ = RT , this can be written

cv(T )dT = −RT
V̂

dV̂ (12.52)

cp(T )dT =
RT

p
dp (12.53)

which leads to

dT

T
= − R

cv(T )

dV̂

V̂
(12.54)

dT

T
=

R

cp(T )

dp

p
(12.55)
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In view of (12.15) and (12.16) this gives the differential isentropic relations

dT

T
= − [κ(T )− 1]

dV̂

V̂
(12.56)

dT

T
=

κ(T )− 1

κ(T )

dp

p
(12.57)

and, by combination of the two equations, the differential isentropic relation

dp

p
= −κ(T )

dV̂

V̂
(12.58)

Consider the differential equation

dx

x
= a

dy

y
⇒ lnx = a ln y + C1 ⇒ elnx = C

¡
eln y

¢a
(12.59)

⇒ x = Cya (12.60)

Thus, if x1 = Cya1 is one solution, then the constant c is found from C = x1/y
a
1 , and any

solution x2 = Cya2 must satisfy
x2
x1

=

µ
y2
y1

¶a
(12.61)

A reasonable assumption is that κ is a constant. Then we see from this derivation
that (12.56, 12.57, 12.58) leads to the isentropic relations

T1
T2

=

Ã
V̂2

V̂1

!κ−1
(12.62)

T1
T2

=

µ
p1
p2

¶κ−1
κ

(12.63)

p1
p2

=

Ã
V̂2

V̂1

!κ

(12.64)

Example 199 The identity ρV̂ = 1 implies

dρ

ρ
= −dV̂

V̂
(12.65)

For isentropic processes (12.58) gives

dp = κ(T )
p

ρ
dρ (12.66)

For an ideal gas this leads to the result

dp = c2dρ (12.67)

where c =
√
κRT , which we will see is the speed of sound.
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Example 200 The mass balance of a gas flowing through a fixed volume V with mass
flow win into the volume and mass flow wout out of the volume is

V ρ̇ = win − wout (12.68)

where ρ is the density of the gas. If the gas is ideal and the conditions are isentropic,
then (12.67) applies, and the mass balance becomes

V

c2
ṗ = win − wout (12.69)

12.3.2 Stagnation state

In the modeling of flow the concept of a stagnation state is useful. The stagnation state
is characterized by a stagnation velocity v0 = 0, the specific stagnation enthalpy h0, the
stagnation temperature T0, and the stagnation pressure p0.
The specific stagnation enthalpy

h0 = h +
v2

2
(12.70)

is defined as the sum of the specific enthalpy h and the specific kinetic energy v2/2. The
stagnation temperature T0 is the temperature corresponding to the specific stagnation
enthalpy h0 in the sense that

T0 − T =
h0 − h

cp
(12.71)

when cp is constant. The stagnation pressure p0 is defined by

p0
p

=

µ
T0
T

¶ κ
κ−1

(12.72)

From the definitions (12.71) and (12.72) it it seen that the stagnation temperature and
the stagnation pressure can be found from

T0 = T +
v2

2cp
, p0 = p

µ
1 +

v2

2cpT

¶ κ
κ−1

(12.73)

If a fluid with enthalpy h, temperature T , pressure p and velocity v is slowed down
to zero velocity in an isentropic process, then the gas will be in the stagnation state
with stagnation velocity v0 = 0, stagnation enthalpy h0, stagnation temperature T0,
and stagnation pressure p0. To make a clear distinction between the pressure p and the
stagnation pressure p0 it is customary to refer to p as the static pressure.

12.3.3 Energy balance for isentropic processes

In this section we investigate which condition that must be fulfilled for the energy balance
to describe an isentropic process. We start with the relation

dT = − p

cv
dV̂ (12.74)

which follows from Tds = cvdT + pdV̂ = 0. Division with dt gives

Ṫ = − p

cv

d

dt

µ
V

m

¶
= − p

mcv
V̇ +

pV

m2cv
ṁ (12.75)
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Then the ideal gas law pV = mRT gives

Ṫ = (κ− 1)

Ã
ṁ

m
− V̇

V

!
T (12.76)

The energy balance (12.36) satisfies this equation if the heat flux jQ is zero, and the tem-
perature of the mass flow into the volume has the same temperature as the temperature
in the volume.

12.3.4 The speed of sound

The derivation of the speed of sound is based on the following mass and momentum
balances for a differential control volume:

∂ρ

∂t
= −�∇ · (ρ�v) (12.77)

ρ
D�v

Dt
= −�∇p (12.78)

The change of variable in the first equation from ρ to p requires an expression for dp as
a function of dρ. This is obtained by assuming isentropic conditions. For an ideal gas
the ideal gas law p = ρRT under isentropic conditions leads to

dp = κRTdρ (12.79)

This gives
∂p

∂t
= −κRT �∇ · (ρ�v) (12.80)

Linearization around
³
ρ0, T0, �v0 = �0

´
gives

∂p

∂t
= −c2ρ0�∇ · �v (12.81)

ρ0
∂�v

∂t
= −�∇p (12.82)

where c2 = κRT0. Then, time differentiation of the linearized pressure equation gives

∂2p

∂t2
= −c2ρ0

∂

∂t

³
�∇ · �v

´
= −c2�∇ · ρ0

∂�v

∂t

Insertion of the linearized velocity equation gives the wave equation

∂2p

∂t2
= c2�∇2p (12.83)

where c =
√
κRT0.

d’Alembert’s solution of the wave equation (12.83) (Kreyszig 1979) is in the form

p(x, t) = f (x+ ct) + g (x− ct) (12.84)
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where f (x + ct) + g (x− ct) are required to satisfy initial conditions and boundary con-
ditions. To verify that this is a solution to the wave equation we calculate

∂2

∂t2
[f (x + ct) + g (x− ct)] = c2 [f 00 (x + ct) + g00 (x− ct)] (12.85)

and
∂2

∂x2
[f (x + ct) + g (x− ct)] = f 00 (x + ct) + g00 (x− ct) (12.86)

The function f (x + ct) can be interpreted as a wave that goes in the negative x direction
with velocity −c, while g(x− ct) can be interpreted as a wave moving in the positive x
direction with velocity c. From this we can conclude that the speed of sound is equal
to c =

√
κRT . For air at 15 degrees Centigrade this gives 340 m/s, which agrees with

experimental data.

Example 201 In the works of Sir Isaac Newton the speed of sound was derived under
conditions that correspond to isothermal conditions. For ideal gases this gives dp = RTdρ
and the wave equation becomes

∂2p

∂t2
= c̄2�∇2p (12.87)

The speed of sound according to this result is c̄ =
√
RT , which for air at 15 degrees

Centigrade gives 287 m/s. This was is not in agreement with what was observed in
experiments.

12.3.5 Helmholtz resonator

V
p  RT

L,A

w

Figure 12.4: Helmholtz resonator

A Helmholtz resonator is a pipe of length L and cross section A which is open at one
end, and which is connected to a volume V , called the plenum, at the other end. This
is shown in Figure 12.4. It is assumed that the compressibility effects in the pipe are
negligible, which means that it is assumed that the pressure p and the mass flow w do
not vary along the pipe. Further, it is assumed that the velocity in the plenum can be
approximated by zero. This means that the conditions in the plenum are isentropic. This
implies dp = c2dρ where c =

√
κRT is the sonic speed. The dynamics of the Helmholtz
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resonator is derived from the mass balance of the plenum and the momentum balance of
the pipe. The model is found to be

V

c2
dp

dt
= w (12.88)

L
dw

dt
= −pA (12.89)

The model can be further developed by differentiating the mass balance with respect
to time, and by inserting the momentum balance. This gives

d2p

dt2
+ ω2Hp = 0 (12.90)

Here ωH is the Helmholtz frequency defined by

ωH = c

r
A

V L
(12.91)

Example 202 Consider a Helmholtz resonator with a pressurizing device on the input
that supplies air at a mass flow w with a pressure p1 = p1(w). In addition, air is flowing
out of the plenum with mass flow w2 = w2(p). The model is then

dp

dt
=

c2

V
[w − w2(p)] (12.92)

dw

dt
=

A

L
[p1(w)− p] (12.93)

Linearization gives

d∆p

dt
=

c2

V
∆w − c2

V

dw2
dp
∆p (12.94)

d∆w

dt
= −A

L
∆p +

A

L

dp1
dw
∆w (12.95)

For simplicity it is assumed that dw2/dp ≈ 0. Then the characteristic equation is

λ2 − A

L

dp1
dw

λ+ ω2H = 0 (12.96)

It is clear that the system will be stable if dp1/dw ≤ 0. Therefore, if p1(w) has a positive
slope, then the system becomes unstable (Figure 12.5).

12.4 Acoustic resonances in pipes

12.4.1 Dynamic model

Acoustic waves for an ideal gas are described by the wave equation

∂2p

∂t2
= c2∇2p (12.97)

where c =
√
κRT under the assumption of isentropic conditions. This is derived as for

fluids. The wave variables defined in Section 4.5.7 will satisfy the transfer functions
equations

a2(s) = exp(−Ts)a1(s), b1(s) = exp(−Ts)b2(s) (12.98)
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Unstable
region

Stable
region

p 1

w

Figure 12.5: Pressure p1 as a function of massflow w. The unstable and stable regions
are indicated.

and the boundary conditions

a1(s) = g1(s)b1(s), b2(s) = g2(s)a2(s) (12.99)

Combining these equations we get

[1− exp (−2Ts) g1(s)g2(s)] a1(s) = 0 (12.100)

12.4.2 Pipe closed at both ends

We consider acoustic waves in a pipe of length c, and describe the dynamics of the gas
by the pressure p and the volumetric flow q through the pipe. The wave variables a and
b are defined as for fluid flow through pipes. The boundary conditions are set to

q(0, s) = q(c, s) = 0 (12.101)

which means that the pipe is closed at both ends. The impedances at the two ends are
defined by p(0, s) = z1(s)q(0, s) and p(c, s) = z2(s)q(c, s). The boundary conditions then
correspond to impedances z1 = ∞ and z2 = ∞. This leads to g1 = g2 = 1 and b1 = a1,
a2 = b2, which gives

a1(s) = exp (−2Ts) a1(s) (12.102)

or
[1− exp (−2Ts)] a1(s) = 0 (12.103)

It is straightforward to check that the solution is the same if the pipe is open at both
ends. This system has singularities whenever

exp (−2Ts) = 1 (12.104)

which means that the system has infinitely many singularities in

s = j
kπ

T
, k = 0,±1,±2, . . . (12.105)
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For each singularity there is an undamped resonance. The first resonance is at

s = j
π

T
(12.106)

which corresponds to a frequency of

f =
1

2π

π

T
=

1

2T
=

c

2c
(12.107)

For air at 15 degrees Centigrade (288 K) the speed of sound is c = 340 m/s. A pipe of
length 10 m then gives a resonance frequency at f = 340/20 = 17 Hz. To get a frequency
of 440 Hz the pipe must be c = 340/(2 · 440) = 0.386 m. To get 256 Hz the pipe must be
0.66 m.

12.4.3 Pipe closed at one end

The boundary condition is changed to

p(0, s) = 0 (12.108)

q(c, s) = 0 (12.109)

which gives g1 = −1 and g2 = 1. Then the system equation becomes

[1 + exp (−2Ts)] a(s) = 0 (12.110)

and the singularities are found at

s = j
π + 2kπ

2T
, k = 0,±1,±2, . . . (12.111)

The first resonance is now at
f =

1

4T
=

c

4c
(12.112)

To get 440 Hz at 288 K the pipe must then be 0.193 m, while 55 Hz results from a pipe
of length 3.145 m.
Consider a pipe of length L and cross section A which is open at the inlet end, denoted

by subscript 1, and which ends in a volume V at the outlet end denoted by subscript
2. It is assumed that the pressure is constant over the volume V, and that this pressure
is equal to the pressure p2 = p(c) at the outlet of the pipe. In this case the boundary
conditions are

p(0, s) = 0 (12.113)

p(c, s) = z2(s)q(c, s) (12.114)

The impedance z2(s) at the outlet is found from the mass balance of the volume V. The
mass balance is

d (ρ2V )

dt
= ρ2q2 (12.115)

which gives

V
dp2
dt

=
κp2
ρ2

ρq2 (12.116)

which is simplified to
dp2
dt

=
κp2
V

q2 (12.117)

and it is seen that for small q2 the impedance is

z2(s) =
κp2
V

1

s
(12.118)
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Throat

Outlet
p 0 ,T0

v0  0
p,T,A

v

Figure 12.6: Isentropic gas flow from stagnation state p0, T0 and velocity v0 = 0 through
a restriction with throat cross section A. The throat states are denoted p and T, and the
velocity at the throat is denoted v.

12.4.4 Pressure measurement in diesel engine cylinder

Due to the high temperatures in a diesel cylinder it is desirable to measure the pressure
in the cylinder by placing the pressure sensor in a bored pipe of small diameter. Suppose
that the length of the bore is 3 cm, and that the pressure sensor is in the closed end of
the pipe, while the open end is on the cylinder face. Then the resonance frequency of
the pipe is

f =
340

4× 0.03

r
1000

288
= 5.28 kHz (12.119)

In a motor running at 6000 rpm, which corresponds to a shaft speed of 36000 degrees
per second, the shaft will rotate 36000/5280 = 6.8 degrees in one resonance period. This
means that accurate pressure measurements can not have a resolution better than about
6.8 degrees of crank-shaft angle under these conditions.

12.5 Gas flow

12.5.1 Gas flow through a restriction

Gas flow through a valve or a restriction is usually modelled as nozzle flow , which is
isentropic flow that is computed using the isentropic relations between the stagnation
state in the inlet volume and the state in the throat of the restriction. It is convenient
to use the Mach number

M =
v

c
(12.120)

in the derivation of the mass flow. This is a dimensionless velocity, where the velocity v
is scaled by the sonic velocity c =

√
κRT .

The starting point for the derivation is the relation between the mass flow w and
Mach number M = v/c which is found from the following calculation:

w = ρAv = ρAMc = ρAM
√
κRT =

Ap√
κRT

Mκ (12.121)

Here the ideal gas law p = ρRT is used, and A is the cross section area of the nozzle.
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This can then be written
w
√
κRT

Ap
= κM (12.122)

where the left hand side is a dimensionless form of the mass flow. To be able to reference
the mass flow to the stagnation state 0, we use the expression

w
√
κRT0
Ap0

=
w
√
κRT

Ap

r
T0
T

p

p0
= κM

r
T0
T

p

p0
(12.123)

where p0, T0 are stagnation states at the inlet. The isentropic relation

T0
T

=

µ
p0
p

¶(κ−1)/κ
(12.124)

can then be used to find the following expression for isentropic flow of an ideal gas:

w
√
κRT0
Ap0

= κM

µ
T

T0

¶(κ+1)/2(κ−1)
= κM

µ
p

p0

¶(κ+1)/2κ
(12.125)

Next, the steady-state energy equation for nozzle flow is written

cpT0 = cpT +
v2

2
= cpT +

M2c2

2
= cpT +

M2κRT

2
(12.126)

where T0 is the stagnation temperature at the inlet, T is the temperature at the throat,
while v is the velocity at the throat. Using R/cp = (κ− 1)/κ, the energy equation can
be written in the form

T0
T

= 1 +
κ− 1

2
M2 (12.127)

or, equivalently,

M =

·
2

κ− 1

µ
T0
T
− 1

¶¸1/2
=

(
2

κ− 1

"µ
p0
p

¶(κ−1)/κ
− 1

#)1/2
(12.128)

Insertion of this expression for M in equation (12.125) for mass flow then leads to

w
√
κRT0
Ap0

= κ

µ
p

p0

¶(κ+1)/2κ(
2

κ− 1

"µ
p0
p

¶(κ−1)/κ
− 1

#)1/2

By straightforward operations this can be rearranged into the well-known expressions for
isentropic nozzle flow of an ideal gas.

Isentropic flow through a restriction will have mass flow given by

w
√
κRT0
Ap0

= κ

µ
p

p0

¶1/κ(
2

κ− 1

"
1−

µ
p

p0

¶(κ−1)/κ#)1/2
(12.129)
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We note that this expressions are valid for M ≤ 1. Sonic flow occurs when M = 1.
It is seen from (12.127) that if κ = 1.4 this corresponds to

p

p0

¯̄̄̄
sonic

=

µ
2

κ + 1

¶ κ
κ−1

= 0.52828 (12.130)

The resulting mass flow at sonic conditions is seen from (12.125) to be

w
√
κRT0
Ap0

¯̄̄̄
sonic

= κ

µ
2

κ+ 1

¶ κ+1
2(κ−1)

(12.131)

12.5.2 Example: Discharge of gas from tank

Insulation

V
A

Nozzle

T,p,

Figure 12.7: Insulated tank with gas discharge

The example of this section is adopted from (Bird et al. 1960, p. 480). A fluid
is contained in an insulated tank of volume V as shown in Figure 12.7. The gas is
discharged with mass flow w through a small nozzle with opening area A. The nozzle
flow is assumed to be isentropic from the stagnation state T, p, ρ in the tank to the throat
state Ta, pa, ρa at the outlet of the nozzle. The throat state is set equal to the ambient
state of the surrounding air, and the throat area is set to be the area A of the nozzle
(Heywood 1988).
The mass balance is

dm

dt
= −w (12.132)

The energy of the gas is assumed to be equal to the internal energy U = ρuV where u is
the specific internal energy. The energy balance is then

d

dt
(mu) = −wu− w

p

ρ
= −wh (12.133)

where h = u+p/ρ is the specific enthalpy. Using the product rule for differentiation and
mass balance we get

u̇ = −p
ρ

w

m
(12.134)

Finally, we assume that u = cvT and that the ideal gas law p = ρRT is valid. Then the
model can be written

ṁ = −w (12.135)

Ṫ = − (κ− 1)
w

m
T (12.136)
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where κ > 1 and the mass flow is found from the nozzle flow equation to be

w =
Ap√
κRT

κ

µ
pa
p

¶1/κ(
2

κ− 1

"
1−

µ
pa
p

¶(κ−1)/κ#) 1
2

(12.137)

and the throat pressure pa is the ambient pressure, and the stagnation pressure p is found
from the ideal gas law to be

p =
mRT

V
. (12.138)

From the model it is clear that the time derivatives of mass m and temperature T
will be less than or equal to zero.

12.5.3 The Euler equation around sonic speed

We write the continuity equation (11.6) in the form

∂ρ

∂t
= −

³
�∇ρ
´
· �v − ρ

³
�∇ · �v

´
(12.139)

and the Euler equation in the form (11.58) with zero mass force:

ρ

·
∂�v

∂t
+ �v ·

³
�∇�v
´¸

= −�∇p (12.140)

We consider an ideal gas under isentropic conditions, which according to (12.67) implies
that

�∇p = c2�∇ρ (12.141)

The Euler equation then becomes

ρ
∂�v

∂t
= −ρ�v ·

³
�∇�v
´
− c2�∇ρ (12.142)

We take the scalar product between the Euler equation and the velocity and get the
following set of equations:

∂ρ

∂t
= −

³
�∇ρ
´
· �v − ρ

³
�∇ · �v

´
(12.143)

ρ
∂�v

∂t
· �v = −ρ�v

³
�∇�v
´
· �v − c2

³
�∇ρ
´
· �v (12.144)

We consider a point, and align our coordinate frame so that the velocity �v is along the
x1 axis, that is,

�v = v1�a1 (12.145)

Then, at this point our set of equations become

∂ρ

∂t
= −ρ,1v1 − ρv1,1−ρv2,2 − ρv3,3 (12.146)

ρ

µ
∂v1
∂t

¶
v1 = −ρv21v1,1 − c2ρ,1v1 (12.147)

By adding the equations we get

1

ρ

∂ρ

∂t
− 1

c2

µ
∂v1
∂t

¶
v1 = − ¡1−M2

¢
v1,1− (v2,2 + v3,3) (12.148)
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Under stationary conditions we have

v2,2 + v3,3 = − ¡1−M2
¢
v1,1 (12.149)

This result has interesting implications if we consider speeds close to the sonic speed.
Then the Mach number is close to zero, and in particular, at sonic speed M = 1, and
1−M2 = 0. This gives

v2,2 + v3,3 = 0 · v1,1 (12.150)

This is satisfied in a flow field where v2 = v3 = 0, which is the case if all particles flow
along the x1 axis. However, if M → 1 when v2,2 + v3,3 6= 0, then v1,1 → ∞. This
means that the model consisting of the Euler equation and the continuity equation has
a singularity at M = 1. This agrees with experimental evidence which shows that if the
Mach number M approaches unity when there are disturbances in the flow patterns so
that v2,2+v3,3 6= 0, then a large gradients in density and velocity occur, and this is called
a shock . In a shock the assumption of isentropic conditions are no longer valid as there
will be significant viscous energy dissipation, and (12.67) will no longer be valid.



Chapter 13

Compressor dynamics

13.1 Introduction

13.1.1 Compressors

Compressors are used in a wide variety of applications. These includes turbojet engines
used in aerospace propulsion, power generation using industrial gas turbines, turbocharg-
ing of internal combustion engines, pressurization of gas and fluids in the process indus-
try, transport of fluids in pipelines and so on. Compressors can be divided into four
general types: reciprocating, rotary, centrifugal and axial. Some authors use the term
radial compressor when referring to a centrifugal compressor. Reciprocating and rotary
compressors work by the principle of reducing the volume of the gas, and will not be
considered further in this work. Centrifugal and axial compressors, also known as tur-
bocompressors or continuous flow compressors, work by the principle of accelerating the
fluid to a high velocity and then converting this kinetic energy into potential energy by
decelerating the gas in diverging channels. In axial compressors the deceleration takes
place in the stator blade passages, and in centrifugal compressors it takes place in the
diffuser. The increase in potential energy of the fluid is manifested by a pressure rise.
This conversion can be explained from Bernoulli’s equation (11.86), which is written:

p1
ρ

+
C21
2

+ gz1 =
p2
ρ

+
C22
2

+ gz2 (13.1)

Here p is the pressure, ρ is the density of the fluid, C is the velocity of the fluid and gz
the potential energy per unit mass. Subscripts 1 and 2 denotes properties before and
after deceleration, respectively. The equation is a special case of the law of conservation
of energy developed for flowing fluids. Bernoulli’s equation states that the sum of kinetic
energy C2

2 , potential energy gz and pressure head p
ρ at one set of conditions is equal

to their sum at another set of conditions. Hence, decrease in kinetic energy implies an
increase in potential energy and pressure. One obvious difference between the two types
of turbocompressors is that, in axial compressors, the flow leaves the compressor in the
axial direction, whereas in centrifugal compressors, the flows leaves the compressor in a
direction perpendicular to the axis of the rotating shaft. Axial compressors can accept
higher mass flow rates than centrifugal compressors for a given frontal area. This is
one reason for axial compressors dominance in jet engines, where frontal area is of great
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importance. Another reason for this is that for gas turbines, or jet engines, specific
fuel consumption decreases with increasing pressure ratio. The axial compressor, using
multiple stages, can achieve higher pressure ratio and efficiency than the centrifugal.

13.1.2 Surge and rotating stall

The useful range of operation of turbocompressors, both axial and centrifugal, is limited
by choking at high mass flows when sonic velocity is reached in some component. The
mass flow at which choking occurs depends on the rotational speed of the compressor,
and the compressor is said to have reached the stone wall area in its operating domain
when choking occurs. The mass flow at sonic velocity, that is M = v/c = 1, can be
calculated by using (12.131).
At low mass flows the operation is limited by the onset of two instabilities known as

surge and rotating stall. Surge is an axisymmtrical oscillation of the flow through the
compressor, and is characterized by a limit cycle in the compressor characteristic. Surge
oscillations are in most applications unwanted, and can in extreme cases even damage
the compressor. Rotating stall is an instability where the circumferential flow pattern is
disturbed. This is manifested through one or more stall cells of reduced, or stalled, flow
that propagate around the compressor annulus at a fraction of the rotor speed. There is
two different methods of dealing with the surge/stall-problem:

1. Traditionally, surge and rotating stall have been avoided by using control systems
that prevent the operating point of the compressions system to enter the unstable
regime to the left of the surge line, that is the stability boundary.

2. A fundamentally different approach, known as active surge/stall control, is to use
feedback to stabilize this unstable regime. This approach requires a model of the
compression system in order to design a stabilizing controller. Active control can
allow for both operation in the peak efficiency and pressure rise regions located in
the neighborhood of the surge line, as well as an extension of the operating range
of the compressor.

13.2 Centrifugal Compressors

13.2.1 Introduction

The centrifugal compressor consists essentially of a stationary casing containing a rotating
impeller which imparts a high velocity to the fluid, and a number of fixed diverging
passages in which the air is decelerated with a consequent rise in static pressure. The
latter process is one of diffusion, and consequently, the part of the compressor containing
the diverging passages is known as the diffuser. The impeller is mounted on a shaft which
is either a direct extension of the drive shaft or a separate shaft supported by bearings
and driven through a coupling. The shaft and impeller assembly, called the rotor, are
seated in the casing.
The fluid flows into the inducer (also referred to as the impeller eye) and flow through

the blade passage of the rotating impeller. Because of the rotation the tangential velocity
of the fluid increases when the fluid flows outwards in the impeller, and the associated
increase in the centrifugal force makes the static pressure increase through the impeller.
A further pressure increase is obtained in the diffuser, where the pressure increase is due
to the reduction of the velocity. It is common practice to design a compressor so that
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about half the pressure rise occurs in the impeller and half in the diffuser. As no work
is done on the fluid in the diffuser, all the energy is supplied to the fluid in the impeller,
thus the energy transfer from the shaft power to the fluid energy will be determined by
the conditions at the inlet and outlet of the impeller.
It is more difficult to obtain efficient deceleration of flow than it is to obtain efficient

acceleration. If divergence in the diffuser is too rapid, the fluid will tend to break away
from the walls of the diverging passage, reverse its direction and flow back in the direction
of the pressure gradient. This may lead to the formation of eddies with consequent
transfer of some kinetic energy into internal energy and a reduction of useful pressure
rise. On the other hand, a small angle of divergence will lead to a long diffuser and high
losses due to friction. In order to carry out the diffusion in as short a length as possible,
the air leaving the impeller may be divided into a number of separate diverging passages
separated by fixed diffuser vanes, resulting in a vaned diffuser. However, in industrial
applications where size may be of secondary importance a vaneless diffuser may have the
economic advantage as it is much cheaper to manufacture than the vaned diffuser. A
vaneless diffuser is a simple annular channel, and is therefore also known as an annular
diffuser, in which the radial velocity component is reduced by area increase and the
tangential velocity component by the requirement of constant fluid angular momentum.
If the disadvantage of the annular diffuser is its bulk, the advantage is its wide range of
operation. A vaned diffuser may have a higher peak efficiency than an annular diffuser,
but its mass flow range is considerable less because of early stall of the diffuser vanes.
We consider a compressor driven by a drive torque τd. The compressor is modeled as

a momentum source in a duct of length L and cross section A. The duct is connected to
a plenum, which is a volume V . The gas flows from the duct into the plenum, and then
out of the plenum through a throttle. This is illustrated in Figure 13.4. The momentum
delivered to the gas is the ideal momentum from the rotor minus momentum loss due to
incidence loss and fluid friction loss. The usual Greitzer surge model (Greitzer 1976) for
this system is derived from the mass balance of the plenum and the momentum equation
of the duct.

13.2.2 Shaft dynamics

We assume that the compressor is driven by an electrical motor as illustrated in Figure
13.1. The shaft dynamics are given by

Jω̇ = τd − τ c (13.2)

where J is the inertia of the compressor shaft and compressor wheel, ω is the angular
velocity of the shaft, τd is the drive torque of the motor, and τ c is the compressor torque,
which is the torque acting on the compressor shaft from the rotor blades. The compressor
torque is equal to the rate of change of angular momentum

τ c = w(r2Cθ2 − r1Cθ1) (13.3)

where w is the mass flow, Cθ1 is the tangential velocity of the fluid at the rotor inlet
and Cθ2 is the tangential fluid velocity at the rotor outlet. The radius at the inlet is r1
and the rotor radius at the outlet is denoted r2, as shown in Figure 13.2. Assuming no
pre-whirl, an assumption that is met in e.g.most turbocharges, we have that Cθ1 = 0,
and the torque becomes

τ c = wr2Cθ2 (13.4)
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Figure 13.1: Centrifugal compressor with motor.

For backswept blades, we see from the velocity triangle in Figure 13.3 that

Cθ2 = U2 − Cr2 cotβ2b

= (1− φ cotβ2b)U2

= µ (φ)U2 (13.5)

where Cr2 is the radial flow velocity,

U2 = r2ω (13.6)

is the tangential speed of the impeller tip,

φ =
Cr2

U2
=

w

ρ1A1

r2
ω

(13.7)

is the flow coefficient, and β2b is the blade angle at the impeller tip. The function

µ (φ) = 1− φ cotβ2b (13.8)

is the energy transfer coefficient. The torque is seen to be given by

τ c = wµ (φ) r22ω (13.9)

In the case of radial vanes β2b = 90◦ we have that cotβ2b = 0 and µ = 1. Backwards
swept blades have β2b < 90◦ in which case µ decreases with increasing flow coefficient
φ. In practice the energy transfer coefficient is slightly less than the ideal value, and we
may write

µ (φ) = σ (1− φ cotβ2b) (13.10)

where σ is the slip factor, which is slightly less than unity. A usual approximation is the
Stanitz slip factor:

σ ≈ 1− 2

N
(13.11)

where N is the number of blades.
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Figure 13.2: The rotating impeller viewed face-on. Note the radial vanes.

13.2.3 Compressor system

We will derive the dynamic equations for a compressor system that includes a compressor,
a volume Vp called the plenum, and a duct of length L running from the compressor to
the plenum. The model is derived from the mass balance of the plenum, the momentum
equation for the duct and the pressure rise for the compressor. In the derivation the duct
and the plenum is treated as in the derivation of the Helmholtz resonator. This means
that the fluid in the duct is assumed to be incompressible and with mass flow

w = ρAC (13.12)

where ρ is the density in the duct, A is the constant cross section of the duct, and C is
the velocity of the fluid in the duct, which is assumed to be constant along the duct.

13.2.4 Mass balance

The mass balance for the plenum is

Vpρ̇p = w − wt (pp) (13.13)

where ρp is the density in the plenum, w is the mass flow from the duct into the plenum,
and wt(pp) throttle mass flow going out of the plenum. Suppose that the gas in the
plenum is ideal and isentropic. Following the derivation leading to equation (12.67), we
then have

dpp = c2pdρp

where the sonic velocity in the plenum is given by

cp =
p
κRTp

and the mass balance becomes
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Figure 13.3: Velocity triangle at the impeller exit. Note the backswept vanes.
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Figure 13.4: Compression system consisting of compressor, duct, plenum volume and
throttle.

ṗp =
c2p
Vp

[w − wt (pp)] (13.14)

In Greitzer’s original derivation of this model, it is assumed that cp ≈ c01, where c01 is
the sonic velocity at ambient conditions. This is equivalent to assume Tp ≈ T01.

13.2.5 Momentum equation

We will now employ the momentum balance in order to find a differential equation for
the duct mass flow. The mass flow in the duct is given by (13.12). The pressure at
the inlet of the duct is the pressure at the outlet of the diffusor. The fluid enters the
diffusor from the impeller with the stagnation pressure p02(w,ω). In the diffuser the fluid
is slowed down through an isentropic process where the stagnation enthalpy and hence
the stagnation pressure is kept constant. Due to the reduction in the fluid velocity C the
static pressure p = p0 − 1

2C
2 is increased, and if the velocity is reduced to a value close
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to zero, the static pressure at the outlet of the diffuser will be approximately equal to
the stagnation pressure at the outlet of the impeller. Therefore, the pressure at the inlet
of the duct is set to the stagnation pressure at the outlet of the impeller.
The momentum equation of the duct is then

d

dt
(mdC) = Ap02(w,ω)−App (13.15)

where
md = LAρ (13.16)

is the mass in the duct, L is the duct length, p02(w,ω) is the stagnation pressure at the
outlet of the compressor rotor which is assumed to be equal to the static pressure at
the inlet of the duct, and pp is the plenum pressure. The velocity C of the fluid can be
written

C =
q

A
=

w

ρA
(13.17)

where q is the duct volume flow. By combining (13.15), (13.16) and (13.17), we get the
momentum equation for the duct written as a differential equation in mass flow.

Lẇ = A [p02(w,ω)− pp] (13.18)

13.3 Compressor characteristic

13.3.1 Derivation

In (13.18) we need an expression for the pressure p02(w,ω) at the outlet of the compressor
The pressure rise in the compressor is from the stagnation pressure p01 at the inlet, to
the stagnation pressure p02 at the rotor outlet. Generally, this rise in stagnation pressure
can be obtained in an isentropic process 1 → 2s where p02s = p02. This isentropic
process involves an increase in the stagnation enthalpy ∆h02s = h02s − h01. In practice,
the pressure increase in the compressor is not isentropic, and there is an increase in
entropy due to friction ∆hf and incidence losses ∆hi. The incidence losses arise from
misalignment of the flow with respect to vane angles at off-design conditions, and the
friction losses are due to friction between the fluid and the various solid surfaces in the
compressor passages. To account for these losses, the compression from p01 to p02 is
modelled as an isentropic process in series with an isobaric process, where the isobaric
process involves an increase in entropy. We recall that for the isentropic process ds = 0
and the enthalpy differential is dh = vdp, while for the isobaric process dp = 0 and
dh = Tds. This results in the following description: First, there is an isentropic process
1 → 2s which ends in a state with pressure p02s = p02 and stagnation enthalpy h02s.
Then, there is an isobaric process 2s → 2, which ends in a state with pressure p02 and
stagnation enthalpy h02. The total process 1→ 2 is illustrated in Figure 13.5. This gives

∆h02 = ∆h02s +

Z 2

2s

Tds

= ∆h02s +∆hi +∆hf (13.19)

Here ∆hi is the incidence loss, ∆hf is the friction work, which both will be defined below,
and

∆h02s := ∆h02 −∆hi −∆hf (13.20)
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Figure 13.5: The isentropic and isobaric process in the compressor.

so that ∆h02s is the change in specific stagnation enthalpy that contributes to the accel-
eration of the gas in the duct.
The mechanical power transferred from the shaft to the gas is

P = τ cω

As there is no energy storage in the gas in the impeller, the power transferred from the
rotor to the gas is equal to the rate of stagnation enthalpy increase

P = w∆h02

of the fluid, where ∆h02 is the increase in specific stagnation enthalpy. By using (13.3),
this gives

w∆h02 = P = τ cω = w(U2Cθ2 − U1Cθ1) (13.21)

which is known as Euler’s pump equation. Alternatively, we can use (13.9) and it follows
that

w∆h02 = P = τ cω = wµ (φ) r22ω
2 (13.22)

and
∆h02 (ω,C) =

τ cω

w
= µ (φ) r22ω

2 (13.23)

In off-design operation of the compressor there will be a mismatch between the fixed
blade angle β1b and the direction of the gas stream β1. The loss associated with this is
termed the incidence loss. The incidence loss ∆hi, expressed as a change of enthalpy, is
determined according to the so-called NASA model of (Futral and Wasserbauer 1965).
It is assumed that ∆hi is equal to a reduction in kinetic energy corresponding to an
instantaneous change in fluid velocity at the blade inlet such that the axial velocity is
unchanged, while the tangential velocity is changed to accommodate the fixed blade angle
β1b. The difference between the flow angle and the blade angle,

βi = β1b − β1
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Figure 13.6: Velocity triangles at the inducer. Section through inducer at radius r1.

is called the incidence angle. The velocity of the incoming gas relative to the inducer is
termed W1. Thus, with Cθ1 = 0, we get from the triangles of Figure 13.6

∆hi =
1

2
W 2

θ1

=
1

2
(U1 − cotβ1bCa1)

2

=
r21
2

µ
ω − cotβ1b

A

A1r1
v

¶2
=

r21
2

(ω − αw)
2 (13.24)

where U1 = r1ω is the rotor blade speed, Ca1 = C (A/A1) is the axial velocity at the
blade inlet, ρ1 is the density at the blade inlet which is considered to be a constant, and

α = cotβ1b
A

A1r1
(13.25)

In order to calculate the friction loss, we treat the flow passages in the impeller as
pipes with circular cross section. The friction loss is then modelled as

∆hf = Ch
l

D

W 2
1b

2

where Ch is the surface friction loss coefficient, l is the mean channel length and D is the
mean hydraulic diameter. The hydraulic diameter for a pipe of non-circular cross section
can be calculated as

D =
4A

a

where A is the cross sectional area and a is the length of the wetted perimeter. Using
Figure 13.6, the friction loss can now be shown to be given by

∆hf = kfw
2 (13.26)

where

kf =
Chl

2Dρ21A
2
1 sin2 β1b
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is a constant. Combining (13.23), (13.20), (13.24) and (13.26) results in the enthalpy
transfer

∆h02s (ω,w) = σr22ω
2 − r21

2
(ω − αw)

2 − kfw
2 (13.27)

The stagnation pressure ratio is given by the stagnation temperature ratio of the
isentropic process 1→ 2s according to

p02
p01

=
p02s
p01

=

µ
T02s
T01

¶ κ
κ−1

(13.28)

An expression for T02s/T01 is found as

T02s
T01

=
h02s
h01

=
h01 +∆h02s

h01
= 1 +

∆h02s
h01

= 1 +
∆h02s
cpT01

(13.29)

From (12.63) and (13.27) we find the expression for the pressure ratio

Ψc(w,ω) =
p02
p01

=

µ
1 +

∆h02s
cpT01

¶ κ
κ−1

(13.30)

Ψc(w,ω) =

Ã
1 +

σr22ω
2 − r21

2 (ω − αv)
2 − kfw

2

cpT01

! κ
κ−1

(13.31)

such that
p02(w,ω) = Ψc(w,ω)p01 (13.32)

Inserting (13.32) into (13.18) gives the momentum balance

ẇ =
A

L

Ãµ
1 +

∆h02s
cpT01

¶ κ
κ−1

p01 − pp

!
(13.33)

or

ẇ =
A

L
(Ψc(w,ω)p01 − pp)

From (13.2), (13.14) and (13.33), the resulting compressor model is found to be

ṗp =
c2p
Vp

(w − wt) (13.34)

L

A
ẇ =

Ã
1 +

µr22ω
2 − r21

2 (ω − αw)
2 − kfw

2

cpT01

! κ
κ−1

p01 − pp (13.35)

Jω̇ = τd − wr22µω (13.36)

13.3.2 The compressor characteristic at zero mass flow

Let C denote the fluid velocity and h the specific enthalpy. The stagnation enthalpy

h0 = h +
1

2
C2 (13.37)
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is increased over the impeller by the the energy

τ cω = (r2Cθ2 − r1Cθ1)ωw = (U2Cθ2 − U1Cθ1)w (13.38)

that is transferred from the compressor blades to the fluid. Thus, if we let 1 denote the
impeller inlet and 2 denote the impeller outlet we have

(h20 − h10)w = (U2Cθ2 − U1Cθ1)w (13.39)

When the mass flow tends to zero it seems reasonable to assume that the increase in static
enthalpy is continuous at w = 0. Moreover, at zero mass flow through the compressor
we may assume that Cθ1 = U1 and Cθ2 = U2. This gives the following increase in static
enthalpy for zero mass flow:

∆h0s = h20 − h10 = U22 − U21 = ω2
¡
r22 − r21

¢
(13.40)

where r2 is the radius of the impeller outlet and r1 is the radius of the impeller inlet.
The associated pressure rise for the compressor at zero mass flow is

p02
p01

=

µ
1 +

h02 − h01
cpT01

¶ κ
κ−1

=

Ã
1 +

ω2
¡
r22 − r21

¢
cpT01

! κ
κ−1

=

Ã
1 +

ρ01ω
2
¡
r22 − r21

¢
p01

κ
κ−1

! κ
κ−1

(13.41)

where the ideal gas law has been used together with cp = Rκ/ (κ− 1).

Example 203 By combining (13.37) and (13.39), the increase in enthalpy as opposed
to stagnation enthalpy is found fromµ

h1 +
1

2
C21 − U1Cθ1

¶
w =

µ
h2 +

1

2
C22 − U2Cθ2

¶
w. (13.42)

We introduce the relative velocity Wi = Ci − Ui. In terms of the tangential components
(·)θi and the radial components (·)ri we have

Cθi = Ui +Wθi, Cri = Wri (13.43)

and it follows that

C2i = C2θi + C2ri = U2i + 2UiWθi +W 2
θi +W 2

ri = U2i + 2UiWθi +W 2
i (13.44)

We insert this expression in the enthalpy equation, and getµ
h1 +

1

2
W 2
1 −

1

2
U21

¶
w =

µ
h2 +

1

2
W 2
2 −

1

2
U22

¶
w (13.45)

which in the terminology of (Cumpsty 1989) says that the rothalpy

Ii = hi +
1

2
W 2

i −
1

2
U2i (13.46)
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is unchanged over the impeller. We may then compute the change in enthalpy at zero
mass flow by assuming continuity when w → 0. At zero mass flow we have Ci = Ui at
the inlet and at the outlet, and therefore Wi = 0. It follows that the increase in enthalpy
over the impeller at zero mass flow is

h2 − h1 =
1

2

¡
U22 − U21

¢
=

ω2

2

¡
r22 − r21

¢
(13.47)

where r2 is the radius of the impeller outlet and r1 is the radius of the impeller inlet. As

h20 − h10 = h2 − h1 +
1

2

¡
C22 − C21

¢
(13.48)

this is consistent with the result for the stagnation enthalpy with C1 = U1 and C2 = U2.
Assuming isentropic pressure rise,

Ψc(w,ω) =
p02
p01

=

µ
1 +

∆h

cpT01

¶ κ
κ−1

, w > 0. (13.49)

holds, for details see (Gravdahl, Egeland and Vatland 2001), and by combining (13.46)
and (13.49), we get at zero mass flow

Ψc(0, N) = Ψo =

µ
1 +

π2N2(D2
2 −D2

1)

2cpT01

¶ κ
κ−1

, (13.50)

where N = 2πω is the rotational speed in revolutions per second.

Remark 5 Close to zero mass flow there may be high incidence losses in the diffuser so
that the fluid is not slowed down isentropically, and the kinetic energy is not recovered as
a pressure rise. Therefore, the pressure at the inlet of the duct may be set to the static
pressure at the outlet of the impeller, in which case the pressure rise is

p2
p01

=

µ
1 +

h02 − h01
cpT01

¶ κ
κ−1

=

Ã
1 +

ρ01ω
2
¡
r22 − r21

¢
2p01

κ
κ−1

! κ
κ−1

(13.51)

Example 204 The centrifugal force on a material volume element is

ρω2rdV (13.52)

Integrating this gives the centrifugal loading at r = r2 for zero mass flow:Z r2

r1

ρω2rdr =
1

2
ρ1ω

2
¡
r22 − r21

¢
(13.53)

were the density has been approximated by ρ = ρ1. Then the increase in static pressure
at zero mass flow is

p2 ≈ p1 +
1

2
ρ1ω

2
¡
r22 − r21

¢
(13.54)

and the pressure rise in terms of static pressure is

p2
p1

= 1 +
ρ1ω

2
¡
r22 − r21

¢
2p1

(13.55)

This expression for the pressure rise is approximately equal to the expression (13.51) for
a small pressure rise.
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13.4 Compressor surge

13.4.1 The Greitzer surge model

Compressor surge is a serious problem in the control of compressors, and the main ob-
jective of compressor control systems is to avoid surge, as it reduces performance, and
may lead to the destruction of the compressor. The compressor may surge if the pressure
rise increases with increasing mass flow, which is the case in the unstable region of the
compressor map. The mass flow and the plenum pressure will form an oscillating system,
and even flow reversal may occur.
In the Greitzer model for the description of compressor surge dynamics the shaft

dynamics are left out, and the compressor model (13.34—13.36) is written

ṗp =
c2p
Vp

[w − wt (pp)] (13.56)

LρĊ = (Ψc(w,ω)− 1) p01 + p01 − pp (13.57)

The addition of ±p01 in (13.57) has been done to facilitate the use of pressure differences
below. This model is known as Greitzer’s compressor model in dimensional form, and
was first introduced in (Greitzer 1976). We introduce the nondimensional variables

ξ =
t
1
ωH

(13.58)

ψ =
pp − p01
1
2ρU

2
, ψc(φ) =

(Ψc(w,ω)− 1) p01
1
2ρU

2
(13.59)

φ =
C

U
=

w

ρAU
, φt(ψ) =

wt(pp)

ρAU
(13.60)

where ξ is the dimensionless time variable, ψ is the pressure coefficient, ψc(φ) is the
compressor characteristic, φ is the flow coefficient, φt(ψ) is the throttle flow coefficient,
and

ωH = cp

s
A

VpL
(13.61)

is the Helmholtz frequency of the duct-plenum system.

Example 205 If the temperature increase over the compressor is small, then the com-
pressor characteristic can be approximated by

ψc(φ) =
(Ψc(w,ω)− 1) p01

1
2ρ01U

2
=

"µ
1 +

∆h02s (ω,C)

cpT01

¶ κ
κ−1
− 1

#
p01

1
2ρ01U

2

≈ κ

κ− 1

∆h02s (ω,C)

cpT01

p01
1
2ρ01U

2

=
∆h02s (ω,C)

1
2U

2

p01
RT01ρ01

=
∆h02s (ω,C)

1
2U

2

= 2µ−
µ
r1
r2

¶2
(1− r2αφ)− 2kf (ρ01A)

2
φ2 (13.62)
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Figure 13.7: The compressor characteristic from (13.62).

where the expression for ∆h02s (ω,w) from (13.27) has been used. Equation (13.62)
clearly shows that the compressor characteristic is a function of the flow coefficient φ
when ∆T02s is small. The characteristic is plotted in Figure 13.7.

Using the normalized variables the model becomes

1

2
ρU2ωH

dψ

dξ
= ρAU

c2p
Vp

[φ− φt (ψ)] (13.63)

UωHL
dφ

dξ
=

1

2
U2ψc (φ)− 1

2
ρU2

1

ρ
ψ (13.64)

This gives the following result:

The Greitzer surge model is given by

dψ

dξ
=

1

B
[φ− φt (ψ)] (13.65)

dφ

dξ
= B [ψc (φ)− ψ] (13.66)

where the nondimensional parameter

B =
U

2cp

r
Vp
AL

=
U

2LωH
(13.67)

is Greitzer’s B-parameter.

A large B corresponds to a small ωH . In axial compressors, the numerical value of
B gives information about the type of instability the compressor will enter if operating
beyond the surge line. A large B indicates that the compressor will enter surge, and a
small B indicates that rotating stall will occur.
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Example 206 Remark 6 The pressure coefficient

ψ =
∆p
1
2ρU

2
(13.68)

has also been characterized as a temperature coefficient

ψCohen =
∆h0s
1
2U

2
(13.69)

in (Cohen, Rogers and Saravanamuttoo 1996).

13.4.2 Linearization

Linearization of the Greitzer model (13.65)-(13.66) gives

d

dξ

µ
ψ
φ

¶
=

µ − 1
Bgt

1
B

−B Bgc

¶µ
ψ
φ

¶
(13.70)

where

gc =
∂ψc
∂φ

, gt =

µ
∂φt
∂ψ

¶−1
(13.71)

are the slopes of the compressor characteristic and the throttle characteristic in a φ, ψ
diagram. The characteristic equation is

λ2 +

µ
1

Bgt
−Bgc

¶
λ +

µ
1− gc

gt

¶
= 0 (13.72)

and the system is seen to be stable if

gc <
1

B2gt
(13.73)

and
gc < gt (13.74)

The case gc >
¡
B2gt

¢−1
is usually referred to as a dynamic instability, while the case

gc < gt is called a static instability. We consider a situation where the slope gc of the
compressor characteristic increases from some negative value. We see that if B becomes
small, then a larger gc is tolerated before the dynamic instability is encountered. If B
becomes sufficiently small, that is if B < g−1t , then the static instability will occur before
the dynamic instability.

Example 207 At the top of the compressor characteristic we have gc = 0, and the
characteristic equation becomes

λ2 +
1

Bgt
λ + 1 = 0 (13.75)

This corresponds to a normalized undamped natural frequency ω∗0 = 1. We recall that
the normalized time variable ξ = tωH is scaled with the Helmholtz frequency, and the
corresponding undamped natural frequency is found to be

ω0 = ω∗0
ξ

t
= ωH (13.76)

We see that the undamped natural frequency for an equilibrium point at the top of the
compressor characteristic is the Helmholtz frequency ωH .
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Example 208 We now assume that there is a valve at the compressor outlet. The valve
characteristic is

ẇ = CDA2

vuut2ρ (p1 − p2)

1−
³
A2

A1

´2 (13.77)

The plenum volume in this case is small, and we may assume that B < g−1t . Then the
stability requirement is

gc < gt (13.78)

that is, the static instability must be avoided.

Example 209 If the compressor delivers gas to a pipeline the plenum volume is Vp →∞
and it follows that B →∞. In this case ψ will be a constant, and the system is described
by the first order model

dφ

dξ
= B [ψc (φ)− ψ] (13.79)

This model is stable whenever
gc < 0 (13.80)

This means that a compressor connected to a pipeline is stable as long as the compressor
characteristic has a negative slope.

13.4.3 Passivity of the Greitzer surge model

We will now investigate the passivity properties of the Greitzer model. The model is
given as

dψ

dξ
=

1

B
[φ− φt (ψ)] (13.81)

dφ

dξ
= B [ψc (φ)− ψ] (13.82)

where (13.81) is the pressure dynamics, and (13.82) is the mass flow dynamics. The
throttle flow φt (ψ) is given as

φt (ψ) = γt
p
ψ (13.83)

Consider the positive function

V = V1 + V2 =
1

2

µ
Bψ2 +

1

B
φ2
¶

(13.84)

The time derivative of V1 along the solutions of (13.81) is

dV1
dξ

= ψφ− ψφt (ψ) (13.85)

Integrating (13.85) we see thatZ T

0

ψφdξ = V1(T )− V1(0) +

Z T

0

ψφt (ψ) dξ

> −V1(0) +

Z T

0

ψφt (ψ) dξ
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which implies that the system with φ as input and ψ as output has certain passivity
properties depending on the value of the term

R T
0
ψφt (ψ) dξ. The throttle in a compres-

sion system is a passive component, and from (13.83) it can be seen that a coefficient κ1
can always be chosen sufficiently small such that the throttle characteristic satisfies the
condition

ψφt (ψ) ≥ κ1ψ
2 (13.86)

We now find that Z T

0

ψφdξ > −V1(0) + κ1

Z T

0

ψ2dξ (13.87)

and it follows that the pressure dynamics are (strictly) passive.
The time derivative of V2 along the solutions of (13.82) is

dV2
dξ

= φψc (φ)− ψφ (13.88)

Following the same procedure as above, we find thatZ T

0

−ψφdξ = V2(T )− V2(0) +

Z T

0

φψc (φ) dξ

> −V2(0) +

Z T

0

φψc (φ) dξ (13.89)

and the passivity properties of the system with input −ψ and output φ depends on the
value of the term

R T
0
φψc (φ) dtξ. For operating points where the slope of the compressor

characteristic is negative, the sector condition

φψc (φ) ≥ κ2φ
2

will hold, and Z T

0

−ψφdξ > −V2(0) + κ2

Z T

0

φ2dξ (13.90)

and it follows that the mass flow dynamics are (strictly) passive. This leads us to the
known result that the feedback interconnection of the two systems, that is the Greitzer
model, is a passive system when the operating point is located on a part of the compressor
characteristic with negative slope.
In the case where the operating point is not located in an area of negative slope,

that is the system is in an unstable (surge) condition, we still have that the pressure
dynamics are passive according to (13.87). The flow dynamics are now not passive
according to (13.90), but if it is possible to manipulate, through some external actuator,
the compressor characteristic ψc (φ), (13.89) can be used for controller design. This
approach was taken in (Gravdahl and Egeland 1998) using a close coupled valve for
active surge control, and in (Gravdahl and Egeland 2002) using the drive itself.

13.4.4 Curvefitting of compressor characteristic

When modelling a real compression system it might be difficult to obtain models of
the compressor characteristic like (13.30) or (13.62). A compressor is usually equipped
with a measured compressor map. This might be measured when the compressor is
manufactured or when it is installed. It is then an alternative to use an approximation
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of this measured characteristic in the model of the system. In this example it is shown
how to use a polynomial approximation. The solid circles in Figure 13.8 are points read
from an actual compressor map for a centrifugal compressor used in pipeline natural gas
transport in the North Sea in Norway. It is to be noted that points near the stonewall
area of the measured characteristic were not used. In that area choking is the dominant
effect, and this is not taken into account in the modeling. Also, in order to ensure that
the approximated constant speed lines do not cross each other in the negative flow area,
one point for negative flow was chosen for each speed line. The zero flow pressure rise for
each speed as calculated by (13.50), and the dotted lines are the third order polynomial
approximations of the speed lines at five different speeds.
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Figure 13.8: The measured speed lines (solid lines) and the polynomial approximations
(dashed lines).

The approximations are calculated using the Matlab function polyfit, and for the
five chosen speed lines, results are:

Ψc(w, 300) = 1.6024− 0.0625w + 0.1668w2 − 0.0441w3,

Ψc(w, 340) = 1.8291− 0.0966w + 0.1825w2 − 0.0304w3,

Ψc(w, 400) = 2.2511− 0.1443w + 0.1908w2 − 0.0240w3,

Ψc(w, 460) = 2.8092− 0.1658w + 0.1783w2 − 0.0177w3,

Ψc(w, 500) = 3.2699− 0.2051w + 0.1744w2 − 0.0147w3.

A compressor map is also continuous in the rotational speed, as can be seen from (13.30),
so in order to simulate the system, there is a need for making the approximated map also
continuous in rotational speed. For this reason, the coefficients of the third order poly-
nomials in are chosen to be functions of rotational speed. The polynomial approximation
for each speed line can be written as

Ψc(w,N) = c0 (N) + c1 (N)w + c2 (N)w2 + c3 (N)w3,

where the functions
ci (N) = ci0 + ci1N + ci2N

2 + ci3N
3
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are calculated by using polynomial approximation yet again. In Figure 13.9, the polyno-
mial coefficients of the five polynomials are plotted as a function of rotational speed. As
can be seen, a fairly good fit can be made with third order.
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Figure 13.9: The coefficients ci as functions of speed N (solid lines), and their polynomial
approximations (dashed lines).

Remark 7 For the presentation of compressor characteristics which describe the sta-
tionary performance of compressors another normalization is often used. This is based
on using the Mach number to represent flow and blade velocity. We introduce as nondi-
mensional variables the Mach numbers

MC =
C

c0
, MU =

U

c0
(13.91)

where
c0 =

p
κRT0 (13.92)

and T0 = T + c2

2 is the stagnation temperature. Then, using w = ρAC, we find that

MC =
C

c0
=

w

ρA
√
κRT0

=
wRT0

Ap0
√
κRT0

ρ0
ρ

=
ρ0
ρ
√
κ

w
√
RT0

Ap0
(13.93)

and that

MU =
U

c0
=

ωr√
κRT0

=
1√
κ

ωr√
RT0

(13.94)

For plotting of compressor characteristics the following dimensionless variables are used:
The corrected mass flow

√
κMC =

w
√
RT

Ap
(13.95)
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the corrected speed, √
κMU =

ωr√
RT

(13.96)

and the pressure ratio p02/p01.

13.4.5 Compression systems with recycle

As mentioned in Section 13.1.2, the surge problem in centrifugal compressor can be
handled by using a recycle line around the compressor and thereby ensuring that the
flow is maintained above a certain minimum value. Such a recycle concept is illustrated
in Figure 13.10.

wf w 1 wt

wr

w 1

V1 ,p 1 ,T1 V2 ,p 2 ,T2

,d

c

Q1 Q2

Recycle line

C
om

pressor

Drive

Figure 13.10: A centrifugal compressor with drive unit, upstream volume, downstream
volume and recycle line.

A model of this system can be found by calculating the mass balances for the two
volumes, calculating the momentum balance of the downstream compressor duct, and
calculating the torque balance of the shaft:

ṗ1 =
c201
V1

(wf − w1 + wr) (13.97a)

ṗ2 =
c201
V2

(w1 − wr − wt) (13.97b)

ẇ1 =
A

Lc
(Ψc(w1, ω)p1 − p2) (13.97c)

ω̇ =
1

J
(τd − τ c) , (13.97d)

where, p1 is the pressure in the upstream volume V1 , p2 is the pressure in the downstream
volume V2, wf is the feed mass flow, w1 is the mass flow through the compressor, wr is
the recycle mass flow, wt is the throttle flow, Ψc(w1, ω) is the compressor characteristic,
ω is the rotational speed of the compressor, τd is the drive torque, τ c is the compressor
torque, J is the inertia of all rotating equipment, c01 is the sonic velocity at ambient
conditions.
The mass flow through the recycle valve is given as

wr = kr
p
∆pr, (13.98)
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where ∆pr is the pressure drop across the valve.
In order to ensure high efficiency, compression systems are often equipped with cool-

ers. In order to take this into account, we need to study the energy flow in the system.
By combining the mass balance

ṁ = win − wout

for a volume Vj with the energy balance

d

dt
U =

X
i

wihi −Q,

and assuming ideal gas such that
pV = mRT,

one gets

d

dt
(mu) =

X
i

wcpTi −Q

(win − wout)u +mcvṪ = wincpTin − wutcpT +Q

Ṫ =
RT

pV cv
(wincpTin − (wutR + wincv)T +Q) (13.99)

which is the energy balance for the volume in terms of temperature. Here U is internal
energy, u = cvT is specific internal energy, h = cpT is specific enthalpy, cp and cv are the
specific heats at constant pressure and volume, R = cp − cv is the specific gas constant
and Q is heat flow. One energy balance (13.99) is used per volume.
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Chapter 14

Simulation

14.1 Introduction

14.1.1 The use of simulation in automatic control

Simulation of dynamic processes involves the numerical solution of differential equations
which are normally in the form of initial value problems. The numerical schemes that
are used for this are called numerical integrators. There is a large literature on numerical
integrators (Hairer, Nørsett and Wanner 1993), (Hairer and Wanner 1996), (Lambert
1991), (Shampine 1994), and a wide range of methods are available. These methods have
different properties and the selection of which method to use depends on the properties of
the system to be simulated. In this chapter a range of numerical integrators are presented
and analyzed, and it is attempted to give some advice on how a suitable method can be
selected for important dynamic systems.
Simulation plays an important part in the design, maintenance and upgrading of

control systems. Dynamic systems to be controlled are usually described by differential
equations or transfer functions, and simulation is used to check the qualitative behavior
of the system for typical parameter values and for expected modes of operation. When a
controller is designed for a system it is usual practice to test the controller in simulations
before implementing it. This allows for rapid changes and correction of errors before the
system is designed. Also it is important that procedures for handling of discrete events
and errors can be tested. For systems where a controller has already been developed,
quantitative aspects of simulation is important for the fine tuning of controller parameters
and the redesign of the system to be controlled.
An example where this is useful is in the development of industrial robots. In appli-

cations like spot welding in car production lines there are ever-increasing demands on the
robot to finish spot welding tasks faster while maintaining the weld quality specifications.
Then, simulation must be used to improve controller parameters, to try out friction com-
pensation, and to improve the mechanical construction so that elastic deformations can
be reduced. The alternative to using simulation would be iterative mechanical redesign
which is costly and time consuming.
In car engines new regulations of emissions are enforced, and there is a demand for

engines that are lighter, that use less fuel and that pollute less. The introduction of new
electronic control systems is necessary to achieve this. Car manufacturers use simulation
systems to reduce mechanical vibrations, to shape the combustion chamber for efficient
combustion of the fuel, to reduce the formation of pollutants, to optimize electronic

509
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Figure 14.1: The model implemented in Simulink.

controls for components like fuel injectors, turbochargers, and valves for exhaust gas
recycling. Also in the design and testing of control systems for ABS brakes simulation is
an indispensable tool.
For ship control systems there are large costs involved in commissioning of control

systems, which involves installation and calibration. Moreover, a typical situation is that
there is very little time available for the control engineer to commission the controllers
before the ship is to be set into commercial operation. By use of simulation the time for
commissioning can be reduced significantly, and this may be a decisive factor to make
control systems commercially attractive for the marine industry.
The last few years new and powerful tools have been made available for simulation

which makes it much easier to run simulations than what have been the case. Also
simulation tools and control systems development tool have been integrated, and the
role of simulation in automatic control is becoming even more important than it used to
be. Still, it is important to know the properties of the numerical schemes that are used
so that the results can be interpreted in the right way.
In the following, three examples are presented where the dynamics of systems with-

out controllers are presented. Simulation of the dynamics of these systems reveals the
qualitative properties of the systems, and this is useful a starting point for designing
controllers. MATLAB code is included for two of the examples to make it easy for the
reader to simulate the systems with MATLAB or SIMULINK.

14.1.2 The Moore Greitzer model

A jet engine consists basically of a compressor, a combustion chamber, a turbine and
connecting ducts. The compressor delivered compressed air to the combustion chamber
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Figure 14.2: Simulation of rotating stall. Φ,Ψ and J are plotted with dashed solid and
dash-dotted lines respectively.
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Figure 14.3: Simulation of surge. Φ,Ψ and J are plotted with dashed solid and dash-
dotted lines respectively.
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where fuel is added. The gas expands and drives the turbine which delivers the required
power to the compressor over a shaft. The thrust force comes from the mass flow through
the restriction behind the turbine, and in modern jet from a fan that is driven by the
turbine If the jet-stream of another aeroplane meets the intake, or if the aspect angle of
the aeroplane becomes too large there will be a severe disturbance in the fluid flow at
the compressor inlet. This may cause the mass flow through the compressor to become
smaller than a critical value given by the surge line, and the engine will enter one of two
unstable operating modes known as surge and rotating stall. Surge is an axisymmetric
pulsation of the flow through the compressor, while rotating stall is an instability where
the circumferential flow pattern is disturbed. If the engine enters rotating stall it will
be necessary to shut down the engine, which may lead to the plane falling out of the
sky. These physical phenomena are described by the Moore-Greitzer model (Moore
and Greitzer 1986) that describes the transients in an axial compression system like an
aircraft jet engine. Based on this model a number of control systems have been designed
to stabilize surge and stall. This is discussed in (Gravdahl and Egeland 1999). In the
model the turbine is modeled as a throttle and the combustion chamber is called the
plenum. The model consists of three nonlinear differential equations, and the states are
plenum pressure, mass flow and rotating stall amplitude. The rotating stall amplitude
is a measure of the unstable non-axisymmetric flow disturbance. All states have been
made normalized. The Moore-Greitzer model is written

Ψ̇ =
1

4lcB2

³
Φ− γT

√
Ψ
´

(14.1)

Φ̇ =
H

lc

Ã
−Ψ− ψc0

H
+ 1 +

3

2

µ
Φ

W
− 1

¶µ
1− J

2

¶
− 1

2

µ
Φ

W
− 1

¶3!
(14.2)

J̇ = J

Ã
1−

µ
Φ

W
− 1

¶2
− J

4

!
σ (14.3)

where Ψ is the nondimensional plenum pressure (pressure divided by density and the
square of compressor rotational speed), Φ is the average mass flow coefficient (axial flow
velocity divided by compressor rotational speed), and J is the squared amplitude of
rotating stall amplitude. The constant lc is the total length of the compressor and duct,
Ac is the cross sectional flow area, γT is a parameter proportional to the throttle opening,
and H, W , ψc0 and σ are constants describing the compressor. Finally,

B =
U

2c

r
Vp
Aclc

(14.4)

is Greitzer’s B-parameter, where U is the tangential speed of the compressor, c is the
speed of sound, Vp is the plenum volume, and Ac is the cross sectional flow area.
Numerical values for a laboratory compression system in unstable operation is H =

0.18, W = 0.25, ψc0 = 0.30, σ = 0.38, γT = 0.5 and lc = 2. Initial conditions that
correspond to a stable operating point are given by Ψ(0) = Φ(0) = 0.6, J(0) = 0.1. By
setting the B-parameter at B = 0.1, the engine will go into rotating stall, and by setting
the B-parameter at B = 1, the engine will start to surge.
The model (14.1)-(14.3) can be simulated in SIMULINK under MATLAB by imple-

menting the following SIMULINK s-function:

function [sys,x0] = MooreGreitzer(t,x,u,flag)
H=0.18;



14.1. INTRODUCTION 513

W=0.25;
l_c=2;
psi_co=0.30;
s=0.38;

if flag == 1,
%return state derivatives
gamma_T=u(1);
B=u(2);
sys(1)=1/(4*l_c*B^2)*(x(2)-gamma_T*sqrt(x(1)));
sys(2)=H/l_c*(-(x(1)-psi_co)/H+1+1.5*(x(2)/W-1)*(1-0.5*x(3))

-0.5*(x(2)/W-1)^3);
sys(3)=x(3)*(1-(x(2)/W-1)^2-x(3)/4)*s;

elseif flag == 0,
% return initial conditions
sys=[3;0;3;2;0;0];
x0=[0.6;0.6;0.1];

elseif flag == 3,
% return outputs
sys=[x(1) x(2) x(3)];

else
sys = [];

end

The model may now be simulated in SIMULINK by making a block diagram as shown
in Figure 14.1. The simulation result for both rotating stall and surge is shown in Figures
14.2 and 14.3.

14.1.3 The restricted three-body problem

The restricted three-body problem describes the motion of a satellite moving in the
combined gravitational field of the moon and the earth. There are three bodies in the
problem, the satellite, the moon and the earth. The mass of the spacecraft is assumed
to be so small that it does not influence the motion of the moon or the earth. The
normalized model is derived in Section 8.9.3, and is given by

ẋ = vx (14.5)

ẏ = vy (14.6)

v̇x = 2vy + x− m1 (x+m2)

r31
− m2 (x−m1)

r32
(14.7)

v̇y = −2vx + y − m1y

r31
− m2y

r32
(14.8)

where

r1 =

q
(x+ m2)

2 + y2 (14.9)

r2 =

q
(x−m1)

2 + y2 (14.10)

m1 + m2 = 1 (14.11)
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Orbit Numerical values

1

x0
y0
vx0
vy0
T
m2

0.994
0
0
−2.00158510637908252240537862224
17.0652165601579625588917209
0.012277471

2

x0
y0
vx0
vy0
T
m2

0.994
0
0
−2.0317326295573368357302057924
11.124340337266085134999734047
0.012277471

3

x0
y0
vx0
vy0
T
m2

1.2
0
0
−1.04935750983031990726
6.192169333131963970674

(82.45)
−1

Table 14.1: Initial conditions and periode T for three periodic orbit of the resticted
three-body problem.

Here x and y are the position coordinates of the satellite, vx is the velocity in the x
direction and vy is the velocity in the y direction. The mass of the earth is m1 and the
mass of the moon is m2. The acceleration terms are due to the gravitational field, and
Coriolis and centrifugal effects due to the rotation of the earth-moon system. The energy
function of the system is given by

h =
1

2

¡
v2x + v2y − x2 − y2

¢− m1

r1
− m2

r2
(14.12)

and the conservation of energy implies that h is a constant during the motion of the
system. This can be used to check the accuracy of computed solutions.
We would like to compute the solution of the differential equation using a numerical

scheme. Several periodic orbits have been found for this system that can be used to check
the accuracy of numerical integrators (Hairer and Wanner 1996), (Shampine et al. 1997).
It turns out that the solution is very sensitive close to the moon at (x, y) = (1, 0), and
close to the earth at (x, y) = (0, 0). As a consequence of this, a standard fixed step
integrator will be useless for the integration of this system. The widely used Euler’s
method give large errors even with 24000 time steps per orbit, and even the fourth order
Runge-Kutta method RK4 gives significant errors with 6000 time steps. The parameters
describing three periodic orbits are given in Table 14.1.
The solutions were computed with the ode45 function in MATLAB with a relative

tolerance of 10−6. The computation of the first orbit took 697 steps for Orbit 1, 621
steps for Orbit 2, and 601 steps for orbit 3. The results for the computation of two orbits
are shown in Figures 14.4—14.6. Note that the integration is sufficiently accurate for the
two orbits to coincide.The code for generating the plots is the MATLAB script

tf1=17.0652165601579625588917206249; %Periode
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Figure 14.4: Periodic orbit 1 of the restricted three-body problem
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Figure 14.5: Periodic orbit 2 of the restricted three-body problem
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Figure 14.6: Periodic orbit 3 of the restricted three-body problem
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tf2=11.124340337266085134999734047;
tf3=6.192169333131963970674;
x0=0.994; x03=1.2; y0=0; vx0=0.0; %Initial conditions
vy01=-2.00158510637908252240537862224;
vy02=-2.0317326295573368357302057924;
vy03=-1.04935750983031990726;
N=1; %Number of orbits
options = odeset(’RelTol’,1e-6);
[t,y] = ode45(’OrbitODEEq’,[0 N*tf1],[x0 0 0 vy01],options);
plot(y(:,1),y(:,2),0,0,’.’,1,0,’.’);
axis([-1.5 1.5 -1.5 1.5]); grid; size(t) %number of steps
options = odeset(’RelTol’,1e-6);
[t,y] = ode45(’OrbitODEEq’,[0 N*tf2],[x0 0 0 vy02],options);
figure; plot(y(:,1),y(:,2),0,0,’.’,1,0,’.’);
axis([-1.5 1.5 -1.5 1.5]);grid; size(t) %number of steps
options = odeset(’RelTol’,1e-6);
[t,y] = ode45(’OrbitODEEq2’,[0 N*tf3],[x03; 0; 0; vy03],options);
figure; plot(y(:,1),y(:,2),0,0,’.’,1,0,’.’);
axis([-1.5 1.5 -1.5 1.5]); grid; size(t) %number of steps

and the function

function dydt = OrbitODEEq(t,y)

m2 = 0.012277471;
m1 = 1 - m2;
r13 = (((y(1) + m2)^2 + y(2)^2) ^1.5);
r23 = (((y(1) - m1)^2 + y(2)^2) ^1.5);
dydt = [ y(3)

y(4)
(2*y(4) + y(1) - m1*((y(1)+m2)/r13)...

- m2*((y(1)-m1)/r23))
(-2*y(3) + y(2) - m1*(y(2)/r13)...

- m2*(y(2)/r23)) ];

The function OrbitODEEq2 is identical to OrbitODEEq except for the numerical value
of m2.

14.1.4 Mass balance of chemical reactor

A chemical reaction

A → B (slow)
B +B → B + C (very fast)
B + C → A+ C (fast)

in a closed tank has the mass balance equations

ẏ1 = −0.04y1 + 104y2y3 y1(0) = 1
ẏ2 = 0.04y1 − 104y2y3 −3 · 107y22 y2(0) = 0
ẏ3 = 3 · 107y22 y3(0) = 0

(14.13)



14.2. PRELIMINARIES 517

The solution of these equations can be computed numerically. This is a difficult system,
however, to integrate, as it has both very fast and slow dynamics. Because of this,
the process has been used as a benchmark for testing the performance of numerical
integrators.

14.2 Preliminaries

14.2.1 Notation

We will investigate the problem of computing a numerical solution to the initial value
problem

ẏ = f(y,t), y(t0) = y0 (14.14)

The system has the exact solution y(t), and we would like to compute a numeric solution
which approximates the exact solution with satisfactory accuracy. This will be done
with a time step h so that the solution is computed for (t0, t1, . . . , tn, . . . , tN ) where
tn+1 − tn = h. The numerical solution at time tn is denoted yn, while the exact solution
at time tn is denoted y(tn).

14.2.2 Computation error

To analyze the accuracy of a computed solution it is useful to have a measure of how
much the error increases in one time-step. To do this we introduce the concept of a local
solution yL(tn; t), which is the exact solution of (14.14) with initial condition yn at tn,
that is,

ẏL(tn; t)= f [yL(tn; t)], yL(tn; tn) = yn (14.15)

In particular we will be concerned with the local solution at the next time-step, which
is yL(tn; tn+1). The deviation of the computed solution yn+1 from the local solution
yL(tn; tn+1) will then be the error introduced by the numerical scheme from time tn to
time tn+1.

The local error en+1 is the is the difference of the computed solution yn+1 from the local
solution yL(tn; tn+1) at time tn+1:

en+1 = yn+1 − yL(tn; tn+1) (14.16)

The global error En+1 is the error in the computed solution yn+1 relative to the exact
solution y(tn+1) at time tn+1:

En+1 = yn+1 − y(tn+1) (14.17)

The local error en+1 is the error in the solution resulting from the computation from
time tn to tn+1.The global error En+1 is the error in the solution resulting from the
computation from initial time t0 to tn+1.

14.2.3 The order of a one-step method

A one-step method is a numerical scheme which computes yn+1 as a function of yn
according to

yn+1 = yn + hφ(yn, tn) (14.18)
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where φ(·) is given by the particular numerical method that is used. We would like our
method to give a small error in some sense when the time step is small. One way of
characterizing different methods is the concept of the order of the method. We say that
the method is of order p if p is the smallest integer so that

en+1 = O(hp+1) (14.19)

Here we have used the order notation O (·) (Lin and Segel 1974). The function φ(x)
satisfies

φ(x) = O[ψ(x)] (14.20)

if there exists a constant C > 0 so that

|φ(x)| ≤ C |ψ(x)| (14.21)

when x is close to zero.

Example 210 The expression φ(x) = O (xm) implies that there exists a C > 0 so
that |φ(x)| ≤ C |xm|. Moreover, if C > 0, then Chm = O(hm), which is implied by
|Chm| ≤ C |hm|.

To investigate the order of a method it is useful to develop the Taylor series expansion
of yL(tn; tn+1) around yn. The Taylor series is given by

yL(tn; tn+1) = yn +hf(yn, tn)+ . . .+
hp

p!

dp−1f(yn, tn)

dtp−1
+

hp+1

(p + 1)!

dpf [yL(τ), τ ]

dtp
(14.22)

where tn ≤ τ ≤ tn+1. As the local error is en+1 = yn+1 − yL(tn; tn+1), and we arrive at
the following result

A one-step method is of order p if p is the smallest integer so that en+1 = O(hp+1). If
the numerical solution yn+1 satisfies the equation

yn+1 = yn + hf(yn, t) + . . . +
hp

p!

dp−1f(yn, tn)

dtp−1
+O(hp+1) (14.23)

then en+1 = O(hp+1), and it follows that the method is of order p.

Analysis of the global error is somewhat more complicated. However, we state without
further analysis that for one-step methods the global error is En+1 = O(hp).

14.2.4 Linearization

The stability and performance of a one-step method for the numerical integration of
(14.14) can be investigated in terms of the linearized system equations, and in this
section we will see how this can be done. The basic idea is to apply a one-step method
to the linearized system. From basic systems theory it is known that the dynamics of a
linearized system is to a large extent determined by the location of the eigenvalues of the
Jacobian matrix. In the same way, the performance of a one-step method applied to a
linear system can be described by the eigenvalues of the Jacobian in terms of the stability
function of the method. We will first establish the necessary mathematical background
for this.
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Suppose that y∗(t) is a solution of the differential equation

ẏ∗= f(y∗,t), y∗(t0) = y∗0 (14.24)

Linearization of the differential equation around the solution y∗(t) is based on writing
y = y∗ +∆y and using the Taylor series

ẏ∗ +∆ẏ = f(y∗,t) +
∂f(y,t)

∂y

¯̄̄̄
y=y∗

∆y (14.25)

We define the Jacobian J of the system to be

J =
∂f(y,t)

∂y

¯̄̄̄
y=y∗

=

(
∂fi(y,t)

∂yj

¯̄̄̄
y=y∗

)
(14.26)

and obtain the linearization of (14.14) which is

∆ẏ = J∆y (14.27)

The solution ∆y(t) of (14.27) can be expressed as a linear combination

∆y =
dX
i=1

qi(t)mi (14.28)

of solutions qi(t) of the scalar differential equations

q̇i = λiqi, i = 1, . . . , d (14.29)

where q = (q1, . . . , qn)T , λi are the eigenvalues of J, and mi are the eigenvectors of J.
This means that we can study the dynamics of the linearized system (14.27) by finding
the eigenvalues of J. In particular, if we apply a one-step method to (14.27), then the
solution ∆yn+1 will be the same as if we apply the method to (14.29) and compute

∆yn+1 =
dX
i=1

(qi)n+1mi (14.30)

Suppose that there is a function R(s), which will be called the stability function, so
that the one-step method gives the numerical solution

(qi)n+1 = R(hλi)(qi)n (14.31)

when applied to (14.29). Then

∆yn =
dX
i=1

Rn(hλi)(qi)0mi (14.32)

and the following conclusion may be drawn:

The numerical solution ∆yn of the linearized system (14.27) is stable if the magnitude
of the stability function is less than or equal to unity for all the eigenvalues, that is, if

|R(hλi)| ≤ 1, i = 1, . . . , d (14.33)

where h is the step-length and λi is an eigenvalue of J.
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Example 211 Consider the system

ẏ1 = y2 (14.34)

ẏ2 = −γy31 − cy2 (14.35)

The linearization around y1 = 0, y2 = 0 isµ
ẏ1
ẏ2

¶
=

µ
0 1
0 −c

¶µ
y1
y2

¶
(14.36)

which has eigenvalues λ1 = 0 and λ2 = −c. The linearization around a solution y∗1(t),
y∗2(t) is µ

∆ẏ1
∆ẏ2

¶
=

µ
0 1

−3γ (y∗1)
2 −c

¶µ
∆y1
∆y2

¶
(14.37)

The eigenvalues are given by

λ2 + cλ + 3γ (y∗1)
2

= 0 (14.38)

which gives

λ = − c
2
±
r³ c

2

´2
− 3γ (y∗1)

2 (14.39)

which implies that Re[λ] ≤ 0. We see that for large |y∗1 |, that is when 3γ (y∗1)
2 À ¡

c
2

¢2
,

then the system becomes oscillatory, while for small |y∗1 | the system is overdamped.

14.2.5 The linear test function

Important insight on the properties of a numerical integration scheme is gained by analyz-
ing the performance of the method for the linearization of the system. From the previous
section it is clear that the performance of a numerical integrator for linear systems can
be investigated by applying the method to the linear test system

ẏ = λy (14.40)

The numerical solution for this system is

yn+1 = R(hλ)yn (14.41)

where R(hλ) is the stability function for the method. Stability of the numerical scheme
is ensured if the difference equation satisfies

|yn+1| ≤ |yn| (14.42)

and we see that this is ensured if

|R(hλ)| ≤ 1 (14.43)

This gives conditions on the time-step h and the location of the eigenvalue λ for the
numerical solution to be stable.
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14.3 Euler methods

14.3.1 Euler’s method

A simple but important numerical integration scheme is Euler’s method, where the nu-
merical solution is computed from

yn+1 = yn + hf(yn, tn) (14.44)

Comparison with (14.23) shows that the method is of order 1.

y n+1

yn

tn t n+1

k1 yL (t)

t

y

Figure 14.7: Euler’s method

The linear stability of Euler’s method can be investigated with the scalar test system

ẏ = λy (14.45)

Euler’s method gives
yn+1 = yn + hλyn = (1 + hλ)yn (14.46)

which shows that the stability function is

R(hλ) = 1 + hλ (14.47)

Stability is ensured whenever

|R(hλ)| = |1 + hλ| ≤ 1 (14.48)

This is the case if hλ is inside the circle of radius one around −1. For real eigenvalues λ
stability is ensured when

− 2

h
≤ λ ≤ 0 (14.49)

or, equivalently,

h ≤ − 2

λ
(14.50)

The region of stability is shown in Figure 14.14.
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Example 212 The system
ẏ = −y, y(0) = 1 (14.51)

was integrated for 0 ≤ t ≤ 8 with Euler’s method. The stability limit for the time step
is h = 2, as λ = −1 for this system. First a solution was calculated with h = 0.5, then
with h = 1.5, then with the stability limit h = 2.0, and finally with the unstable value
h = 2.2. The results are shown in Figure 14.8. It is clear from the results that the time
step should be less than h = 0.5 to achieve a reasonably accurate solution.

0 1 2 3 4 5 6 7 8
-1.5

-1

-0.5

0

0.5

1

1.5

h=2.0 

h=1.5 
h= 0.5

exp(-t) h=2.2 

Figure 14.8: Calculated solutions for the system ẏ = −y with Euler’s method for four
different time steps h. The exact solution exp(−t) is shown for comparison.

Example 213 The first order system

ẏ = −βy3 (14.52)

in Euler’s method gives the algorithm

yn+1 = yn − hβy3n (14.53)

The linearization of the differential equation around zero gives

ẏ = 0 (14.54)

that is, the test system ẏ = λy with λ = 0. This is stable for all time steps h.

Example 214 The system
ẏ = −αy − βy3 (14.55)

in Euler’s method gives
yn+1 = yn − h

¡
αyn + βy3n

¢
(14.56)

The linearization of the differential equation around zero gives

ẏ = −αy (14.57)
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while the linearization around y∗ gives

∆ẏ = −
h
α + 3β (y∗)2

i
∆y (14.58)

A large |y∗| requires a small h for the stability condition to hold. Here, the eigenvalue is
λ = −

h
α + 3β (y∗)2

i
, and the stability condition for the linearized system is

h ≤ 2

α + 3β (y∗)2
(14.59)

Example 215 Consider the second order system

ẍ = F (x, ẋ) (14.60)

To apply Euler’s method, the system must first be brought into the form (14.14). This
can be done by defining y1 = x and y2 = ẋ. This gives

ẏ1 = y2 (14.61)

ẏ2 = F (y1, y2) (14.62)

and Euler’s method gives the integration algorithm

y1,n+1 = y1,n + hy2,n (14.63)

y2,n+1 = y2,n + hF (y1, y2) (14.64)

14.3.2 The improved Euler method

The improved Euler method includes an evaluation byn+1 = yn + hf(yn, tn) according to
Euler’s method. Then an approximation of f (byn+1, tn+1) at the time tn+1 is computed
using byn+1. This value is used to improve the accuracy of the numerical solution yn+1.
The method is given by

k1 = f(yn, tn) (14.65)

k2 = f(yn + hk1, tn + h) (14.66)

yn+1 = yn +
h

2
(k1 + k2) (14.67)

To find the order of this method a Taylor series expansion around (yn, tn) is used. The
Taylor series of k2 is

k2 = f(yn, tn) + h
df

dt
(yn, tn) +

h2

2

d2f

dt2
(yn, tn) +O(h3) (14.68)

This gives the Taylor series

yn+1 = yn + hf(yn, tn) +
h2

2

df

dt
(yn, tn) +

h3

4

d2f

dt2
(yn, tn) +O(h4) (14.69)

The first two terms coincide with the Taylor series expansion of the local solution
yL(tn; tn+1), and the remaining terms are O(h3). Comparison with (14.23) leads to
the conclusion that the improved Euler’s method is of order p = 2.
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To investigate stability of the method, we apply the method to the test equation

ẏ = λy

This results in

k1 = λyn

k2 = λ (1 + hλ) yn

yn+1 =

Ã
1 + hλ+

(hλ)
2

2

!
yn

which is stable whenever ¯̄̄̄
¯1 + hλ+

(hλ)2

2

¯̄̄̄
¯ ≤ 1

On the real axis this corresponds to −2/h ≤ λ ≤ 0. The region of stability is shown in
Figure 14.14

Example 216 The first order system

ẏ = −αy3 (14.70)

in the improved Euler method gives the algorithm

k1 = −αy3n (14.71)

k2 = −α (yn + hk1)
3 (14.72)

yn+1 = yn +
h

2
(k1 + k2) (14.73)

Example 217 Consider the second order system

ẍ + cẋ+ γ(x)x = 0 (14.74)

which is set in standard form by using y1 = x and y2 = ẋ. Then the differential equation
is written µ

ẏ1
ẏ2

¶
=

µ
y2

−γ(y1)y1 − cy2

¶
(14.75)

The improved Euler’s method gives the integration algorithmµ
k1,1
k1,2

¶
=

µ
y2,n

−γ(y1,n)y1,n − cy2,n

¶
(14.76)µ

k2,1
k2,2

¶
=

µ
y2,n + hk1,2

−γ(y1,n + hk1,1)(y1,n + hk1,1)− c (y2,n + hk1,2)

¶
(14.77)

y1,n+1 = y1,n +
h

2
(k1,1 + k2,1) (14.78)

y2,n+1 = y2,n +
h

2
(k1,2 + k2,2) (14.79)
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14.3.3 The modified Euler method

The modified Euler method , also called the explicit midpoint rule, is derived in a similar
way as the improved Euler method. In the modified Euler method an approximation of
f at

¡
y(t + h

2 ), t + h
2

¢
is used to find the solution. This approximation is computed using

Euler’s method to find an estimate of y(t+ h
2 ). The method is illustrated in Figure 14.9

and is given by

k1 = f(yn, tn) (14.80)

k2 = f(yn +
h

2
k1, tn +

h

2
) (14.81)

yn+1 = yn + hk2 (14.82)

A Taylor series expansion of k2 gives

k1 k2

k2

yL(t  )
y n+1

yn

tn t n+1

n

t

Figure 14.9: The modified Euler method

k2 = f(yn, tn) +
h

2

df

dt
(yn, tn) +

¡
h
2

¢2
2

d2f

dt2
(yn, tn) +O(h3) (14.83)

which gives

yn+1 = yn + hf(yn, tn) +
h2

2

df

dt
(yn, tn) +

h3

8

d2f

dt2
(yn, tn) +O(h4) (14.84)

The method is seen to be of order p = 2.
Application of the method to the test systems ẏ = λy gives

k2 = λ

µ
1 +

h

2
λ

¶
yn

yn+1 =

Ã
1 + hλ+

(hλ)2

2

!
yn

which leads to the same stability conditions as for the improved Euler method.
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14.4 Explicit Runge-Kutta methods

14.4.1 Introduction

It was demonstrated above that Euler’s method, which is of order p = 1, can be modified
to a method of order p = 2 by computing yn+1 as a linear combination of f(yn, tn) and
an approximation of f [y (tn + ch) , tn + ch] where 0 < c ≤ 1. This result can be extended
to higher order methods by computing more approximations of f over the interval, and
then compute yn+1 as a linear combination of these approximations. This is done in
the explicit Runge-Kutta methods. A Runge-Kutta method is said to have σ stages if σ
approximations, or stages, of the function derivative f is used.

14.4.2 Numerical scheme

An explicit Runge-Kutta method with σ stages for the system

ẏ = f(y, t) (14.85)

is given by

ki = f(yn + h
i−1X
j=1

aijkj , tn + cih), i = 1, . . . , σ

yn+1 = yn + h
σX
j=1

bjkj

The explicit Runge-Kutta method can be written out as

k1 = f(yn, tn) (14.86)

k2 = f(yn + ha21k1, tn + c2h) (14.87)

k3 = f(yn + h (a31k1 + a32k2) , tn + c3h) (14.88)
... (14.89)

kσ = f(yn + h (aσ1k1 + . . . + aσ,σ−1kσ−1) , tn + cσh) (14.90)

yn+1 = yn + h(b1k1 + . . . + bσkσ) (14.91)

The equations for k1, . . . ,kσ are called the stage computations. The interpolation pa-
rameters ci, i ∈ {2, . . . , σ} are in the range 0 ≤ ci ≤ 1 and form an increasing sequence,
that is, 0 ≤ c1 ≤ . . . ≤ cσ ≤ 1. The weighting parameters at stage i are denoted
aij , i ∈ {2, . . . , σ}, j ∈ {1, . . . , i− 1}, and satisfy the normalization condition

i−1X
j=1

aij = ci ≤ 1 (14.92)

The weighting parameters bi of the solution yn+1 are required to satisfy the normalization
condition

Pσ
i=1 bi = 1. Each explicit Runge-Kutta method is described by its parameters
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aij , bi and ci, which can be arranged in a Butcher array of the form

0
c2 a21
c3 a31 a32
...

...
...

. . .
cσ aσ1 aσ2 . . . aσ,σ−1

b1 b2 . . . bσ−1 bσ

(14.93)

Alternatively, the parameters can be expressed by the matrix A and the vectors b and
c defined by

A =


0 0 . . . 0 0
a21 0 . . . 0 0
a31 a32 . . . 0 0
...

...
. . .

...
...

aσ1 aσ2 . . . aσ,σ−1 0

 , b =


b1
b2
b3
...
bσ

 , c =


0
c2
c3
...
cσ


The Butcher array is then written

c A
bT

We note that the matrix A is singular for explicit Runge-Kutta methods.

14.4.3 Order conditions

The parameters of an explicit Runge-Kutta method of σ stages must satisfy certain
conditions to be of order p. Here, a derivation of the conditions for a method with σ = 2
stages to be of order p = 2 will be done. The Butcher array is

0
c2 a21

b1 b2

A Taylor series expansion of k2 gives

k2 = f(yn, tn) + a21h
df

dt
(yn, tn) +O(h2)

The condition a21 = c2 from (14.92) then gives

yn+1 = yn + (b1 + b2)hf(yn, tn) + b2c2h
2 df

dt
(yn, tn) +O(h3) (14.94)

and it is seen that the right hand side is equal to the Taylor series expansion of yn+1 for
terms up to h2 if the parameters satisfy

b1 + b2 = 1 (14.95)

b2c2 =
1

2
(14.96)

Example 218 The improved Euler method has b1 = b2 = 1
2 and c2 = 1, which satisfies

the conditions in (14.95) and (14.96). The modified Euler method has b1 = 0, b2 = 1 and
c2 = 1

2 , which also agrees with the conditions (14.95) and (14.96). The is in agreement
with the result that both of these methods have σ = 2 stages, and are of order p = 2.
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In the same way 4 conditions can be found for σ = p = 3, while 8 conditions can be
found for σ = p = 4.
For higher order methods there are certain lower bounds for how many stages that

are needed (Hairer et al. 1993). For order 5 ≤ p ≤ 6, an explicit Runge-Kutta method
must have σ ≥ p+1 stages. For order p = 7, an explicit Runge-Kutta method must have
σ ≥ p + 2 stages, while to achieve order p ≥ 8, a method with at least σ ≥ p + 3 stages.

14.4.4 Some explicit Runge-Kutta methods

The following explicit Runge-Kutta methods are of order p = σ. Euler’s method, which
is of order 1, has the Butcher array

0
1

The improved Euler method is an explicit Runge-Kutta method with array

0

1 1
1
2

1
2

The modified Euler method has the array

0
1
2

1
2

0 1

Heun’s method has the following array

0
1
3

1
3

2
3 0 2

3
1
4 0 3

4

The region of stability is shown in Figure 14.14.
The famous fourth order Runge-Kutta method RK4 is of order 4 and has the array

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

The region of stability is shown in Figure 14.14.

14.4.5 Case study: Pneumatic spring

Consider the pneumatic spring system in Figure 14.10. The cylinder has cross section
A = 0.01 m2 and a vertical center axis pointing upwards with coordinate x. The cylinder
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m

ρκp=k

g

x

A

Figure 14.10: Pneumatic spring with gravity acting on the position.

is filled with air and has a piston of mass m = 200 kg that compresses the air. The
density of the air inside the cylinder is

ρ =
ma

Va
=

ma

Ax
(14.97)

where ma is the mass and Va = Ax is the volume of the air. The air is assumed to be
isentropic which implies that the pressure inside the cylinder is

p = p0

µ
ρ

ρ0

¶κ
= p0

³x0
x

´κ
(14.98)

where κ = 1.4 and p0 = 2 · 105 N/m2 is the pressure corresponding to a piston position
x0 = 1 m, and the density ρ0 := ma/ (Ax0) . The total force acting on the piston is
gravity and pressure forces:

F = −mg +Ap = −mg +Ap0

³x0
x

´κ
(14.99)

where g = 10 m/s2. Inserting the numerical values we see that mg = Ap0, which implies
that when x = x0 the force is F = 0 and the system is at an equilibrium at x = x0. The
equation of motion can then be written

ẍ + g
£
1− x−κ

¤
= 0 (14.100)

The standard form is ẏ = f(y) is obtained by setting

y =

µ
x
v

¶
, f =

µ
v

−g [1− x−κ]

¶
(14.101)

where v = ẋ is the velocity of the piston. We see that the system has an equilibrium at
x = 1, v = 0, where ẍ = 0.
Linearization around x∗ = 1 gives

∆ẏ = J∆y (14.102)
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Figure 14.11: Position of piston integrated with Euler’s method with h = 0.005 s and
with RK4 with h = 0.1 s.

where

∆y =

µ
x− 1
v

¶
, J =

µ
0 1

−gκ (x∗)−(κ+1) 0

¶
(14.103)

The eigenvalues of the linearization are found to be

λ1,2 = ±jω0, ω0 =

q
gκ (x∗)−(κ+1) (14.104)

Numerical values are
x∗ 0.5 1 2
ω0 4.3 3.7 3.3

(14.105)

The total energy E is the sum of the internal energy U = pV/(κ − 1), the gravity
potential mgx, and the kinetic energy 1

2mv2:

E =
1

κ− 1
p0Ax

−(κ−1) +mgx +
1

2
mv2 (14.106)

The total energy has its minimum value at the equilibrium state were the energy is

Emin =
1

κ− 1
p0A +mg = 7000 J (14.107)

The system was simulated with Euler’s method with time step h = 0.005, and with the
fourth order RK4 method with time step h = 0.1. The result is shown in Figure 14.11.The
solution computed with Euler’s method was unstable even with the very short time step
of 0.005, while the solution with RK4 was stable with a time step that was 20 times larger
than for the Euler solution. To check the accuracy of the solutions the total energy was
computed for the numerical solutions. For the exact solution the total energy will be
constant as there is no energy loss terms in the equation of motion. The solution from
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Figure 14.12: Total energy of solutions computed with Euler’s method and RK4. It is
seen that Euler’s method increases the energy in the system, while RK4 gives a slight
decrease in energy.

Euler’s method gave a steady increase in energy which is not in agreement with the
physics of the system is it has no energy source. The RK4 solution gave a slight decrease
in energy, which means that the RK4 introduced some damping in the system. The
results are shown in Figure 14.12.
The system has eigenvalues ±jω0 on the imaginary axis, and the stability limit for

RK4 is then h = 2.83/ω0, which can be seen from Figure 14.14. As the largest eigenvalue
occurs for ω0 = 4.3 this indicates that the stability limit would be hmin = 0.65 s. In
simulations it turned out that a slightly smaller value, h = 0.52 s was the stability limit
for this trajectory. This is demonstrated in Figure 14.13. The difference between the
theoretical value and the value found in simulations should be due to the system being
nonlinear.

14.4.6 Stability function

A general formula for the stability function of an explicit Runge-Kutta method in terms
of c, A and b is found as follows: Application of a general explicit Runge-Kutta method
to the linear time-invariant test system

ẏ = λy

gives

k1 = λyn
...

kσ = λ [yn + h (aσ1k1 + . . . + aσ,σ−1kσ−1)]
yn+1 = yn + h (b1k1 + . . . + bσkσ)
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Figure 14.13: Simulation of peumatic spring usning RK4 for three different step lengths.

In vector notation with κ =(k1, k2, . . . , kσ)
T and 1 =(1, 1, . . . , 1)

T this can be written

κ = λ (1yn + hAκ) (14.108)

yn+1 = yn + hbTκ (14.109)

Here κ can be solved from (14.108) and inserted into (14.109), which gives

R(hλ) = 1 + λhbT (I− hλA)−1 1 (14.110)

Alternatively, the system (14.108, 14.109) can be writtenµ
I− hλA 0
−hbT 1

¶µ
κ

yn+1

¶
=

µ
λ1
1

¶
yn

From Cramer’s rule it is seen that the stability function can be written

R(hλ) =
det

h
I− λh

³
A− 1bT

´i
det (I− λhA)

(14.111)

This formula has the advantage that it clearly shows how the numerator and denominator
depend on hλ, A and b. For an explicit Runge-Kutta method the A matrix have nonzero
elements only below the diagonal, and it follows that det (I− λhA) = 1. Using (14.111)
we find:

For an explicit Runge-Kutta method the stability function can be written

RE(hλ) = det
h
I− λh

³
A− 1bT

´i
(14.112)

This expression shows that for explicit Runge-Kutta methods
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1. |RE(hλ)| will tend to infinity when |λ| goes to infinity
2. RE(hλ) is a polynomial in hλ of order less than or equal to σ.

Example 219 Consider the improved Euler method where

A =

µ
0 0
1 0

¶
, b =

1

2

µ
1
1

¶
Then

RE(hλ) = det

µ
1 + λh

2
λh
2

−λh
2 1 + λh

2

¶
= 1 + λh +

(λh)2

2
(14.113)

We see that RE(hλ) is a polynomial in hλ of order 2 which is equal to the number of
stages.

Next we will comment on explicit Runge-Kutta methods where the number of stages
equals the order of the method. The local solution yL(tn; tn+1) starting from yL(tn; tn) =
yn is given by

yL(tn; tn+1) = eλhyn

A Taylor series expansion of the local solution is therefore

yL(tn; tn+1) =

"
1 + hλ +

(hλ)
2

2!
+

(hλ)
3

3!
+ . . .

#
yn (14.114)

Therefore, if an explicit Runge-Kutta method of order p is used, then the numerical
solution yn+1 for a linear test system with will have the Taylor series expansion

yn+1 =

"
1 + hλ +

(hλ)2

2!
+ . . . +

(hλ)p

p!
+O(hp+1)

#
yn (14.115)

It follows that the stability function for a explicit method of order p satisfies

RE(λh) = 1 + hλ+
(hλ)

2

2!
+ . . . +

(hλ)
p

p!
+O(hp+1) (14.116)

The stability function of an explicit Runge-Kutta method with σ stages is a polynomial
in λh of degree less than or equal to the number of stages σ. If the method is of σ = p ≤ 4
stages the stability function must have exactly p terms, and this is only possible if

RE(λh) = 1 + hλ+
(hλ)

2

2!
+ . . . +

(hλ)
p

p!
when p = σ

Example 220 The improved Euler method has stability function

R(λh) = 1 + λh +
(λh)2

2

which coincides with the Taylor series expansion with two terms. This agrees with the
fact that the method has 2 stages and is of order 2.
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Figure 14.14: Regions of stability in s = hλ for the test system ẏ = λy for the explicit
Runge-Kutta methods. ERK(1): Euler’s method, ERK(2): The modified and the im-
proved Euler method, ERK(3): Heun’s third order method, and ERK(4): The fourth
order Rung-Kutta method RK4.

14.4.7 FSAL methods

We will here take a closer look at explicit Runge-Kutta methods of the FSAL type.

An explicit Runge-Kutta method is said to be an FSAL method if

kσ = f (yn+1, tn+1) (14.117)

From the definition we see that in an FSAL method gives some savings in computa-
tions as

knσ = kn+11 (14.118)

where knσ denotes the last stage in the calculation of yn+1, and kn+11 denotes the first
stage in the computation of yn+2. This is the reason for calling such methods First Same
As Last, which is abbreviated to FSAL. In an FSAL method the weighting vector b is
equal to the last row in the stage matrix A.

14.5 Implicit Runge-Kutta methods

14.5.1 Stiff systems

When a system ẏ = f(y, t) is integrated with an explicit Runge-Kutta method the time
step h cannot be selected so that h |λmax| is significantly larger than unity, where λmax
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is the largest eigenvalue of the Jacobian J = ∂f(y,t)/∂y. As an example of this, h |λmax|
must be less than 2 for Euler’s method, and it is seen from Figure 14.14 that approxi-
mately the same hold for e.g. RK4. Some systems have a large spread in eigenvalues, and
as the time-step of an explicit method must be selected to ensure stability, it follows that
very many time steps are required to compute the dynamics corresponding to the small
eigenvalues. This gives problems with simulation time and accuracy. Systems that have
a large spread in eigenvalues of the Jacobian are referred to as stiff systems. Stiff systems
are difficult to solve with explicit methods. This has lead to a recent and more pragmatic
definition of stiff systems as systems that are difficult to solve with explicit methods. Ex-
amples of stiff systems are the restricted three-body problem in Section 14.1.3, and the
mass balances in Section 14.1.4. We will see that stiff problems can be solved efficiently
by implicit Runge-Kutta method, that are presented in the following.

14.5.2 Implicit Runge-Kutta methods

An implicit Runge-Kutta method with σ stages for the system

ẏ = f(y, t) (14.119)

is given by

k1 = f(yn + h (a11k1 + . . . + a1σkσ) , tn + c1h) (14.120)
... (14.121)

kσ = f(yn + h (aσ1k1 + . . . + aσσkσ) , tn + cσh) (14.122)

yn+1 = yn + h(b1k1 + . . . + bσkσ) (14.123)

As for explicit Runge-Kutta methods, the interpolation parameters ci, i ∈ {1, . . . , σ}
are in the range 0 ≤ ci ≤ 1. The weighting factors satisfy the normalization equationPσ

i=1 bi = 1, and usually the weighting factors at each stage satisfy
Pσ

j=1 aij = ci.

14.5.3 Implicit Euler method

The implicit Euler method is an implicit Runge-Kutta method with one stage described
by the following array:

1 1
1

This gives

k1 = f(yn + hk1, tn+1)

yn+1 = yn + hk1

This method is said to be a Radau IIA method.
The stability function is found by applying the method to the linear test system

ẏ = λy. Then k1 = λyn + λhk1 can be solved for k1, and inserting this into the equation
for yn+1 we get

yn+1 = yn +
hλ

1− hλ
yn =

1

1− hλ
yn (14.124)
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The stability function is seen to be

R (hλ) =
1

1− hλ
(14.125)

The region in the complex plane where the method is stable is given by |hλ− 1| ≥ 1 and
shown as the shaded region in Figure 14.15.

Figure 14.15: The shaded area shows where the implicit Euler method is stable as a
function of the complex variable s = λh.

14.5.4 Trapezoidal rule

Consider the implicit Runge-Kutta method

k1 = f(yn, tn) (14.126)

k2 = f

·
yn +

h

2
(k1 + k2) , tn + h

¸
(14.127)

yn+1 = yn +
h

2
(k1 + k2) (14.128)

which is a Lobatto IIIA method of order 2. The Butcher array is

0 0 0

1 1
2

1
2

1
2

1
2

A closer look reveals that
k2 = f (yn+1, tn+1) (14.129)

as the last row in A is equal to bT . This implies that the expression for yn+1 can be
rewritten in the form

yn+1 = yn +
h

2
[f(yn, tn) + f (yn+1, tn+1)] (14.130)
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which is known as the trapezoidal rule.
The stability function is found from (14.130) which for the test equation gives

yn+1 = yn +
hλ

2
(yn + yn+1) (14.131)

and it follows that

R(λh) =
1 + hλ

2

1− hλ
2

(14.132)

We see that

|R(λh)|2 =

¡
1 + Re

£
hλ
2

¤¢2
+
¡
Im
£
hλ
2

¤¢2¡
1−Re

£
hλ
2

¤¢2
+
¡
Im
£
hλ
2

¤¢2 (14.133)

and it follows that |R(λh)| ≤ 1 and the method is stable for all λ that have negative real
part. The area in the complex plane where the trapezoidal rule is stable is therefore the
left half plane as shown in Figure 14.16.

Figure 14.16: The shaded area shows where the trapezoidal rule is stable as a function
of the complex variable s = λh.

14.5.5 Implicit midpoint rule

We consider the implicit Runge-Kutta method

k1 = f

µ
yn +

h

2
k1, tn +

h

2

¶
yn+1 = yn + hk1

with Butcher array
1
2

1
2

1

This method is a Gauss method of order 2. This implicit Runge-Kutta method can
be reformulated as a scheme known as the implicit mid-point rule. To do this we first
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note that the equation for yn+1 gives hk1 = yn+1 − yn. Inserting this into the stage
computation gives

yn+1 − yn = hf

·
yn +

1

2
(yn+1 − yn) , tn +

h

2

¸
which is simplifies to the following scheme

yn+1 = yn + hf

µ
yn + yn+1

2
, tn +

h

2

¶
(14.134)

which is called the implicit mid-point rule.
From (14.134) we find that the stability function for the implicit mid-point rule is

R(λh) =
1 + hλ

2

1− hλ
2

(14.135)

which is identical to the stability function for the trapezoidal rule. Therefore the stability
properties of the two methods are the same for linear time-invariant systems. However it
turns out that for nonlinear systems the implicit mid-point rule has much better stability
properties, as will be seen in the following sections.

14.5.6 The theta method

Consider the implicit Runge-Kutta method

k1 = f(yn, tn) (14.136)

k2 = f [yn + h [θk1 + (1− θ)k2] , tn + h] (14.137)

yn+1 = yn + h [θk1 + (1− θ)k2] (14.138)

where θ ∈ [0, 1] is a parameter. The Butcher array is

0 0 0

1 θ 1− θ

θ 1− θ

As for the trapezoidal rule, the second stage can be written k2 = f (yn+1, tn+1) . Then
the expression for yn+1 can be rewritten in the form

yn+1 = yn + h [θf(yn, tn) + (1− θ) f (yn+1, tn+1)]

which is known as the theta method . We see that for θ = 1 the method is Euler’s method,
for θ = 1

2 the method is the trapezoidal rule, and for θ = 0 it is the implicit Euler method.
The stability function is

R(hλ) =
1 + hλθ

1− hλ (1− θ)
(14.139)

14.5.7 Stability function

The application of an implicit Runge-Kutta method to a linear test system gives

κ = λ (1yn + hAκ) (14.140)

yn+1 = yn + hbTκ (14.141)
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as for explicit methods, where the notation is defined in connection with equations
(14.108) and (14.109). From (14.110) and (14.111) we may conclude as follows:

The stability function for an implicit Runge-Kutta method is given by the two alternative
expressions

R(hλ) =
h
1 + λhbT (I− hλA)

−1
1
i

(14.142)

R(hλ) =
det

h
I− λh

³
A− 1bT

´i
det (I− λhA)

(14.143)

From (14.143) it is seen that the stability function for an implicit Runge-Kutta method
is a rational expression in s = λh. We will see in the following that certain properties of
the implicit methods will depend on the degree of the numerator and denominator poly-
nomials in the stability function. In particular it will be shown that the most important
implicit methods have stability functions R(s) given by Padé approximations of es, and
that interesting conclusions can be drawn from this fact. However, first we will present
some implicit methods and a case study.

14.5.8 Some implicit Runge-Kutta methods

Gauss order 2, which is the implicit mid-point rule

1
2

1
2

1

Gauss order 4, which is the Hammer and Hollingsworth method of order 4

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

Radau IA, order 3

0 1
4 −14

2
3

1
4

5
12

1
4

3
4

Radau IIA, order 3
1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

Lobatto IIIA, order 2, which is the trapezoidal rule

0 0 0

1 1
2

1
2

1
2

1
2
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Lobatto IIIB order 2
0 1

2 0

1 1
2 0
1
2

1
2

Lobatto IIIC order 2
0 1

2 −12
1 1

2
1
2

1
2

1
2

14.5.9 Case study: Pneumatic spring revisited

The pneumatic spring from Section 14.4.5 was simulated with implicit Runge-Kutta
methods with a time step h = 0.5 s, which was found to be the stability limit for this
system when the explicit RK4 was used (Figure 14.13). The methods that were used was
the Gauss method of order 2 (the implicit mid-point rule), Radau IIA of order 3, Lobatto
IIIC of order 2 and the implicit Euler method. The results are shown in Figure 14.17.
The Gauss method gave no damping, while the Radau method gave some damping, the
Lobatto method gave more damping than the Radau method, and the implicit Euler
method gave the most damping. This is clearly seen in Figure 14.18 where the total
energy corresponding to the numerical solutions is plotted. It is seen that the energy of
the solution from the Gauss method fluctuates around the correct value, while the other
methods introduce what can be termed numerical dissipation of energy. In particular
it is seen that the implicit Euler method gave a solution where the total energy quickly
converged to the energy of the equilibrium state.
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Figure 14.17: Position of piston computed with the implicit Runge-Kutta methods Gauss
of order 2, Radau IIA of order 3, Lobatto IIIC of order 2 and the implicit Euler method.

To study how Runge-Kutta methods work for stiff oscillatory systems the pneumatic
spring system was modified to include a mechanical resonance in the mass as shown
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Figure 14.18: Total energy for the pneumatic system when the solution is computed with
the implicit Runge-Kutta methods. The energy oscillates around the correct value for
the Gauss of order 2, while the energy is numerically dissipated with the methods Radau
IIA of order 3, Lobatto IIIC of order 2 and the implicit Euler method.

in Figure 14.19. This was done by splitting the mass m = 200 kg into two masses
m1 = m2 = 100 kg, which are connected by a spring with stiffness K = m1ω

2
2/2 with

axis along the vertical axis. The position of m1 is denoted x1 and the position of m2 is
denoted x2. The coordinate x2 is given an offset so that x1 = x2 when the spring force
is zero. The equilibrium energy of this system with two degrees of freedom is the same
as for the one degree of freedom system studied above. The equations of motion are

ẍ1 + g

µ
1− m

m1
x−κ1

¶
+

ω22
2

(x1 − x2) = 0 (14.144)

ẍ2 + g +
ω22
2

(x2 − x1) = 0 (14.145)

where ω2 = 1000 rad/s, m1 = m2 = 100 kg and m = m1 + m2 = 200 kg. The standard
form is ẏ = f(y) is obtained by setting

y =


x1
v1
x2
v2

 , f =


v1

−g(1− m
m1

x−κ)− ω22
2 (x1 − x2)

v2

−g − ω22
2 (x2 − x1)

 (14.146)

where vi = ẋi is the velocity of the piston. We see that the system has an equilibrium
at x∗1 = 1, v∗1 = 0, x∗2 = 1− m2

K where ẍi = 0. Linearization around x∗1, x
∗
2 gives

∆ẏ = J∆y (14.147)
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Figure 14.19: Pneumatic spring with mechanical resonance in load. The x coordinate of
mass m2 is given an offset so that x1 = x2 when the spring is unloaded.

where

∆y =


x1 − x∗1

v1
x2 − x∗2

v2

 , J =


0 1 0 0

−g m
m1

κ (x∗)−(κ−1) − ω22
2 0

ω22
2 0

0 0 0 1
ω22
2 0 −ω22

2 0

 (14.148)

The eigenvalues of the linearization around the equilibrium are found to be

λ1,2 = ±jω1, ω1 = 3.7 rad/s (14.149)

λ3,4 = ±jω2, ω2 = 1000 rad/s (14.150)

This means that the system has the eigenvalues at ±j3.7 as the pneumatic spring, and
in addition a new set of eigenvalues have been introduced at ±j1000.
The system was simulated with RK4 with a time step h = 0.0005 s, where the step

size was selected so that hω2 = 0.5. The simulation result as shown in Figure 14.20
is fairly accurate, but it is seen from Figure 14.21 that the high frequency motion is
damped out even though there is no damping in the system. The phenomenon is clearly
seen from the plot of the total energy in Figure 14.22 where it is seen that the energy
converges to the energy level of the slow dynamics corresponding to λ1,2 = ±j3.7, which
is the energy that is obtained if x1 = x2.
The system was then simulated with the implicit methods Gauss of order 2 and

Lobatto IIIC of order 2 with a time step h = 0.05. This gives Nyquist frequency ωN =
π/0.05 = 62.8 rad/s, so that the resonance at 1000 rad/s is well above the Nyquist
frequency. The solution of the Gauss method, which is shown in Figure 14.23 gave no
damping, but the aliasing effect moved the energy of the fast dynamics associated with
the eigenvalues ±j1000 to oscillations with frequency lower than the Nyquist frequency.
This gave a beat phenomenon which is clearly seen in Figure 14.24, while it is seen from
Figure 14.25 that the total energy is constant for the Gauss solution. The Lobatto IIIC
solution gave quick damping of the fast dynamics, and a slight damping of the slow
dynamics. It is seen from Figure 14.25 that the energy associated with the fast dynamics
is dissipated in one step, and the total energy remains on the level of the energy associated
with the slow dynamics.
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Figure 14.20: Position of the two masses computed with RK4 with time step h = 0.0005
s.
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Figure 14.21: Offset equilibrium for the spring between masses one and two computed
with RK4 with h = 0.0005 s. The oscillation is seen to be lightly damped by the
integration method.
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Figure 14.22: Total energy corresponding to the numerical solution computed with RK4
with h = 0.0005 s. It is seen that the energy related to the fast dynamics is slowly
damped out.

14.6 Stability of Runge-Kutta methods

14.6.1 Aliasing

We consider the test equation ẏ = λy, and write the eigenvalue in the form

λ = σ + jω (14.151)

where σ is the real part and jω is the imaginary part. It is assumed that ω < π/h, that
is, ω is assumed to be less that the Nyquist frequency π/h. The local solution of the test
system is

yL (tn; tn+1) = eλhyn

Consider a system ẏ = µy, which has the local solution

yL (tn; tn+1) = eµhyn (14.152)

The two systems will give the same local solutions at tn+1 whenever eλh = eµh which is
implied by

µ = λ + j2k
π

h
= σ + j

³
ω + 2k

π

h

´
, k = 0,±1,±2, . . . (14.153)

If
µ = λ + 2kj

π

h
, k = ±1,±2, . . . (14.154)

then the system ẏ = µy where Im (λ) > π/h will have the same solution as the system
ẏ = λy where Im (λ) < π/h. This phenomenon is called aliasing.

14.6.2 A-stability, L-stability

The test system ẏ = λy is stable when Reλ ≤ 0. We consider an integration method
which gives yn+1 = R(λh)yn when applied to the test system. It would seem to be a
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Figure 14.23: Position of the two masses computed with a Gauss method of order 2 and
a Lobatto IIIC method of order 3. The time step was h = 0.05 with both methods.
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Figure 14.24: Offset in position between the two masses calculated with Gauss order 2
and Lobatto IIIC order 2 with h = 0.05 s. The Gauss method gave no damping, but
the energy of the fast dynamics was shifted to frequencies below the Nyquist frequency
ωN = 62.8 rad/s. The Lobatto method damped out the fast dynamics in one step.
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Figure 14.25: Total energy corresponding to the numerical solution of Gauss order 2 and
Lobatto IIIC order 2. The Gauss method gave a constant total energy in agreement with
the exact solution, while the Lobatto method damped out the energy associated witht
the fast dynamics.

useful property for an integration method if the method was stable for all stable test
systems. This property is called A-stability.

An method is A-stable if |R(λh)| ≤ 1 for all Reλ ≤ 0.

Integration methods that are A-stable will be stable also for systems with very fast
dynamics which in this context are systems that have dynamics which is significantly
faster that the time step h of the integration method. In particular, aliasing can be
problematic for A-stable methods, as high frequency oscillations will appear in the com-
puted solution as an oscillation with frequency below the Nyquist frequency π/h. As the
integration cannot give an accurate computation of such fast dynamics, it may be useful
that the method damp out the fast dynamics. This is the case for L-stable integration
methods.

A method is L-stable if it is A-stable and, in addition, if |R(jωh)|→ 0 when ω →∞ for
all systems ẏ = λy where λ = jω.

Example 221 We note that explicit Runge-Kutta methods have stability functions

RE(λh) = det
h
I− λh

³
A− 1bT

´i
(14.155)

It is clear that |RE(λh)|→∞ whenever |λ|→∞, and it follows that an explicit Runge-
Kutta method cannot be A-stable.

14.6.3 Stiffly accurate methods

We will here take a closer look at implicit Runge-Kutta methods that are stiffly accurate.
The stability function of an implicit Runge-Kutta method is found in the same way as
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for explicit Runge-Kutta methods. Therefore, the expression

R(hλ) =
h
1 + λhbT (I− hλA)−1 1

i
(14.110) can be used also for implicit Runge-Kutta methods. Suppose that A is non-
singular, and consider the case where λh tends to infinity. Then if the limit R(∞) :=
lims→∞R(s) exists, it is given by

R(∞) = lim
s→∞

h
1 + sbT (I− sA)

−1
1
i

= lim
s→∞

h
1− sbT (sA)

−1
1
i

= 1− bTA−11 (14.156)

Moreover, it is noted that for an implicit Runge-Kutta method where

kσ = f (yn+1, tn+1) (14.157)

then the weighting vector b is equal to the last row in the stage matrix A. This gives

b = ATeσ (14.158)

where eσ = (0, 0, . . . , 1)T is a σ-dimensional unit vector. Insertion of (14.158) into
(14.156) gives

R(∞) = 1− λheTσA(λhA)
−1

1 =1− eTσ1 =0 (14.159)

An implicit Runge-Kutta method is said to be stiffly accurate if the stage matrix A is
nonsingular and in addition b = ATeσ.

From (14.159) we find that

An A-stable Runge-Kutta method that is stiffly accurate will be L-stable.

Moreover, from (14.159) we may conclude that a stiffly accurate method will damp
out dynamics corresponding to eigenvalues λi that are large in the sense that |λih| are
much larger that unity. Consider the case where a stiffly accurate method is applied to a
stiff system, and the time step h is selected in the dynamic range of the slow dynamics.
Then the fast dynamics will have eigenvalues so that |λih| À 1. The fast dynamics will
therefore be damped out, and the solution will mainly correspond to the slow dynamics.
In particular, if there is an eigenvalue λj so that |λjh|→∞, then the dynamics associated
with this eigenvalue will be damped to zero.

Example 222 It is clear that a Gauss method cannot be stiffly accurate as for these
methods |R(jω)| = 1 for all ω.

Example 223 The Trapezoidal rule is a Lobatto IIIA method with

A =

µ
0 0
1
2

1
2

¶
, b =

µ
1
2
1
2

¶
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The last row in A is equal to bT , but the matrix A is singular. Thus the method is not
stiffly accurate. This agrees with the fact that the stability function is

R(s) = 1 + sbT (I− sA)−11

= 1 +
s

2

"¡
1 1

¢Ã 1 0
s
2

1− s
2

1
1− s

2

!µ
1
1

¶#

=
1 + s

2

1− s
2

which means that
|R(jω)| = 1

for all ω.

14.6.4 Padé approximations

The stability function R(s) of a Runge-Kutta method, which may be implicit or explicit,
is given by a rational expression in s, which is seen from (14.143) with s = λh. Properties
like A-stability and L-stability depend on the stability function. Also the region of
stability for a method is found from the stability function. Instead of checking such
properties for each method, it is possible to have more general results. This is done by
introducing a classification of Runge-Kutta methods based on a special characterization of
the stability functions. This will be done in the following using the Padé approximations
of the exponential function es.
First it is noted that the local solution of the test equation ẏ = λy over the time step

from tn to tn+1 is
yL (tn; tn+1) = eλhyn (14.160)

while the numerical solution is
yn+1 = R(λh)yn (14.161)

From these two equations it is seen that the accuracy of the numerical solution yn will
depend on to what extent the stability function approximates the exponential function,
that is, the accuracy of the numerical solution yn depends on the difference

es −R(s) (14.162)

between the exponential function in the exact solution (14.160), and stability the numer-
ical solution (14.161). Here we have used s = λh to simplify the notation. An explicit
Runge-Kutta method with σ stages approximates the exponential function es by the
polynomial approximation

R(s) = 1 + β1s + . . . + βσs
σ

In the special case that the method is of order p = σ ≤ 4 the stability function is given
by the Taylor series expansion of es given by

R(s) = 1 + s + . . . +
sp

p!

An implicit Runge-Kutta method of σ stages approximates es by the rational approxi-
mation

R(s) =
1 + β1s+ . . . + βks

k

1 + γ1s + . . . + γms
m
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k

0 1 2 3

0 1 1 + s 1 + s+ s2

2! 1 + s + s2

2! + s3

3!

m 1 1
1−s

1+ 1
2s

1− 1
2 s

1+ 2
3s+

1
6s

2

1− 1
3 s

1+ 3
4s+

1
4s

2+ 1
24 s

3

1− 1
4s

2 1

1−s+ s2

2!

1+ 1
3 s

1− 2
3 s+

1
6 s

2

1+ 1
2 s+

1
12s

2

1− 1
2 s+

1
12s

2

1+ 3
5s+

3
20 s

2+ 1
60s

3

1− 2
5s+

1
20s

2

3 1

1−s+ s2

2! − s3

3!

1+ 1
4 s

1− 3
4 s+

1
4 s

2− 1
24 s

3

1+ 2
5s+

1
20s

2

1− 3
5 s+

3
20s

2− 1
60s

3

1+ s
2+

s2

10+
s3

120

1− s
2+

s2

10− s3

120

Table 14.2: The Padé approximations P k
m(s) for m,n = 0, 1, 2, 3

k

0 1 2 3

0 Euler’s method Mod. Euler Heun’s, 3

m 1 Radau, 1 Gauss, 2, Trapez.

2 Lobatto IIIC, 2 Radau, 3 Gauss, 4

3 Lobatto IIIC, 4 Radau, 5 Gauss, 6

Table 14.3: Methods that have Pade approximations P k
m(s) as stability functions.

where m ≤ σ and k ≤ σ.
One particular rational approximation of the exponential function is the Padé ap-

proximation (Golub and van Loan 1989).

The Padé approximation P k
m(s) of the exponential function es is a rational function of s

with a numerator of degree k and a denominator of degree m. The Padé approximation
P k
m(s) of es is the rational approximation of es which has the highest order in s when
the numerator is of order k and the denominator is of order m.

The Padé approximation P k
m(s) is given by

P k
m(s) =

Qmk(s)

Qkm(−s) (14.163)

where

Qmk(s) = 1 +
kX
i=1

k! (m + k − i)!

(k − i)! (m + k)!

si

i!
(14.164)

The error in the approximation is given by

es − P k
m(s) =

(−1)
k
m!k!

(k +m)!

sk+m+1

(k +m + 1)!
+O(sk+m+2)

which shows that the approximation is of order k+m. The Padé approximations P k
m(s)

for m, k = 0, 1, 2, 3 are shown in Table 14.2.
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Example 224 Long division of P 11 (s) gives

1 + 1
2s

1− 1
2s

= 1 + s+
s2

2
+

s3

4
+O(s4)

where the error is s3

6 +O(s4).

Example 225 We note that an explicit Runge-Kutta method with p = σ ≤ 4 have
stability functions RE(s) = P p

0 (s)

14.6.5 Stability for Padé approximations

An important result related to A-stability of methods is the following:

P k
m(s) ≤ 1, when Re [s] ≤ 0 for k ≤ m ≤ k + 2 (14.165)

This is derived using order stars in (Hairer and Wanner 1996). Moreover, in relation to
L-stability it is interesting to study P k

m(jω). From Table 14.2 it is seen that the Padé
approximations where the degree of the numerator polynomial equals the denominator
polynomials satisfy

|Pm
m (jω)| = 1, for all ω (14.166)

whereas for Padé approximations where the degree of the numerator polynomial is less
than the degree of the denominator polynomials we have

|P k
m(jω)|→ 0, when ω →∞ for m > k (14.167)

Combining these results we arrive at the following result:

A one-step method with stability function

R(s) = Pm
m (s) (14.168)

is A stable. A one-step method with stability function

R(s) = P k
m(s) where m = k + 1 or m = k + 2 (14.169)

is L-stable.

Example 226 The Gauss methods, including the implicit mid-point rule, the Lobatto
IIIA, including the trapezoidal rule, and the Lobatto IIIB have stability functions

R(s) = Pm
m (s) (14.170)

which implies that the methods are A-stable.

Example 227 Radau methods and Lobatto IIIC methods have stability functions

R(s) = P k
m(s), k < m ≤ k + 2 (14.171)

and this implies that the methods are L-stable.
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Figure 14.26: Simulation of vibrations in an Euler-Bernoulli beam with a Gauss method.
There is an initial excitation that is switched off after 1 s. After this the vibrational
energy of the system is a constant. The simulation reflects this.

14.6.6 Example: Mechanical vibrations

An Euler-Bernoulli beam was simulated using finite elements spatial discretization. The
beam was modelled as having no damping, and this means that the vibrational energy
will be constant when the beam is not excited from external forces. The vibration of
the beam will occur at resonance frequencies ωi, i = 1, 2, . . .. The number of resonant
frequencies in the model used for simulation depends on the way the model is imple-
mented. A simulation was done with a discretization using 10 finite elements leading to
10 resonance frequencies. The resulting system is stiff as the fastest resonances have very
large eigenvalues λi = jωih, so that |λi| = ωih À 1. The system was simulated with a
Gauss method and a Lobatto IIIC method (Kristiansen 2000). The results are shown in
Figures 14.26 and 14.27.

14.6.7 Frequency response

The Runge-Kutta methods have stability functions

R(s) = 1 + sbT (I− sA)−11

where R(s) appear in yn+1 = R(λh)yn when the method is applied to the test equation
ẏ = λy. To study the performance of Runge-Kutta methods it is of interest to plot |R(s)|
as a function of the complex variable s. One approach to this is to plot the order stars of
a method (Hairer and Wanner 1996), which are contour plots of |R(s)/es in the complex
plane. We will follow a different approach in the following where we plot the magnitude of
R(s) for the imaginary axis s = jω, and for s = σ for −∞ < σ ≤ 0 which is the negative
part of the real axis. We note that for s = λh the Nyquist frequency is found at s = ±jπ.
The absolute value |R(jω)| of the stability function evaluated on the imaginary axis is
shown for explicit Runge-Kutta methods in Figure 14.28, and for implicit Runge-Kutta
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Figure 14.27: Simulation of vibrations in an Euler-Bernoulli beam with a Lobatto IIIC
method. There is an initial excitation that is switched off after 1 s. After this the
vibrational energy of the system is a constant. The simulation method is seen to introduce
damping of the response, and the high frequency components are seen to be more damped
than the low frequency components.

methods in Figure 14.29. The absolute value of the stability function evaluated on the
negative part of the real axis is shown in Figures 14.30 and 14.31.
A special case occurs when R(λh) has a zero, that is, when there is a λz(h) so that

R(λzh) = 0. This results in a dead-beat response

yn+1 = 0 when R(λh) = 0 (14.172)

In this section we will take a closer look at the stability functions for the Runge-Kutta
methods that have the Padé approximations as their stability functions. To simplify
notation we use s = λh. The explicit methods of order p ≤ 4 with σ = p stages have
stability functions

R(s) = P 0p (s) =


1 + s when p = 1

1 + s+ s2

2 when p = 2

1 + s+ s2

2 + s3

6 when p = 3

1 + s + s2

2 + s3

6 + s4

24 when p = 4

We see that R(s) = 0 occurs for

s1 = −1 when p = 1
s1,2 = −1± j when p = 2

s1,2 = −0.7020± j1.8073, s3 = −1.5961 when p = 3
s1,2 = −0.2706± j2.5048, s3,4 = −1.7294± j0.8890 when p = 4

To study the performance of the method when the test equation has a pole λ = jω on
the imaginary axis we insert s = jω in the stability function and get R(jω). It is seen
that for all the explicit Runge-Kutta methods, |R(jω)|→∞ when ω →∞.
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Figure 14.28: Stability function R(jω) of explicit Runge-Kutta methods evaluated for
λh = jω. The Nyquist frequency ωN is plotted at ωNh = π.
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Figure 14.29: Stability function R(jω) of implicit Runge-Kutta methods evaluated for
λh = jω. The Nyquist frequency ωN is plotted at ωNh = π. The methods are seen to
damp out frequency components over the Nyquist frequency. The Radau methods have
a roll-off of -1, and the Lobatto IIIC methods have a roll-off of -2.
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Figure 14.30: Absolute value of stability function |R(−s)| of explicit Runge-Kutta meth-
ods evaluated for λh = −s. The exact value exp(−s) is plotted for comparison.
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Figure 14.31: Absolute value of stability function |R(−s)| of implicit Runge-Kutta meth-
ods evaluated for λh = −s. The exact value exp(−s) is plotted for comparison. The
Radau and Lobatto IIIC have a roll-off for −s large, while |R(−s)| → 1 when −s →∞
for the Gauss methods.
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A Gauss method with σ stages, which is an implicit Runge-Kutta method of order
2σ, has stability function

R(s) = Pσ
σ (s) =


1+ 1

2s

1− 1
2s

when σ = 1

1+ 1
2s+

1
12 s

2

1− 1
2s+

1
12 s

2 when σ = 2

1+ 1
2s+

1
10s

2+ 1
120s

3

1− 1
2s+

1
10s

2− 1
120s

3 when σ = 3

The stability function is zero for

s1 = −2 when σ = 1
s1,2 = −3± j1.7321 when σ = 2

s1,2 = −3.6778± j3.5088, s3 = −4.6444 when σ = 3

It is quite interesting to study the stability function of Gauss methods for s = jω. Then,
for p = 1 we see that

|R(jω)| =
¯̄̄̄
1 + 1

2jω

1− 1
2jω

¯̄̄̄
= 1

The Radau IIA methods of order p = 2σ − 1 have stability functions

R(s) = Pσ−1
σ (s) =


1
1−s when σ = 1
1+ 1

3s

1− 2
3 s+

1
6s

2 when σ = 2

1+ 2
5s+

1
20 s

2

1− 3
5s+

3
20 s

2− 1
60 s

3 when σ = 3

There is no zero in R(s) for σ = 1, while there is a zero in s = −3 for σ = 2. For Radau
IIA with σ = 1

|R(jω)| =
½

1 when ω ¿ ωR1
1
ω when ω À ωR2

The Lobatto IIIC methods of order p = 2σ − 2 have stability functions

R(s) = Pσ−2
σ (s) =

( 1

1−s+ s2

2!

when σ = 2
1

1−s+ 1
2 s

2− 1
6s

3 when σ = 3

For σ = 2 we have

|R(jω)| =
½

1 when ω ¿ ωL1
1
ω2 when ω À ωL2

14.6.8 AN-stability

Before we turn our attention to the nonlinear stability analysis of Runge-Kutta methods
we will present an intermediate result on linear time-varying systems. In this connection
the linear time-varying test system

ẏ = λ(t)y

will be used. The exact solution for linear time-varying test system satisfies

y(tn+1) = y(tn)exp

·Z tn+1

tn

λ(t)dt

¸
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It is clear that the system is stable in the sense that |y(tn+1)| ≤ |y(tn)| if Re [λ(t)] ≤ 0
for all t ∈ [tn, tn+1].
An implicit Runge-Kutta method for this system can be written

κ = Λ (1yn + hAκ) (14.173)

yn+1 = yn + hbTκ (14.174)

where κ = (k1 . . . kσ)T and 1 = (1 . . . 1)T and

Λ =diag (λ1, . . . , λσ) , λi = λ(tn + cih) (14.175)

Equation (14.173) gives κ = (1− hΛA)−1Λ1yn, and insertion into (14.174) gives

yn+1 = RAN (hΛ)yn

where we have defined the stability function

RAN (hΛ) = 1 + bT (I− hΛA)
−1
hΛ1 (14.176)

An implicit Runge-Kutta method is said to be AN-stable if Re[λi] ≤ 0 implies
that |RAN (hΛ)| ≤ 1 and that (1− hΛA) is nonsingular.
From this definition it is clear that

AN-stability ⇒ A-stability (14.177)

Example 228 The trapezoidal rule has

A =

µ
0 0
1
2

1
2

¶
, b =

µ
1
2
1
2

¶
and after some algebra it is found that

RAN(hΛ) =
1 + hλ1

2

1− hλ2
2

It is seen that if λ2 = 0 and λ1 is large, then |RAN(hΛ)| > 1, and the method is not AN
stable.

Example 229 Cramer’s rule can be used to find the function RAN (hΛ) defined in
(14.176) in the same way as the stability function R(hλ). This gives

RAN (hΛ) =
det

h
I− (A− 1bT )hΛ

i
det (I−AhΛ)

(14.178)

In Lobatto IIIA the first row of A and the last row of A − 1bT have only zeros. This
means that the numerator of RAN (hΛ) is not a function of λσ, and the denominator of
RAN (hΛ) is not a function of λ1. This means that if λ2 = . . . = λσ = 0, then |RAN (hΛ)|
can be made arbitrarily large by selecting a large |λ1| . This means that Lobatto IIIA is
not AN-stable.

Example 230 In Lobatto IIIB the last column of A and the first column of A − 1bT

have only zeros. This means that the numerator of RAN (hΛ) is not a function of λ1,
and the denominator of RAN (hΛ) is not a function of λσ. This means that if λ1 = . . . =
λσ−1 = 0, then |RAN (hΛ)| can be made arbitrarily large by selecting a large |λσ| . This
means that Lobatto IIIB is not AN-stable.
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14.6.9 B-stability

Using the concept of B-stability it is possible to analyze the stability of Runge-Kutta
methods for contracting nonlinear systems. For such systems we will see that the stability
of Runge-Kutta methods can be studied in terms of a simple algebraic condition on the
Runge-Kutta parameters A and b.
Consider the nonlinear systems

ẏ = f (y, t) (14.179)

and the scalar nonnegative function

V =
1

2
(y − ey)T P (y− ey) (14.180)

where ey is a solution of d
dt
ey = f (ey, t) and P is a positive definite symmetric matrix.

We note that the eigenvalues of P must be real and positive, and we denote the largest
eigenvalue by λmax(P) and the smallest eigenvalue by λmin(P). The time derivative of
V along solutions of the systems is

V̇ = (y − ey)
T

P [f (y, t)− f (ey, t)]
Suppose that the system is contracting, which means that there exists a positive definite
symmetric matrix P and a constant γ ≥ 0 so that

(y− ey)T P [f (y, t)− f (ey, t)] ≤ −γ (y− ey)T P (y− ey) , ∀y, ey
This implies that

V̇ ≤ −2γV

and it follows that
V (t) ≤ V (t0)e

−2γ(t−t0)

and that

ky(t)− ey(t)k ≤
µ
λmax(P)

λmin(P)

¶ 1
2

ky(t0)− ey(t0)k e−γ(t−t0)

This means that the two solutions y(t) and ey(t) of a contracting system will converge
exponentially to each other.

Suppose that the system (14.179) is contracting with P = I so that

(y− ey)T [f (y, t)− f (ey, t)] ≤ −γ (y− ey)T (y− ey)

and that a numerical solution is computed using a Runge-Kutta method. Then, if the
computed solutions yn+1 starting from yn and eyn+1 starting from eyn satisfies the con-
dition

kyn+1 − eyn+1k ≤ kyn − eynk
then the Runge-Kutta method is said to be B-stable.

Consider the linear time-varying test system

ẏ = λ(t)y (14.181)



558 CHAPTER 14. SIMULATION

Then, for two solutions y(t) and ỹ(t) we have

V =
1

2
(y − ỹ)2 ⇒ V̇ = (y − ỹ)λ(t)(y − ỹ) (14.182)

It follows that if Reλ(t) ≤ 0 for all t, then the linear time invariant test equation (14.181)
is contracting. Therefore, if a B-stable method is used the numerical solutions will satisfy
|yn+1− ỹn+1| ≤ |yn− ỹn|. As ỹ(t) = 0 is a solution it follows that a B-stable method will
also be AN-stable. We may then conclude that

B-stability ⇒ AN-stability ⇒ A-stability (14.183)

14.6.10 Algebraic stability

The property of B-stability is important as it applies to nonlinear contracting systems,
and as B-stability implies A-stability. It is problematic, however, to check if a method is
B-stable by working with the nonnegative function V defined in (14.180). Therefore it is
better to work with algebraic stability which can be established by algebraic manipula-
tions of the elements of the Butcher array. In this section algebraic stability is defined,
and it will be shown that algebraic stability implies B-stability.

An implicit Runge-Kutta method with Butcher array

c A
bT

is said to be algebraically stable if bi ≥ 0 for i = 1, . . . , σ and

M =diag (b)A + ATdiag(b)− bb
T ≥ 0

We note that the elements of M are given by

mij = biaij + bjaji − bibj (14.184)

An algebraically stable Runge-Kutta method is B-stable, that is,

Algebraic stability ⇒ B-stability (14.185)

This is shown as follows (Hairer et al. 1993): First we make a change of variables in
the Runge-Kutta methods and write

Yi = yn + h
σX

j=1

aijf (Yj, tn + cjh) , i = 1, . . . , σ (14.186)

yn+1 = yn + h
σX
i=1

bif (Yi, tn + cih) (14.187)
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Then we denote the differences between the two solutions yn and eyn by
∆yn = yn − eyn,∆yn+1 = yn+1 − eyn+1,∆Yi = Yi − eYi

∆fi = h
h
f (Yi, tn + cih)− f

³eYi, tn + cih
´i

where Yi is a vector corresponding to the vector yn, and eYi is a vector corresponding to
the vector eyn. Subtraction of the Runge-Kutta equations for the solution eyn from the
equations of yn gives

∆Yi = ∆yn +
σX

j=1

aij∆fj

∆yn+1 = ∆yn +
σX
i=1

bi∆fi

Then, we have

(∆yn+1)
T ∆yn+1 = (∆yn)T ∆yn + 2

σX
i=1

bi (∆fi)
T ∆yn

+
σX
i=1

σX
j=1

bibj (∆fi)
T ∆fj

= (∆yn)T ∆yn + 2
σX
i=1

bi (∆fi)
T

∆Yi −
σX
j=1

aij∆fj


+

σX
i=1

σX
j=1

bibj (∆fi)
T ∆fj

= (∆yn)
T
∆yn + 2

σX
i=1

bi (∆fi)
T
∆Yi

−
σX
i=1

σX
j=1

mij (∆fi)
T
∆fj (14.188)

where mij is element (i, j) of matrix M. As

(∆fi)
T ∆Yi = h

h
f (Yi, tn + cih)− f

³eYi, tn + cih
´iT ³

Yi − eYi

´
≤ 0

by assumption, and as
Pσ

i=1

Pσ
j=1mij (∆fi)

T
∆fj ≥ 0 for positive semidefinite M, it

follows that
k∆yn+1k ≤ k∆ynk

which shows that an algebraically stable method is B-stable.

Example 231 If there exists a positive definite symmetric matrix P so that

[f (y, t)− f (ey, t)]T P (y− ey) = 0 (14.189)

then it follows from the derivation above that a Runge-Kutta method that satisfies

M =diag (b)A + ATdiag(b)− bbT= 0

will give
(∆yn+1)

T
P∆yn+1 = (∆yn)

T
P∆yn (14.190)
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Method Order Stability Linear Nonlinear Stiffly
function stability stability Accurate

Explicit, p = σ σ Pσ
0 |hλ| small - No

Gauss 2σ Pσ
σ A Algebraic No

Radau IA 2σ − 1 Pσ−1
σ L Algebraic No

Radau IIA 2σ − 1 Pσ−1
σ L Algebraic Yes

Lobatto IIIA 2σ − 2 Pσ−1
σ−1 A not AN No

Lobatto IIIB 2σ − 2 Pσ−1
σ−1 A not AN No

Lobatto IIIC 2σ − 2 Pσ−2
σ L Algebraic Yes

Table 14.4: Order and stability properties for some important Runge-Kutta methods.

14.6.11 Properties of Runge-Kutta methods

The properties of some important Runge-Kutta methods are summarized in Table 14.4.

14.7 Automatic adjustment of step size

14.7.1 Estimation of the local error for Runge-Kutta methods

The selection of the step size h is critical for the performance of a Runge-Kutta method.
The main issues in this connection is accuracy and stability. In general the accuracy
of the computed solution depends on the step size. We will see in this section that it
is possible to specify the desired accuracy of the computed solution, and then to have
automatic selection of the step size that ensures the required accuracy. This feature is
used in the standard integrators of MATLAB.
In some applications it may be desirable for simplicity to compute the solution with

a constant step size. For explicit methods the step size must then be selected so that the
computations are stable. For non-stiff systems that are approximately linear in the sense
that the eigenvalues of the Jacobian J do not vary much, it will normally be possible to
select a reasonable step size that ensures stability and a certain accuracy. For systems
with strong nonlinearities so that the eigenvalues of J exhibit large variations, the step
size of an explicit Runge-Kutta method may have to be very small to account for worst-
case situations. For such systems the use of a constant step size is not recommended.
The automatic selection of the step size h is based on finding an estimate of the local

error, and then adjusting the time step so that the local error is less than some specified
tolerance. This is done by computing the numerical solution with two explicit Runge-
Kutta method with different order. Assume that the solution yn+1 is computed with a
method

c A
bT

of order p, and that the solution byn+1 of the same system is computed with a method

bc bAbbT
of order bp = p+ 1. The computation of the value at tn+1 starts with yn = byn. Then the
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local solution yL(tn; tn+1) satisfies

yL(tn; tn+1) = yn+1 + en+1 = byn+1 + ben+1
where en+1 = O(hp+1) is the local error in the computation of yn+1, and ben+1 = O(hp+2)
is the local error in the computation of byn+1. Because ben+1 is of higher order in h than
en+1, we can find an estimate of en+1 from

byn+1 − yn+1 = en+1 − ben+1 ≈ en+1

The step size can then be adjusted to achieve a specified accuracy in the local error en+1.

The estimated local error en+1 is an estimate of the local error of the lower order
solution yn+1. However, the solution byn+1 is more accurate, so it makes more sense to
use byn+1 as a starting point for the next time step. The use of byn+1 instead of yn+1 is
called local extrapolation, and is normally used. When local extrapolation is used then
yn+1 will be used to denote the high order solution, while byn+1 denotes the embedded
low order solution.

To make the computations efficient, the two methods are usually designed so that
c =bc and A =bA. Then the stage computations will be the same in both methods, and
need only be done once. The solution by is said to be an embedded solution in this case.
The algorithm is

k1 = f(yn, tn) (14.191)
... (14.192)

kσ = f(yn + h (aσ1k1 + . . . + aσ,σ−1kσ−1) , tn + cσh) (14.193)

yn+1 = yn + h(b1k1 + . . . + bσkσ) (14.194)byn+1 = yn + h(bb1k1 + . . . +bbσkσ) (14.195)

en+1 = byn+1 − yn+1 (14.196)

The computation of yn+1 and byn+1 is described by an array as follows:
c A
y bTby bbT
e ET

where E = bb− b.

Runge-Kutta-Fehlberg 4(5) is a method where y is computed with order p = 4 using
five stages. The embedded solution by is of order p = 5 and is computed using six stages.
The method is optimized for accuracy in the fourth order solution yn+1. The method is
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given by the following array.

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −72002197

7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 −35442565
1859
4104 −1140

y 25
216 0 1408

2565
2197
4104 −15by 16

135 0 6656
12825

28561
56430 − 9

50
2
55

∆e 1
360 0 − 128

4275 − 2197
75240

1
50

2
55

Dormand-Prince 5(4) is a method where yn+1 is computed with order p = 5. This
requires six stages. The embedded solution by is of order p = 4 and is computed using
seven stages. The seventh stage is k7 = yn+1 to reduce the number of computations.
This is recognized as a FSAL method. The method is optimized for accuracy in the fifth
order solution yn+1. This is the standard MATLAB method for integrating initial value
problems (Shampine and Reichelt 1997). The method is given by the following array.

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −5615 32

9
8
9

19372
6561 −253602187

64448
6561 -212729

1 9017
3168 −35533 46732

5247
49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 21876784

11
84

y 35
384 0 500

1113
125
192 − 21876784

11
84by 5179

57600 0 7571
16695

393
640 − 92097

339200
187
2100

1
40

∆e 71
57600 0 − 71

16695
71
1920 − 17253

339200
22
525 − 1

40

Another variable-step explicit Runge-Kutta method used in MATLAB is the BS23
method of Bogacki and Shampine (Shampine and Reichelt 1997). This is a method where
yn+1 is computed with a third order method, and the error estimate is found by com-
paring the result with an embedded second order method. Also here local extrapolation
is used. The Butcher array is

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

y 21
72

1
4

3
9

1
8by 2

9
1
3

4
9

∆e − 5
72

1
12

1
9 −18
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14.7.2 Adjustment algorithm

Suppose that the specified accuracy is specified in terms of a tolerance etol on the local
error, and that the size of the local error is described by εn+1 = |ei,n+1| where ei,n+1
is the element of highest absolute value of the vector en+1. Then, because the method
is of order p we will have εn+1 ≤ Chp+1 for some constant C. Let hnew be defined by
etol = Chp+1new . Then, if εn+1 > etol the local error is larger than the specified tolerance.
We may then expect that the tolerance can be obtained by using the new and smaller
time step

hnew = h

µ
etol
εn+1

¶ 1
p+1

(14.197)

In practice a somewhat smaller value may be used by adjusting with a factor of about
0.8. If the tolerance is met, then the time step can be carefully increased.
An alternative adjustment algorithm that has given good results is based on a PI

control method. The derivation of this algorithm is based on the resulting equation
when the logarithm of the adjustment algorithm (14.197) is taken:

lnhnew = lnh− 1

p + 1
(ln εn+1 − ln etol) (14.198)

This can be compared with an incremental form of a PI controller

un+1 = un −Kp (en − en−1)−Kp
h

Ti
en (14.199)

One may compare the adjustment formula with an I controller. Proportional action is
included using

lnhnew = lnh−Kp (ln εn+1 − ln εn)−Kp
h

Ti
(ln εn+1 − ln etol) (14.200)

which gives the adjustment formula

hnew = h

µ
etol
εn+1

¶Kp
h
Ti
µ

εn
εn+1

¶Kp

(14.201)

which is simplified to

hnew = h

µ
etol
εn+1

¶Kp

³
1+ h

Ti

´ µ
εn
etol

¶Kp

(14.202)

The following parameters have been suggested.

Kp = 0.4/(p+ 1), Ti = 1.3h (14.203)

14.8 Implementation aspects

14.8.1 Solution of implicit equations

The implicit Runge-Kutta methods involves the solution of a set of implicit nonlinear
equations. To solve these equations it is useful to make a change of variables and write
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the stage computations in the form

z1 = h [a11f (yn + z1, tn + c1h) + . . . + a1σf (yn + zσ, tn + cσh)]

...

zσ = h [aσ1f (yn + z1, tn + c1h) + . . . + aσσf (yn + zσ, tn + cσh)]

and to compute the solution yn+1

yn+1 = yn + h [b1f (yn + z1, tn + c1h) + . . . + bσf (yn + zσ, tn + cσh)]

Example 232 If A is nonsingular, the update can be found from

yn+1 = yn + d1z1 + . . . + dσzσ (14.204)

where
(d1, . . . , dσ) = (b1, . . . , bσ)A−1 (14.205)

In particular, if aσi = bi then
yn+1 = yn + zσ (14.206)

To solve for z1, . . . , zσ, a Newton search method is used. The equation is written in
vector form as

Z = h (A⊗ Iσ)F(Z)

where

Z =

 z1
...

zσ

 , F(Z) =

 f (yn + z1, tn + c1h)
...

f (yn + zσ, tn + cσh)


are vectors of dimension dσ, Iσ is the σ × σ identity matrix and

A⊗ Iσ =

 a11Iσ . . . aσ1Iσ
...

. . .
...

a1σIσ . . . aσσIσ


is the Kronecker tensor product of A and Iσ.
The solution is found by minimizing the function

L = [Z− h (A⊗ Iσ)F(Z)]
T

[Z− h (A⊗ Iσ)F(Z)] (14.207)

with respect to Z using a Newton search, which is done by the iteration

H
¡
Zi+1 − Zi

¢
= −Zi + h (A⊗ Iσ)F(Zi) (14.208)

which is solved for Zi+1. Here Zi is iteration i of Z, and

H = I−h (A⊗ J) =

 1− ha11J . . . −haσ1J
...

. . .
...

−ha1σJ . . . 1− haσσJ


is an approximation to the Hessian matrix of dimension nσ × nσ, where

J =
∂f

∂y
(yn, tn)
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is the Jacobian evaluated at (yn, tn). The initial value for the iterations is Z0 = 0.
To solve for Zi+1, a Gaussian elimination is used where the LU decomposition of H is
needed. The reason for using the approximation of a constant J is that this makes it
possible to use only one LU decomposition at each time step. Details on how to do the
Gaussian elimination is given in (Golub and van Loan 1989) where also algorithms are
included.

14.8.2 Dense outputs

A Runge-Kutta method computes the numerical solution . . .yn−1,yn,yn+1 . . . at discrete
time instants . . . tn−1, tn, tn+1 . . . for the system

ẏ = f(y,t), y(t0) = y0 (14.209)

In some situations it is not sufficient to have the function values only at the time-steps.
The reason for this is that for some systems it is very important to detect the exact
time of certain events. In particular this is important for systems with discontinuities
in f(y,t). In addition it may be desirable to have function values between the timesteps
for plotting. The solution to this problem is to use an interpolation scheme where an
interpolation yn(α) is computed so that

yn(α), α ∈ [0, 1], yn(0) = yn, yn(1) = yn+1 (14.210)

This can be done by using the original stage computations of the Runge-Kutta method,
possibly with some additional stages, and then interpolating the solution by interpolat-
ing the weighting factors bj . The resulting scheme is called a continuous Runge-Kutta
method .

A continuous Runge-Kutta method is a Runge-Kutta method where interpolation is used
to compute dense outputs yn(α), α ∈ [0, 1] from the scheme

ki = f(yn + h
σ∗X
j=1

aijkj , tn + cih), i = 1, . . . , σ∗ (14.211)

yn(α) = yn + h
σ∗X
j=1

bj(α)kj (14.212)

The dense outputs are of order p∗ if yn(α)−yL(tn; tn+αh) = O(hp
∗+1), where yL(tn; tn+

αh) is the local solution starting at yL(tn; tn) = yn.

For the Dormand-Prince 5(4) method, which is the numerical integration method of
the ode45 in MATLAB, a dense output with order 4 can be computed with the original
stage computations using Hermite interpolation (Dormand and Prince 1986), (Hairer
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et al. 1993). The weighting factors of the method are given by the Hermite polynomials.

b1(α) = α2(3− 2α)b1 + α(α− 1)2

−α2(α− 1)2
5(2, 558, 722, 523− 31, 403, 016α)

11, 282, 082, 432
(14.213)

b2(α) = 0 (14.214)

b3(α) = α2(3− 2α)b3 + α2(α− 1)2
100(882, 725, 551− 15, 701, 508α)

32, 700, 410, 799
(14.215)

b4(α) = α2(3− 2α)b4 − α2(α− 1)2
25(443332067− 31, 403, 016α)

1, 880, 347, 072
(14.216)

b5(α) = α2(3− 2α)b5 + α2(α− 1)2
32805(23, 143, 187− 3, 489, 224α)

199, 316, 789, 632
(14.217)

b6(α) = α2(3− 2α)b6 − α2(α− 1)2
55(29, 972, 135− 7, 076, 736α)

822, 651, 844
(14.218)

b7(α) = α2(α− 1) + α2(α− 1)2
10(7, 414, 447− 829, 305α)

29, 380, 432
(14.219)

Note that bj(0) = 0, and that bj(1) = bj, where bj are the coefficients of the fifth order
solution in the Dormand-Prince 5(4) method. It is therefore clear that yn(0) = yn
and yn(1) = yn+1. In addition, it can be shown that the time derivatives of the dense
solutions satisfy ẏn(0) = hf(yn, tn) and ẏn(1) = f(yn+1, tn+1). This means that the
dense outputs and their derivatives are continuous at the time-steps tn.

14.8.3 Event detection

Event detection can be formulated as a zero crossing problem by defining a function g
so that the event is given by the condition

g(y,t) = 0 (14.220)

The event can then be detected by computing the numerical solution yn and for each
step check if there is a change of sign from g(yn,tn) to g(yn+1,tn+1). If there is a change
in sign, then the dense output yn(α) is used to find the time of event by solving

g[yn(α),t + αh] = 0 (14.221)

numerically for α. Then the time of the event is given by tn + αh.
This type of event detection can be used for systems with signum terms in f(y,t), as

for problems with dry friction. Then the event that the velocity becomes zero, or leaves
zero, may be detected with this method.

14.8.4 Systems with inertia matrix

There are important applications where the differential equation may be in the form

Mu̇ = φ(u) (14.222)
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where M is a nonsingular matrix. Runge-Kutta methods can the be implemented with
the stage computations

ki = φ(un +
i−1X
j=1

aijkj , tn + cih), i = 1, . . . , σ

un+1 = un + M−1

h
σX
j=1

bjkj


Example 233 One example of this is in robotics where the equation of motion is of the
form

M(q)q̈ + C (q, q̇) q̇ + g(q) = τ

where q is the vector of generalized coordinates and τ is the vector of input general-
ized forces. The matrix M, which is called the inertia matrix is positive definite and
symmetric. The system can be writtenµ

I 0
0 M(q)

¶
u̇ = φ(u)

where

u =

µ
q
q̇

¶
, φ(u) =

µ
q̇

−C (q, q̇) q̇− g(q) + τ

¶
The system could have been written in the form that has been used so far, that is,

ẏ = f(y) =

µ
q̇

M (q)
−1

[−C (q, q̇) q̇− g(q) + τ ]

¶
Then the evaluation of f(y) would involve a computationally expensive Gauss elimination.
Therefore it is advantageous to leave the system in the form (14.222) and do a slight
modification to the Runge-Kutta algorithm.

14.9 Invariants

14.9.1 Introduction

The material presented on linear and quadratic invariants in this section is based on
(Hairer 1999), while the section of Hamiltonian systems is based on (Sanz-Serna and
Calvo 1994) and (Hairer 1999).

14.9.2 Linear invariants

Suppose that there is a function
L (y) = wTy (14.223)

where w = (w1 . . . wd)
T is a vector of constants, so that for all y the time derivative

along solutions of the system ẏ = f (y, t) is zero, that is

L̇ (y) := wT ẏ = wT f (y, t) = 0 for all y (14.224)
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Such a function is called a linear invariant. Then it follows from

ki = f(yn +
i−1X
j=1

aijkj , tn + cih) (14.225)

that
wTki = 0 (14.226)

and

wTyn+1 = wTyn + h
σX
j=1

bjw
Tkj= wTyn (14.227)

We see that linear invariants will be conserved when the solution is computed with
any Runge-Kutta method.

Example 234 Consider a chemical reaction A + B → C in a closed tank. The total
mass m of the chemical components will be constant due to the principle of conservation
of mass. This is written

m = mA +mB +mC = const. (14.228)

where mA, mB and mC are the masses of each of the components A, B and C. This
means that the total mass m is a linear invariant of the system. The mass balance is
assumed to be

d

dt
mA = −νCA(mA,mB ,mC) (14.229)

d

dt
mB = −νCB(mA,mB ,mC) (14.230)

d

dt
mC = νCA(mA,mB,mC) + νCB(mA,mB,mC) (14.231)

where νCA is the rate of mass transfer from A to C, and νCB is the rate of mass transfer
from B to C. Then, if the numerical solution to the mass balances (14.229—14.231) is
computed with a Runge-Kutta method, the mass m will be conserved in the numerical
solution.

14.9.3 Quadratic functions

Consider a system
ẏ = f (y, t) (14.232)

and a quadratic function

V (y) =
1

2
yTPy (14.233)

The time derivative of V along solutions of the system is given by

V̇ (y) :=
∂V (y)

∂y
ẏ = yTPf (y, t) (14.234)

We then have the following result (Hairer 1999):
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If the system (14.232) is integrated with a Runge-Kutta method satisfying

mij = biaij + bjaji − bibj = 0 (14.235)

then for the quadratic function V (y) = (1/2)yTPy with time derivative V̇ (y) along the
solutions of the system, the following result apply:

V (yn+1) = V (yn) + 2
σX
i=1

biV̇ (Yi) (14.236)

where Yi is the function value for y corresponding to stage i as defined in (14.186). This
means that if bi ≥ 0, then

V̇ (y) > 0,∀y =⇒ V (yn+1) > V (yn) (14.237)

V̇ (y) = 0,∀y =⇒ V (yn+1) = V (yn) (14.238)

V̇ (y) < 0,∀y =⇒ V (yn+1) < V (yn) (14.239)

This result follows from the calculation

yTn+1Pyn+1 =

Ã
yn + h

σX
i=1

bif (Yi)

!T

P

yn + h
σX
j=1

bjf (Yj)


= yTnPyn + 2h

σX
i=1

biY
T
i Pf (Yi) (14.240)

−h2
σX
i=1

σX
j=1

mijf
T (Yi)Pf (Yj) (14.241)

where equations (14.186) and (14.187) are used, and the calculation is done along the
lines of (14.188). The computed solution yn+1 will then result in an increasing V (yn+1)
if V [y (t)] is increasing for the exact solution y (t), it will result in an invariant V (yn+1)
if V [y (t)] is an invariant, and it will give a decreasing V (yn+1) if V [y (t)] is a decreasing
function for the exact solution.

14.9.4 Quadratic invariants

In this section we will look closer at the case where the quadratic function V defined in
(14.233) is invariant, which is the case if V̇ (y) = 0 for all y. A numerical solution yn is
found from a Runge-Kutta method that will be characterized by the matrix M = {mij}
where mij is defined in (14.235). The topic that is addressed in this section is to find
conditions for the numerically computed invariant V (yn) to increase, decrease or stay
invariant.
Suppose that the matrix P is positive definite and symmetric. Then it follows that

there is a matrix Q so that P = QTQ. Define gi = Qf i (Yi). Then, with M = {mij}
we have

β =
σX
i=1

σX
j=1

mijg
T
j gi =

dX
k=1

vTk Mvk (14.242)
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Method eigenvalues of M
Implicit Euler 1
Gauss order 2 (Implicit midpoint rule) 0
Gauss methods of any order 0, . . . , 0
Radau IA order 3 0, 0.1250
Radau IIA order 3 0, 0.5
Lobatto IIIA order 2 (Trapezoidal rule) −0.25, 0.25
Lobatto IIIB order 2 −0.25, 0.25
Lobatto IIIC order 2 0, 0.5

Table 14.5: Eigenvalues of M for some implicit Runge-Kutta methods

where the vector vk is defined by

vk :=

 (g1)k
...

(gσ)k

 (14.243)

and (gi)k is element k of the vector gi. As it is assumed that V̇ (y) = 0,∀y, it follows
from (14.241) that

yTn+1Pyn+1 = yTnPyn − h2
dX

k=1

vTk Mvk

We recall that a quadratic form can be expressed in term of the eigenvalues of the matrix
according to

vTk Mvk =
σX
i=1

λi (M)α2k (14.244)

where the scalars α2k depend on M and vk. Therefore the quadratic form is positive if all
the eigenvalues λi (M) of M are positive, the quadratic form is zero if all the eigenvalues
are zero, and the quadratic form is negative if all the eigenvalues are negative. We
conclude that

Let V be the quadratic function V = (1/2)yTPy with symmetric and positive P, and
let λi (M) be an eigenvalue of M = {mij}, where mij is defined in (14.235). Then

V̇ (y) = 0,∀y and λi (M) < 0,∀i =⇒ V (yn+1) ≥ V (yn) (14.245)

V̇ (y) = 0,∀y and λi (M) = 0,∀i =⇒ V (yn+1) = V (yn) (14.246)

V̇ (y) = 0,∀y and λi (M) > 0,∀i =⇒ V (yn+1) ≤ V (yn) (14.247)

Table 14.5 shows the eigenvalues ofM for some implicit Runge-Kutta methods, while
Table 14.6. shows the eigenvalues for some explicit methods. The eigenvalues were
computed using the Symbolic Math Toolbox in MATLAB using a script like the one
shown below which computes the eigenvalues for the Lobatto IIIC method.
syms A b M;
A=[1 -1; 1 1]/2;
b=[1 1]’/2;
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Method eigenvalues of M
Euler’s method −1
Improved Euler −0.5, 0
Modified Euler −1.2, 0.2
Heun’s method of order 3 −0.89, −0.06, 0.3
RK4 −0.27, −0.1, 0, 0.1

Table 14.6: Eigenvalues of M for some explicit Runge-Kutta methods.

M=diag(b)*A+A’*diag(b)-b*b’
eig(M)

Example 235 In the description of rigid body motion the rotation can be described using
Euler parameters

y =

µ
η
²

¶
(14.248)

where η = cos θ2 , ² = ksin θ
2 , and k is a unit vector has the quadratic invariant

yTy = 1 (14.249)

These parameters are used e.g. in strap-down inertial navigation systems. The Euler
parameters satisfy the differential equationµ

η̇
²̇

¶
=

1

2

µ
ωT ²

ηω + S (²)ω

¶
(14.250)

where S (²) is the skew-symmetric form of ² and ω is the angular velocity vector of the
rigid body. The invariant yTy = 1 will hold when the system is integrated with a Runge-
Kutta method with mij = biaij + bjaji − bibj = 0. In applications it is usual to integrate
with an explicit method and a projection

y :=
y

|y| (14.251)

14.9.5 Symplectic Runge-Kutta methods

We consider a system with the Hamiltonian H = H (p,q, t) where

p =

 p1
...
pd

 , q =

 q1
...
qd

 (14.252)

are in the phase space Ω ⊂ R2d, that is (p,q) ∈ Ω ⊂ R2d. The Hamiltonian system of
differential equations with Hamiltonian H is given by

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, i = 1, . . . , d

We refer to this system as ΣH .



572 CHAPTER 14. SIMULATION

We note that H = H (p,q) , which means that the Hamiltonian is not a function of
time, then the Hamiltonian is an invariant of the Hamiltonian system, which is seen from

Ḣ =
∂H

∂pi

dpi
dt

+
∂H

∂qi

dqi
dt

= 0 (14.253)

We define

y =

µ
p
q

¶
Then the Hamiltonian system can be written

d

dt
y = J−1∇H

where

J =

µ
0 I
−I 0

¶
, J−1 = JT =

µ
0 −I
I 0

¶
is a skew-symmetric matrix and

∇ =

Ã
∂
∂p
∂
∂q

!
is the gradient operator.
We note that the Hamiltonian system has zero divergence in the sense that

divẏ =∇TJ−1∇H = 0

which is a consequence of J being skew-symmetric. Alternatively this is shown by

divẏ =
dX
i=1

µ
∂

∂pi

dpi
dt

+
∂

∂qi

dqi
dt

¶
=

dX
i=1

µ
− ∂2H

∂qi∂pi
+

∂2H

∂pi∂qi

¶
= 0

Let y = y(t) be the state of a Hamiltonian system at time t, and let y∗ = y(t∗) be
the state at time t∗. Then a fundamental property of Hamiltonian systems is thatµ

∂y∗

∂y

¶T
J

µ
∂y∗

∂y

¶
= J (14.254)

where µ
∂y∗

∂y

¶
=

Ã
∂p∗
∂p

∂p∗
∂q

∂q∗
∂p

∂q∗
∂q

!
(14.255)

A system that satisfies (14.254) is said to be symplectic. A system is Hamiltonian if and
only if it is symplectic.

Example 236 Consider the system

q̇ = p, ṗ = −ω20q (14.256)

which has the Hamiltonian

H =
1

2
p2 +

ω20
2
q2 (14.257)
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We see that
Ḣ = pṗ+ ω20qq̇ = −ω20qp + ω20qp = 0 (14.258)

Then, as H is a quadratic invariant for this system, it follows that a Runge-Kutta method
satisfying

M =diag (b)A + ATdiag(b)− bb
T
= 0

will result in
Hn+1 = Hn (14.259)

Consider the sensitivity function

Ψ(t) :=
∂y(t)

∂y0
(14.260)

which gives the sensitivity of the true solution y (t) with respect to the initial condition
y (0) = y0. We see that Ψ ∈ R2d×2d. The time derivative of the sensitivity when the
system evolves is found from the computation

d

dt
Ψ(t) =

d

dt

∂y(t)

∂y0
=

∂

∂y0

µ
dy(t)

dt

¶
=

∂f(t)

∂y0
=

∂f(t)

∂y(t)

∂y(t)

∂y0
(14.261)

to be

Ψ̇ =
∂f

∂y
Ψ (14.262)

If a Runge-Kutta method is applied to this equation, the computational scheme is given
by

K1 =
∂f

∂y
(Ψn + h (a11K1 + . . . + a1σKσ) , tn + c1h) (14.263)

... (14.264)

Kσ =
∂f

∂y0
(Ψn + h (aσ1K1 + . . . + aσσKσ) , tn + cσh) (14.265)

Ψn+1 = Ψn + h(b1K1 + . . . + bσKσ) (14.266)

where Ki, i = 1, . . . , σ are matrices of the same dimension as Ψ. Suppose that the same
Runge-Kutta method is applied to the system ẏ = f (y, t) , and that the solution at time
tn+1 is computed to be yn+1. Then the sensitivity of the computed solution is found to
be given by

∂k1
∂y0

=
∂f

∂y
(
∂yn
∂y0

+ h

µ
a11

∂k1
∂y0

+ . . . + a1σ
∂kσ
∂y0

¶
, tn + c1h) (14.267)

... (14.268)
∂kσ
∂y0

=
∂f

∂y
(
∂yn
∂y0

+ h

µ
aσ1

∂k1
∂y0

+ . . . + aσσ
∂kσ
∂y0

¶
, tn + cσh) (14.269)

∂yn+1
∂y0

=
∂yn
∂y0

+ h

µ
b1
∂k1
∂y0

+ . . . + bσ
∂kσ
∂y0

¶
(14.270)

Comparison with (14.263—14.266) shows that

∂yn+1
∂y0

= Ψn+1 (14.271)
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The condition for the solution to be symplectic is thatµ
∂yn+1
∂y0

¶T
J
∂yn+1
∂y0

= J (14.272)

is therefore equivalent to
ΨTn+1JΨn+1 = J (14.273)

This expression will hold for all Runge-Kutta methods for which

mij = biaij + bjaji − bibj = 0 (14.274)

as
V (Ψ) = ΨTJΨ = J (14.275)

holds for the exact solution, which shows that V (Ψ) is a quadratic invariant.
This means that for a Runge-Kutta method with mij = 0, which is the case for the

Gauss methods, the numerically computed solution will be symplectic, and hence it must
be the solution of a Hamiltonian system with a Hamiltonian that we denoteH∗. For small
time-steps and a smooth Hamiltonian H, the Hamiltonian system described by H∗ will
have solutions that are close to the solutions of the Hamiltonian system described by H.
From Tables 14.5 and 14.6 we may conclude that the quadratic invariant V (Ψ) will

decrease for methods like Radau IA, Radau IIA, and Lobatto IIIC, while it will increase
for methods like Euler’s method, Modified Euler, and improved Euler. For methods like
Lobatto IIIA, Lobatto IIIB, Heun’s method of order 3, and RK4 the invariant V (Ψ) may
decrease or increase.

14.10 Rosenbrock methods
A Rosenbrock method with σ stages for the system

ẏ = f(y, t) (14.276)

is given by (Hairer and Wanner 1996)

ki = f(yn + h
i−1X
j=1

aijkj , tn + cih)

+hJ
iX

j=1

ρijkj + ρihḟ(yn, tn), i = 1, . . . , σ

yn+1 = yn + h
σX

j=1

bjkj

where J is the Jacobian given by J =∂f(yn, tn)/∂y, the interpolation constants satisfy
ci =

Pi−1
j=1 aij as for the Runge-Kutta methods, and

ρi =
iX

j=1

ρij

The first term on the right side of the stage computations has the same form as the
stage in an explicit Runge-Kutta method. A linearized term is added to the stage, which
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makes the method implicit. However, while a Newton search is required at each time step
to compute the stages in an implicit Runge-Kutta method, the stage computations in a
Rosenbrock method can be done without iterations according to the formula

Viki = f(yn + h
i−1X
j=1

aijkj , tn + cih)

+hJ
i−1X
j=1

ρijkj + ρihḟ(yn, tn) (14.277)

where
Vi = I−hρiiJ

is a nonsingular matrix for a sufficiently small time step h.
For the test equation

ẏ = λy

a Rosenbrock method gives

κ = λ (1yn + hλ(A + R)κ)

yn+1 = yn + hbTκ

where κ = (k1 . . . kσ)T , 1 = (1 . . . 1)T and R = {ρij}.
The stability function of a Rosenbrock method is given by

R(hλ) =
det

h
I− λh

³
A + R− 1bT

´i
det[I− λh(A + R)]

(14.278)

It is seen that Rosenbrock methods can have the same type of stability function as an
implicit Runge-Kutta method of the diagonally implicit type, which are implicit method
with aij = 0 for i > j. The main advantage with Rosenbrock methods is that they can
be used for stiff systems without Newton iterations in the stage computations.
A second order method with L-stability developed by Wolfbrandt is given by

Vk1 = f(yn)

Vk2 = f(yn +
2

3
hk1)− 4

3(2 +
√

2)
hJk1

yn+1 = yn +
h

4
(k1 + 3k2)

where
V = I− 1

2 +
√

2
hJ

A modified second order Rosenbrock method with step size control is given by

Vk1 = f (yn, tn) + hρḟ (yn, tn)

Vk2 = f (yn, tn) + f

µ
yn +

h

2
k1, tn +

h

2

¶
− k1 + hρḟ (yn, tn)

yn+1 = yn + hk2

V = I− hρJ, ρ =
1

2 +
√

2
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with step size control using a FSAL computation

Vk3 = 2f (yn, tn) +
³
6 +
√

2
´
f

µ
yn +

h

2
k1, tn +

h

2

¶
+ f (yn+1, tn+1)

−2k1 −
³
6 +
√

2
´
k2 + hρḟ (yn, tn)

error =
h

6
(k1 − 2k2 + k3)

This method is similar to a Rosenbrock method, but the computation of the second stage
has a term of the type −k1 instead of hJρ21k1. This method is used in the MATLAB
function ode23s (Shampine and Reichelt 1997).

14.11 Multistep methods

14.11.1 Explicit Adams methods

The explicit Adams methods, also called Adams-Bashforth methods, has the equation

y(tn+1) = y(tn) +

Z tn+1

tn

f(y(t), t)dt

as a starting point. The idea is to calculate a numerical solution from the approximation

yn+1 = yn +

Z tn+1

tn

P(t)dt

where P(t) is a polynomial approximation of f of order q so that

P(tn+1−i) = f (yn+1−i, tn+1−i) =: fn+1−i, i = 1, 2, . . . , q. (14.279)

This is done with the polynomial

P(t) =

qX
i=1

fn+1−iLi(t)

where Li(t), i = 1, . . . , q are the fundamental Lagrange polynomials (Shampine et al.
1997)

Li(t) =

qY
j=1, j 6=i

µ
t− tn+1−j

tn+1−i − tn+1−j

¶
, i = 1, . . . , q

These polynomials have the property that

Li(tn+1−j) =

½
1 if i = j
0 if i 6= j

as shown in Figure 14.32. The polynomial P (t) is shown in Figure 14.33
It is convenient to describe the methods in terms of backward differences. To do this

we define the backward difference operator ∇ by

∇yn = yn − yn−1
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Fundamental Lagrange polynomials, order 5

L4(t) L3(t)
L2(t)

L1(t)L5(t)

Figure 14.32: The Lagrange ploynomials Li(t6−j) for i = 1, . . . , 5 when h = 1.

f n+1-q

f n-2
f n-1 fn

t n+1tntn+1-q tn+2-q tn-2 tn-1

fn+2-q

P(t)

yn+1-yn

Figure 14.33: The explicit Adams method

Repeated use of the backward difference operator gives

∇m+1yn = ∇ (∇myn) = ∇myn −∇myn−1

for m = 0, 1, 2, . . . where
∇0yn = yn

A constant h is assumed. Then in the interval tn ≤ t ≤ tn+1 the polynomial P(t) can
be written using a Newton interpolation formula

P(tn + αh) =

q−1X
m=0

α(α+ 1) . . . (α+ m− 1)

m!
∇mfn

This leads to the explicit Adams method of order q :

yn+1 = yn + h

q−1X
m=0

γm∇mf(yn, tn)
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where

γm =

Z 1

0

α(α + 1) . . . (α +m− 1)

m!
dα

It can be shown that γm can be found recursively from the recurrence equation

γm +
1

2
γm−1 + . . . +

1

m + 1
γ0 = 1

The numerical values for γm are found from the recurrence equation to be

m 0 1 2 3 4
γm 1 1

2
5
12

3
8

251
720

The numerical algorithms are found by inserting the expression for the backwards
difference operator. The algorithms are

yn+1 = yn + hfn

yn+1 = yn + h

µ
3

2
fn − 1

2
fn−1

¶
yn+1 = yn + h

µ
23

12
fn − 4

3
fn−1 +

5

12
fn−2

¶
yn+1 = yn + h

µ
55

24
fn − 59

24
fn−1 +

37

24
fn−2 − 9

24
fn−3

¶
We see that the first order explicit Adams method is Euler’s method.

14.11.2 Implicit Adams methods

In implicit Adams methods, which are also called Adams-Moulton methods, the approx-
imating polynomial P(t) is required to satisfy

P(tn+1−i) = f (yn+1−i, tn+1−i) , i = 0, 1, . . . , q − 1 (14.280)

as shown in Figure 14.34.
This is achieved with

P∗(tn + αh) =

qX
m=0

(α− 1)α(α + 1) . . . (α +m− 2)

m!
∇mfn+1

This gives the implicit Adams method of order q + 1:

yn+1 = yn + h

qX
m=0

γ∗m∇mf(yn+1, tn+1)

where

γ∗m =

Z 1

0

(α− 1)α(α + 1) . . . (α +m− 2)

m!
dα

Numerical values are

m 0 1 2 3 4
γ∗m 1 −12 − 1

12 − 1
24 − 19

720



14.11. MULTISTEP METHODS 579

fn+2-q

f n-2
f n-1 fn

t n+1

P(t)

tn

f n+1

yn+1 -y n

fn+3-q

tn+2-q tn+3-q tn-2 tn-1

Figure 14.34: The implicit Adams method

which can also be found from the recurrence equation

γ∗m +
1

2
γ∗m−1 + . . . +

1

m + 1
γ∗0 = 0, m ≥ 0, γ∗0 = 1

The resulting algorithms are

yn+1 = yn + hfn+1

yn+1 = yn + h

µ
1

2
fn+1 +

1

2
fn

¶
yn+1 = yn + h

µ
5

12
fn+1 +

8

12
fn − 1

12
fn−1

¶
yn+1 = yn + h

µ
9

24
fn+1 +

19

24
fn − 5

24
fn−1 +

1

24
fn−2

¶
It is seen that the first order implicit Adams method is the implicit Euler method, and
that the second order implicit Adams method is the trapezoidal rule.

14.11.3 Predictor-Corrector implementation

An approximate implementation of the implicit Adams method is based on computing a
predictor

byn+1 = yn + h

q−1X
m=0

γm∇mf(tn, xn)

with the explicit Adams method, and then use f̂n+1 := f(tn+1, byn+1) in the place of fn+1
in the implicit Adams method. This gives

yn+1 = yn + hf̂n+1

yn+1 = yn + h

µ
1

2
f̂n+1 +

1

2
fn

¶
yn+1 = yn + h

µ
5

12
f̂n+1 +

8

12
fn − 1

12
fn−1

¶
yn+1 = yn + h

µ
9

24
f̂n+1 +

19

24
fn − 5

24
fn−1 +

1

24
fn−2

¶
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This is called a Predictor-Corrector method, which is abbreviated to PECE.

14.11.4 Backwards differentiation methods

In the Backwards Differentiation Formula (BDF) the vector P(t) of polynomials of order
q is required to satisfy the q + 1 constraints

P(tn−q+1) = yn−q+1, . . . ,P(tn) = yn, P(tn+1) = yn+1 (14.281)

In this method, the numerical solution at tn+1 is generated by requiring the polynomial
P(t) to satisfy

Ṗ(tn+1) = f(yn+1, tn+1)

as shown in Figure 14.35. This is done with the Newton interpolating polynomial

yn+1-q

yn-2
yn-1 yn

tn

yn+1 fn+1
P(t)

t n+1t n+1-qt n+1-qt n+1-q
tn-2tn+2-q tn-1

yn+2-q

Figure 14.35: The BDF method

P(tn + αh) =

Ã
1 +

qX
m=1

(α− 1)α(α+ 1) . . . (α+m− 2)

m!
∇m

!
yn+1

From

d

dα
P(tn + αh)

¯̄̄̄
α=1

=

qX
m=1

d

dα

(α− 1)α(α + 1) . . . (α +m− 2)

m!

¯̄̄̄
α=1

∇myn+1

=

qX
m=1

1

m
∇myn+1

the BDF method of order q is found to be

qX
m=1

1

m
∇myn+1 = hf(yn+1, tn+1)
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This gives the following algorithms for q = 1, . . . , 6:

yn+1 − yn = hfn+1
3

2
yn+1 − 2yn +

1

2
yn−1 = hfn+1

11

6
yn+1 − 3yn +

3

2
yn−1 − 1

3
yn−2 = hfn+1

25

12
yn+1 − 4yn + 3yn−1 − 4

3
yn−2 +

1

4
yn−3 = hfn+1

137

60
yn+1 − 5yn + 5yn−1 − 10

3
yn−2 +

5

4
yn−3 − 1

5
yn−4 = hfn+1

147

60
yn+1 − 6yn +

15

2
yn−1 − 20

3
yn−2 +

15

4
yn−3 − 6

5
yn−4 +

1

6
yn−5 = hfn+1

In this case the first order method is the implicit Euler method.
A variant of the BDF method is the NDF method (Numerical Differentiation Formu-

las) (Shampine and Reichelt 1997) where an additional term is introduced as follows

qX
m=1

1

m
∇myn+1 = hf(tn+1,yn+1) + κ

qX
m=1

1

m

Ã
yn+1 −

qX
m=0

∇myn

!

14.11.5 Linear stability analysis

Multistep methods are of the form

αqyn+1 + αq−1yn + . . . + α0yn+1−q = h
¡
βqfn+1 + βq−1fn + . . . + β0fn+1−q

¢
which is written

N(z)yn+1 = hD(z)fn+1 (14.282)

where

N(z) = αqz
q + αq−1zq−1 + . . . + α0

D(z) = βqz
q + βq−1z

q−1 + . . . + β0

and z is viewed as the time-shift operator defined by z−1yn+1 = yn.
Consider the linear test system

ẏ = λy

Then the multistep method gives

N(z)yn+1 = hλD(z)yn+1

Introduction of the z transform gives

N(z)y(z) = hλD(z)y(z)

where z is the complex z transform variable, and y(z) is the z transform of the numerical
solution yn+1. Equivalently, this is written

[N(z)− hλD(z)] y(z) = 0 (14.283)

The stability of the method can then be investigated by studying the roots of the char-
acteristic equation

N(z)− hλD(z) = 0
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which implies stability of the multistep method if the roots are inside the unit circle.
Also the location of the continuous time poles λ can be found as a function of z from

hλ =
N(z)

D(z)

This equation makes it possible to find the poles λ that correspond to the limit of
stability for the multistep method. The stability limit occurs when |z| = 1, which can
be parameterized by z = ejω, −π ≤ ω ≤ π. Then the limit of stability in the s plane is
found by plotting

hλ =
N(ejθ)

D(ejθ)
, −π ≤ θ ≤ π (14.284)

14.11.6 Stability of Adams methods

In terms of the z transformation the backwards differences operator ∇ is replaced by
1− z−1. This is seen from the z transform of

∇yn = yn − yn−1

which gives
Z {∇yn} = (1− z−1)y(z)

For explicit Adams methods the z transform gives

zy(z) = y(z) + hλ

q−1X
m=0

γm(1− z−1)my(z)

This gives

hλ =
z − 1Pq−1

m=0 γm(1− z−1)m

The regions of stability for methods of order 1 to 4 were computed as in (14.284), and
are shown in Figure 14.36. For implicit Adams methods the z transform gives

zy(z) = y(z) + hλ

qX
m=0

γ∗m(1− z−1)mzy(z)

which gives

hλ =
1− z−1Pq

m=0 γ
∗
m(1− z−1)m

The stability regions can then be plotted as in equation (14.284). This gives the stability
regions shown in Figure 14.37. In the PECE Adams method the solution byn+1 of the
explicit Adams method is inserted for yn+1 on the right hand side of the implicit method.

zy(z) = y(z) + hλ
©
γ∗0zby(z) + γ∗1 [zby(z)− y(z)] + γ∗2

£
zby(z)− 2y(z) + z−1y(z)

¤
+ . . .

ª
After some calculation it can be established that hλ satisfies the second order equation

A (hλ)2 +Bhλ+ C = 0

A =

Ã
qX

m=0

γ∗m

!"
q−1X
m=0

γm(1− z−1)m
#

B = (1− z)

qX
m=0

γ∗m + z

qX
m=0

γ∗m(1− z−1)m

C = 1− z
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Figure 14.36: The stability regions of the explicit Adams (Adams-Bashforth) methods
of order 1 to 4. We recognize the stability area of AB(1) as that of Euler’s method.

14.11.7 Stability of BDF methods

For BDF, z transformation gives

qX
m=1

1

m
(1− z−1)my(z) = hλy(z)

and it follows that

hλ =

qX
m=1

1

m
(1− z−1)m

The stability areas are found by plotting hλ for z = ejθ, −π ≤ θ ≤ π, and are shown in
Figure 14.38. It is seen that both the first order and the second order BDF are stable
for ẏ = λy whenever Re(λ) ≤ 0.

14.11.8 Frequency response

From

[N(z)− hλD(z)] y(z) = 0 (14.285)

the dynamics of the numerical solution of ẏ = λy can be analyzed in the z plane as a
function of hλ. We recall that if there is a zp so that

N(zp)− hλD(zp) = 0 (14.286)

then the dynamics of y(z) have a pole in the z plane at z = zp. If zp = 0, then this gives
a one-step reset response where yn+1 = 0. If zp = 1, then we have the dynamics of an
integrator where yn+1 = yn.
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Figure 14.37: Stability areas of implicit Adams (Adams-Moulton) methods of order 1 to
4. The methods are denoted by AM(q) where q + 1 is the order of the method. Note
that AM(1) is the implicit Euler method, and AM(2) is the trapezoidal rule.

Figure 14.38: Stability areas for BDF methods of order 1 to 6. We note that BDF1 is
the implicit Euler method.
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14.11.9 Adams methods

Explicit Adams methods have the dynamics"
z − 1− s

qX
m=1

γm(1− z−1)m
#
y(z) = 0

while implicit Adams methods have the dynamics"
z − 1− s

qX
m=0

γ∗m(1− z−1)mz

#
y(z)

It is seen that for s = 0 both methods have one pole which is at z = 1. Moreover, when
|s|→∞, the explicit method has poles defined by

qX
m=1

γm(1− z−1)m = 0

Clearly, at least one of the poles for |s| → ∞ is at z = 1, which is also the case for the
implicit methods. This means that high frequency modes are not damped out in the
Adams methods.

14.11.10 BDF methods

When a BDF method is applied to the test equation ẏ = λy we have the expression"
qX

m=1

1

m
(1− z−1)m − λh

#
y(z) = 0

which shows that when λh = 0, there is a pole at z = 1.
The expression

αqyn+1 + αq−1yn + . . . + α0 = λhyn+1 (14.287)

leads to
(αq − λh) yn+1 + αq−1yn + . . . + α0 = 0 (14.288)

We see that when λh→∞, then yn+1 → 0. In the z transform the result is found from£
(αq − λh) zq + αq−1zq−1 + . . . + α0

¤
y(z) = 0 (14.289)

where it is seen that when λh → ∞ the dynamics tend to zqy(z) = 0 which is q poles
at the origin of the z plane. This means that dynamics corresponding to λh À 1 are
damped out, and because of this the BDF methods are well suited for stiff systems. The
standard MATLAB integrator for stiff systems is ode15s which is a variable order BDF
solver (Shampine and Reichelt 1997).

14.12 Differential-algebraic equations

Consider the system
Mu̇ = φ(u)
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where u ∈Rd and M is a square matrix of dimension d × d. To begin with we assume
that M has the simple form

M =

µ
Id1 0
0 �Id2

¶
(14.290)

where d1 + d2 = d and � is a constant. It is seen that M is singular whenever � = 0.
Let µ

y
z

¶
= u,

µ
f
g

¶
= φ

where y, f ∈Rd1 and z,g ∈Rd2 . Then the system can be written in the form

ẏ = f(y, z) (14.291)

�ż = g(y, z) (14.292)

It is seen that if � 6= 0 then the system is of order d, and is described by the differential
equations above, while for � = 0 the system is of order d1 and is described by the
differential-algebraic equation

ẏ = f(y, z) (14.293)

0 = g(y, z) (14.294)

If

∂g(y, z)

∂z
=

½
∂gi
∂zj

¾
is nonsingular the differential algebraic equation is said to be of index 1. It is then
possible to solve z from 0 = g(y, z) giving

z = z(y)

and the dynamics of the system can be written

ẏ = f [y, z(y)] (14.295)

The system (14.295) can be solved with any numerical integration scheme, and the alge-
braic condition is automatically satisfied.
However, in some cases it is desirable to leave the system in the original form and

let � tend to zero. in particular, this is done if there is no explicit solution z = z(y)
available, or that the system is in the formMu̇ = φ(u) whereM is possibly nonsingular.
The system

Mu̇ = φ(u)

is said to be a differential algebraic equation of index 1 if it can be transformed in to a
index 1 system as defined above by a change of variables.
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14.12.1 Implicit Runge-Kutta methods for index 1 problems

An implicit Runge-Kutta method for the system (14.291, 14.292) is given by

Yi = yn + h
σX
j=1

aijf(Yj ,Zj)

�Zi = �zn + h
σX

j=1

aijg(Yj ,Zj)

yn+1 = yn + h
σX
i=1

bif(Yi,Zi)

�zn+1 = �zn + h
σX
i=1

big(Yi,Zi)

We will now show how this scheme can be reformulated so that the equation for zn+1
does not include �. This is done by solving g(Yj ,Zj) from the equation for �Zi, which
gives

hg(Yj ,Zj) = �
σX
j=1

ωij (Zi − zn)

where A−1 = Ω = {ωij}. This expression is inserted into the equation for �zn+1, and
the result is

�zn+1 = �zn + �
σX
i=1

bi

σX
j=1

ωij (Zi − zn)

= �

1−
σX
i=1

σX
j=1

biωij

 zn + �
σX
i=1

σX
j=1

biωijZi

We note that � may be cancelled from this equation, and recall from (14.156) that

R(∞) = 1− bTA−11 =1−
σX
i=1

σX
j=1

biωij (14.296)

This leads to the expression

zn+1 = R(∞)zn +
σX
i=1

σX
j=1

biωijZi
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which can be used to compute zn+1, and we get a reformulation of the Runge-Kutta
method in the form

Yi = yn + h
σX

j=1

aijf(Yj ,Zj)

�Zi = �zn + h
σX
j=1

aijg(Yj ,Zj)

yn+1 = yn + h
σX
i=1

bif(Yi,Zi)

zn+1 = R(∞)zn +
σX
i=1

σX
j=1

biωijZi

Note that � only appears in the equation for �Zi. If we let � go to zero, the Runge-Kutta
method becomes

Yi = yn + h
σX

j=1

aijf(Yj ,Zj)

0 =
σX
j=1

aijg(Yj ,Zj)

yn+1 = yn + h
σX
i=1

bif(Yi,Zi)

zn+1 = R(∞)zn +
σX
i=1

σX
j=1

biωijZi

The following observations for the case � = 0 are important. At each stage the algebraic
equation g(Yj ,Zj) = 0 is satisfied because A is nonsingular. The algebraic condition is
not necessarily satisfied for zn+1. If R(∞) = 0, we get

zn+1 =
σX
i=1

σX
j=1

biωijZi

where zn+1 is a linear combination of stages Zi. Still the algebraic equations

g(yn+1, zn+1) = 0

are not necessarily satisfied. However, if the method is stiffly accurate, that is, if it has a
nonsingular A matrix and the last row of A equals bT , then yn+1 = Yσ and zn+1 = Zσ,
and as g(Yσ,Zσ) = 0 it follows that g(yn+1, zn+1) = 0.

To conclude: Suppose that a stiffly accurate Runge-Kutta method is used to solve
(14.291,14.292) for � = 0. Then the computed solution will be the same as if the Runge-
Kutta method was applied to the system ẏ = f [y, z(y)]. The same method can be used
for an arbitrarily small �.
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For a general possibly singular M the method is written

M (Ui − un) = h
σX
j=1

aijφ(Uj)

un+1 = R(∞)un +
σX
i=1

σX
j=1

biωijUi

Also in this case the algebraic condition is satisfied for the stages, and also for yn+1 if a
stiffly accurate method is used.

14.12.2 Multistep methods for index 1 problems

The BDF and NDF methods are of the form

qX
m=1

αqyn+m−q = hf(tn+1,yn+1)

when applied to systems of the form

ẏ = f(t,y)

For index 1 systems in the form
Mu̇ = φ(u)

the BDF and NDF method are given by

qX
m=1

αq (Mu)n+m−q = hφ(un+1)

This method works also for singular M. In the case

M =

µ
I 0
0 0

¶
the system can be written

ẏ = f(y, z)

0 = g(y, z)

where µ
y
z

¶
= u,

µ
f
g

¶
= φ

Then, BDF and NDF gives

qX
m=1

αqyn+m−q = hf(yn+1, zn+1)

0 = hg(yn+1, zn+1)

It is seen that the algebraic condition is satisfied at each time step.
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Chapter 15

Computational fluid dynamics

15.1 Introduction

As shown in Chapter 10, models from fluid mechanics and thermodynamics often involve
partial differential equations. In particular this applies to the transport equations and
the Navier-Stokes equations. These equations cannot be solved analytically except in
special cases and there is a need for finding approximate solutions. Computational fluid
dynamics (CFD) is the collection of tools and methods used for solving this through sim-
ulation. CFD covers both mathematical modelling of the application at hand, methods
of discretization, numerical grid generation and methods of solving the sets of nonlinear
algebraic equations arising from the discretization. CFD methods can be divided into
at least three groups by the method of discretization. These three are finite difference,
finite volume and finite element methods. Due to its simplicity and the fact that the
approximation terms can be given a physical interpretation, we will in the following use
the finite volume method to compute approximate numerical solutions to some important
types of fluid dynamic problems.
The finite volume method uses the integral form of the balance equations as its

starting point. The solution domain is divided into a finite number of control volumes
(CV), and the conservation equations are applied too each CV. At the centroid of each
CV lies a computational node at which the variables are to be calculated. Interpolation
of the nodal vales of neighboring nodes are used at the CV surfaces. This finally results in
an algebraic equation for each node, in which a number of neighbor node values appear,
and a system of equations can now be found. The size of this system depends on the
size of the domain and the grid spacing, but a system of one million equations is not
uncommon. The finite volume method always yields systems with equations with a large
number of zero entries. The structure of the equations depend on the differencing scheme
used, but in most cases a diagonal structure is ensured. This can be exploited by the
solution technique, and iterative methods are often used. Further details on CFD are
found in (Patankar 1980), (Anderson 1995), (Ferziger and Períc 1999) and (Versteeg and
Malalasekera 1995)

15.2 Governing equations

The governing equations for fluid properties such as mass, velocity and energy have many
similarities, and it will be advantageous to introduce a general variable φ to denote a

591
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conserved quantity like mass, momentum or energy. The balance equation for a conserved
quantity φ is written

∂ (ρφ)

∂t| {z }
rate of change

of φ of spatial
fluid element

+ ∇T (ρφv)| {z }
Net rate of flow

of φ out of spatial
fluid element

= ∇T (Γ∇φ)| {z }
rate of change

of φ due to
diffusion

+ Sφ|{z}
rate of change

of φ due to
sources

(15.1)

in divergence form. Here v is velocity, ρ is density and Γ is a diffusion coefficient.
Equation (15.1) gives the continuity equation (11.6) by substituting φ = 1, the momen-
tum (Navier-Stokes) equations (11.299) by substituting φ = vi, and the energy equation
(11.165) by setting φ = e.
The key step in the finite volume method is the integration of equation (15.1) over a

constant control volume V to giveZZZ
V

∂ (ρφ)

∂t
dV +

ZZZ
V

∇T (ρφv) dV =

ZZZ
V

∇T (Γ∇φ) dV +

ZZZ
V

SφdV

By use of the divergence theorem as given by equation (10.12), we find

∂

∂t

µZZZ
V

ρφdV

¶
| {z }

rate of change

of φ

+

ZZ
∂V

nT (ρφv) dA| {z }
Net rate of change

of φ due to convection
across the boundaries

=

ZZ
∂V

nT (Γ∇φ) dA| {z }
Net rate of change

of φ due to diffusion
across the boundaries

+

ZZZ
V

SφdV| {z }
Net rate of

creation of φ

which describes the conservation of a fluid property for a finite size control volume V .
In steady state problems, the rate of change term is zero, which leads to the integrated
form of the steady state transport equation:ZZ

∂V

nT (ρφv) dA =

ZZ
∂V

nT (Γ∇φ) dA +

ZZZ
V

SφdV

In transient time-dependent problems it is also necessary to integrate with respect to
time t:

Z
∂

∂t

µZZZ
V

ρφdV

¶
dt +

Z ZZ
∂V

nT (ρφv) dAdt

=

Z ZZ
∂V

nT (Γ∇φ) dAdt +

Z ZZZ
V

SφdV dt

15.3 Classification
Classification of partial differential equations is an important concept for solving such
equations. Different methods can be developed for different types of equations such that
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distinct properties of the equations can be utilized. The governing partial differential
equations of fluid dynamics as derived in Chapter 10 are quasi linear. This means that
the highest order derivatives occur linearly, they appear by themselves, multiplied with
coefficients which are functions of the dependent variables. It is useful to examine the
mathematical properties of such equations, as any numerical solution of the equations
should exhibit the property of obeying the general mathematical properties of the gov-
erning equations. We will establish a classification of three types of differential equations:
elliptic, hyperbolic and parabolic — all three of which are encountered in fluid dynamics.


Pbondaryconditions

initial conditions

Figure 15.1: General propagation problem.

Consider the system of quasi-linear equations given below

a1
∂u

∂x
+ b1

∂u

∂y
+ c1

∂v

∂x
+ d1

∂v

∂y
= f1 (15.2)

a2
∂u

∂x
+ b2

∂u

∂y
+ c2

∂v

∂x
+ d2

∂v

∂y
= f2 (15.3)

where u and v are the dependent variables, and the coefficients ai, bi, ci, di and fi may be
functions of x, y, u and v. Note that these are not the flow equations, but they are similar
in some respects. In Figure 15.1, we have sketched a general problem where the solution
for u and v is known below and on the curve Σ. The solution propagates from the known
initial conditions and with known boundary conditions. In a point P on this curve we
know the values of u and v and their directional derivatives in directions ”downwards”
from Σ.We are now interested in whether it is possible to decide if the solution above P
is given by the information below and on the curve Σ. Or, equivalently: Are these data
sufficient to decide the directional derivatives in P in directions ”upwards” from Σ? The
directional derivatives can be found from the total differentials of u and v, which are
given by

du =
∂u

∂x
dx +

∂u

∂y
dy (15.4)

dv =
∂v

∂x
dx+

∂v

∂y
dy (15.5)

Thus, the total differentials du and dv can be found if ∂u
∂x ,

∂u
∂y ,

∂v
∂x and

∂v
∂y are known,

and we will now investigate under which conditions the partial derivatives in P can be
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calculated from the values of u and v on Σ. Equations (15.2) to (15.5) can be written as
a linear system in the four unknowns ∂u

∂x ,
∂u
∂y ,

∂v
∂x and

∂v
∂y :

a1 b1 c1 d1
a2 b2 c2 d2
dx dy 0 0
0 0 dx dy


| {z }

A


∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y

 =


f1
f2
du
dv

 (15.6)

If u and v are known in P , then ai, bi, ci, di and fi are also known, and if Σ is known
then dx and dy are known. Moreover, if u and v are known on Σ, then du and dv are
known. A unique solution for the four partial derivatives will then exist if and only if
detA 6= 0, .and the directional derivatives will have the same values above and below
Σ. If on the other hand detA = 0, (15.6) will have multiple solutions, and the partial
derivative might be discontinuous over Σ. The characteristic equation of the system is
found by setting detA = 0 : ¯̄̄̄

¯̄̄̄ a1 b1 c1 d1
a2 b2 c2 d2
dx dy 0 0
0 0 dx dy

¯̄̄̄
¯̄̄̄ = 0

⇓
(a1c2 − a2c1) (dy)2 − (a1d2 − a2d1 + b1c2 − b2c1) dxdy + (b1d2 − b2d1) (dx)2 = 0

⇓

(a1c2 − a2c1)

µ
dy

dx

¶2
− (a1d2 − a2d1 + b1c2 − b2c1)

dy

dx
+ (b1d2 − b2d1) = 0 (15.7)

The directions given by (15.7) are called characteristic directions, and a curve, plane or
hyperplane of points where (15.7) is satisfied, is called a characteristic. The characteristic
directions can be real and distinct, real and coinciding or imaginary dependent on the
discriminant

D = (a1d2 − a2d1 + b1c2 − b2c1)
2 − 4 (a1c2 − a2c1) (b1d2 − b2d1) = B2 − 4AC

being positive, zero or negative. If D > 0, two distinct characteristic lines exist through
each point in the xy-plane, and the system (15.2)-(15.3) is called hyperbolic, if D = 0 one
characteristic line exist through each point in the xy-plane, and the system (15.2)-(15.3)
is called parabolic, and if D < 0 the characteristic lines are imaginary, and the system is
called elliptic.
Alternatively, consider the second order equation

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ e

∂u

∂x
+ g

∂u

∂y
+ hu = f (15.8)

where a, b, c, d, e, f and g may be functions of x, y, u, ∂u∂x and
∂u
∂y . As before, we will find

conditions so that ∂2u
∂x2 ,

∂2u
∂x∂y and

∂2u
∂y2 are uniquely defined on Σ based on known values
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of u, ∂u∂x and
∂u
∂y on Σ. Using the same argument leading to (15.6) we have

d

µ
∂u

∂x

¶
=

∂2u

∂x2
dx +

∂2u

∂x∂y
dy (15.9)

d

µ
∂u

∂y

¶
=

∂2u

∂y∂x
dx +

∂2u

∂y2
dy (15.10)

Equations (15.8), (15.9) and (15.10) can now be written a b c
dx dy 0
0 dx dy




∂2u
∂x2
∂2u
∂x∂y
∂2u
∂y2

 =

 f − e∂u∂x − g ∂u∂y − hu

d
¡
∂u
∂x

¢
d
³
∂u
∂y

´


with characteristic equation

a (dy)2 − bdxdy + c (dx)2 = 0

⇓

a

µ
dy

dx

¶2
− b

dy

dx
+ c = 0 (15.11)

Based on (15.11), equation (15.8) will be hyperbolic if b2−4ac > 0, parabolic if b2−4ac =
0 and elliptic if b2 − 4ac < 0.

Remark 8 Notice that the classification of the PDE (15.8), is dependent only on the
coefficients of the second order derivatives.

We will now review some characteristic properties for each type of equation.

15.3.1 Hyperbolic equations

The characteristics of a hyperbolic equation in two variables are plotted in Figure 15.2.
Information at point P influences only the region between the characteristics, that is the
effect of a small disturbance at point P is felt only in the region of influence. Assume that
boundary conditions have been specified on the y-axis. Then the solution can be found by
”marching forward” along the x-axis, starting from the given boundary. The solution at
P will depend only on the part of the boundary conditions that are given between points
a and b on the y-axis. The region to the left of P is called the domain of dependence,
that is properties at P depends only on what is happening in this region. The solution
of hyperbolic equations can be set up as ”marching” solutions, that is starting with the
initial conditions, i.e. at the y-axis, and sequentially calculating the flow field step by step
marching in the x direction. This technique is known as space-marching . Steady inviscid
supersonic flow is an example of flow that is governed by a hyperbolic equation. Another
example is unsteady, inviscid flow. But in this case the governing equation is hyperbolic
with respect to time, as depicted in Figure 15.3. In such equations, the marching variable
is always time, and the technique is known as time-marching .

Example 237 The second order wave equation is given as

∂2u

∂t2
− c2s

∂2u

∂x2
= 0 (15.12)
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Pa

b

Domain of
dependence

Region of
influence

x

y

Figure 15.2: Characteristics for a hyperbolic equation in two dimensions.

From (15.8) we recognize a = 1, b = 0 and c = −c2s. The discriminant is given by
D = b2 − 4ac = 4c2s > 0

and the equation is hyperbolic. To find the characteristics, we now select dx/dt so that

a

µ
dx

dt

¶2
− b

dx

dt
+ c = 0 (15.13)

which is the characteristic equation, see (15.11). The characteristic directions are given
by

dx

dt
=

0±p0 + 4 · 1 · c2s
2 · 1 = ±cs

We conclude that the second order wave equation has two real characteristics.

15.3.2 Parabolic equations

The characteristic of a parabolic equation is shown as the dotted vertical line in Fig-
ure 15.4. Assume that initial conditions are given along the line ab, and boundary condi-
tions are known along cd and ab. Information at P influences the region to the right of the
characteristic, the region of influence. Parabolic equations are also solved by marching
techniques. Steady boundary-layer flows and unsteady thermal conduction are examples
of problems governed by parabolic equations. The latter being parabolic with respect to
time.

Example 238 The diffusion equation

∂φ

∂t
= α

∂2φ

∂x2
(15.14)

is a typical example of a parabolic equation. This can be established by recognizing from
(15.8) that a = α, b = c = 0. We also have that g = 1, but this does not influence the
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P

a b

Domain of
dependence

Region of
influence

x

t

Figure 15.3: Characteristics for a equation hyperbolic with respect to time.

classification. The discriminant is

D = b2 − 4ac = 0

and it follows that (15.14) is parabolic. The characteristic is found by

a

µ
dt

dx

¶2
− b

dt

dx
+ c = 0 (15.15)

α

µ
dt

dx

¶2
= 0 (15.16)

dt

dx
= 0 (15.17)

The parabolic equation has one characteristic given by dt
dx = 0.

15.3.3 Elliptic equations

For elliptic equations there are no limited regions of influence or domains of dependence.
Information is propagated everywhere in all directions. Consider point P in Figure 15.5.
A disturbance at P will be felt everywhere throughout the region, and the solution at P
is influenced by the entire boundary abcd. Therefore the solution at P must be carried
out simultaneously with the solution of all the other points in the domain and boundary
conditions must be applied for the entire boundary. For this reason, marching solutions
can not be used for elliptic equations. Boundary conditions can be a specification of
the dependent variables u and v in which case the conditions are known as a Dirichlet
condition, or they can be a specification of the derivatives such as ∂u

∂x in which case they
are called Neumann conditions. The boundary conditions can also be of mixed form,
that is involving both Dirichlet and Neumann conditions. Examples of flow that are
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Boundary conditions known

Boundary conditions known
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Figure 15.4: Characteristic of a parabolic equation

P

b

Region of
influence

x

y

c

da

Figure 15.5: Domain and boundaries for an elliptic equation in two dimensions.

governed by elliptic equations include steady, subsonic, inviscid flow and incompressible
inviscid flow.

Example 239 The Laplace equation which e.g. describes steady state conductive heat
transfer is a typical example of an elliptic equation. In two dimensions we have

∇2φ = 0 (15.18)

∂2φ

∂x2
+

∂2φ

∂y2
= 0

By recognizing that a = 1, b = 0 and c = 1 and calculating the discriminant

D = b2 − 4ac = −4,
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it can be concluded that (15.18) is elliptic. Further, the characteristic is found by

a

µ
dx

dy

¶2
− b

dx

dy
+ c = 0 (15.19)µ

dx

dy

¶2
= −1 (15.20)

dx

dy
= ±i (15.21)

The Laplace equation has no real characteristic, a fact that applies to all elliptic equations.

We will now present and apply the finite volume method of CFD to a number of well
known problems of increasing complexity.

15.4 Diffusion

15.4.1 Introduction

We start by considering the simplest possible transport process: pure diffusion in steady
state, which is governed by the equation

∇T (Γ∇φ)| {z }
rate of change

of φ due to
diffusion

+ Sφ|{z}
rate of change

of φ due to
sources

= 0 (15.22)

and can be found by deleting the two terms on the left hand side of (15.1).

15.4.2 Finite volume method for stationary diffusion

1D stationary diffusion

In one dimension, (15.22) is given by

d

dx

µ
Γ
dφ

dx

¶
+ S = 0 (15.23)

where Γ is called the diffusion coefficient, and S is the source term. Boundary conditions
φA = cA and φB = cB where cA and cB are constants are provided. This process will
be used to illustrate the three basic steps grid generation, discretization, solution of
equations, in the finite volume method.

Grid generation In the finite volume method we want to divide the domain into dis-
crete control volumes. A number of nodal points are placed between the boundaries A
and B. Each node is placed in the center of its control volume, such that the control vol-
ume surfaces are positioned mid-way between the nodes. This arrangement is illustrated
in Figure 15.6, and it is further detailed in Figure 15.7. The general node is named P ,
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and its adjacent nodes W (west) and E (east), respectively. Lower case letters w and e
are used for the boundaries. The distance between P and E is termed δxPE , with other
distances labeled in a similar manner, see Figure 15.7. Notice that the control volume
width is given by ∆x = δxwe. In two and three dimensions, the notation is extended
with the points N (north), S (south), T (top) and B (bottom) and corresponding lower
case letters for the boundaries.

A
W

P
E

B

Control volume

Nodes

Control volume
boundaries

Figure 15.6: Control volume and boundaries.

PW Ee

∆ δx= xwe

δxwP

δxWP δxPE
δxPe

Figure 15.7: Labeling of nodes and distances in the finitie volume method.

Discretization Integration of (15.23) over the control volume ∆V givesZ
∆V

d

dx

µ
Γ
dφ

dx

¶
dV +

Z
∆V

SdV = 0

and by using the divergence theoremZ
A

nT
µ
Γ
dφ

dx

¶
dA +

Z
∆V

SdV = 0

and evaluate at the east and west surfaces of the control volume we getµ
ΓA

dφ

dx

¶
e

−
µ
ΓA

dφ

dx

¶
w

+ S∆V = 0 (15.24)

where A is the cross-sectional area of the control volume face, ∆V is the volume, and S
is average value of S over the control volume. Notice that this discretized equation has
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a clear physical interpretation. It states that the diffusive flux of φ leaving the e surface
minus diffusive flux of φ entering through the w surface is equal to the generation of
φ inside the control volume. This is in fact one of the most attractive features of this
method. The resulting solution would imply that the integral conservation of quantities
such as mass, temperature and energy is exactly satisfied over any group of control
volumes. This holds for any number of grid points, and even coarse grid solutions exhibit
exact integral balances. We will now use the central difference to evaluate the value of
the diffusion coefficient Γ and the gradient dφ

dx at the interfaces of the volume:

Γw =
ΓW + ΓP

2
(15.25)

Γe =
ΓP + ΓE

2
(15.26)

such that the diffusive terms in (15.24) can be evaluated asµ
ΓA

dφ

dx

¶
w

= ΓwAw
φP − φW
δxWP

(15.27)

µ
ΓA

dφ

dx

¶
e

= ΓeAe
φE − φP
δxPE

(15.28)

The source term may be a function of φ, and in such cases it may be linearized as

S∆V = Su + SpφP . (15.29)

Substitution of (15.27), (15.28) and (15.29) into (15.24) givesµ
Γe

δxPE
Ae +

Γe
δxWP

Aw − Sp

¶
| {z }

aP

φP =

µ
Γw

δxWP
Aw

¶
| {z }

aW

φW +

µ
Γe

δxPE
Ae

¶
| {z }

aE

φE + Su

or

aPφP = aWφW + aEφE + Su (15.30)

which represent the discretized version of (15.22)

Finite volume method for 2D steady state diffusion

In two dimensions, (15.22) is given by

∂

∂x

µ
Γ
∂φ

∂x

¶
+

∂

∂y

µ
Γ
∂φ

∂y

¶
+ S = 0 (15.31)

Integration over the control volume givesZ
∆V

∂

∂x

µ
Γ
∂φ

∂x

¶
dxdy +

Z
∆V

∂

∂y

µ
Γ
∂φ

∂y

¶
dxdy +

Z
∆V

SdV = 0
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and by following the same technique as in the 1D case with Ae = Aw = ∆y and An =
As = ∆x, we get·
ΓeAe

µ
∂φ

∂x

¶
e

− ΓwAw

µ
∂φ

∂x

¶
w

¸
+

·
ΓnAn

µ
∂φ

∂y

¶
n

− ΓsAs

µ
∂φ

∂y

¶
s

¸
+S∆V = 0 (15.32)

By substituting

ΓeAe

µ
∂φ

∂x

¶
e

= ΓeAe
φE − φP
δxPE

ΓwAw

µ
∂φ

∂x

¶
w

= ΓwAw
φP − φW
δxWP

ΓnAn

µ
∂φ

∂y

¶
n

= ΓnAn
φN − φP
δyPN

ΓsAs

µ
∂φ

∂y

¶
s

= ΓsAs
φP − φS
δySP

into (15.32) and rearranging, we getµ
ΓeAe

δxPE
+
ΓeAw

δxWP
+
ΓsAs

δySP
+
ΓnAn

δyPN
− Sp

¶
| {z }

aP

φP =

µ
ΓwAw

δxWP

¶
| {z }

aW

φW +

µ
ΓeAe

δxPE

¶
| {z }

aE

φE +

µ
ΓsAs

δySP

¶
| {z }

aS

φS +

µ
ΓnAn

δyPN

¶
| {z }

aN

φN + Su

or

aPφP = aWφW + aEφE + aSφS + aNφN + Su (15.33)

which is the discretized version of (15.31).

Finite volume method for 3D steady state diffusion

In three dimensions, (15.22) is given by

∂

∂x

µ
Γ
∂φ

∂x

¶
+

∂

∂y

µ
Γ
∂φ

∂y

¶
+

∂

∂z

µ
Γ
∂φ

∂z

¶
+ S = 0

which using the same technique as in the 2D case can be discretized as

aPφP = aWφW + aEφE + aSφS + aNφN + aBφB + aTφT + Su

where

aW aE aS aN aB aT aP
ΓwAw
δxWP

ΓeAe
δxPE

ΓsAs
δySP

ΓnAn
δyPN

ΓbAb
δzBP

ΓtAt
δzPT

aW + aE + aS + aN + aB + aT − Sp



15.5. SOLUTION OF EQUATIONS 603

15.5 Solution of equations
In order to solve the problem, discretized equations like (15.30) have to be set up at each
of the nodal points, and at the boundaries, the boundary conditions is incorporated.
This will result in a system of ordinary linear algebraic equations which can be solved
by a number of algorithms.

15.5.1 Worked example on stationary diffusion

This section is based on Example 4.2 in (Versteeg and Malalasekera 1995). Consider a
large (so large that temperature gradients are only significant in the x direction) plate
of thickness L = 2cm with thermal conductivity of k = 0.5 K/(Wm) and uniform heat
generation of q = 1000 kW/m3. The boundary conditions are TA = 100◦ C and TB =
200◦ C. The temperature distribution is governed by

d

dx

µ
k
dT

dx

¶
+ q = 0

We divide the domain into five control volumes, that is δx = 0.004 m, and consider a
unit area in the yz plane. Integration over a control volume (using S∆V = q∆V ) givesZ

∆V

d

dx

µ
k
dT

dx

¶
dV +

Z
∆V

qdV = 0µ
kA

dT

dx

¶
e

−
µ
kA

dT

dx

¶
w

+ q∆V = 0

keA
TE − TP

δx
− kwA

TP − TW
δx

+ qAδx = 0

which is rearranged toµ
keA

δx
+

kwA

δx

¶
TP =

keA

δx
TW +

kwA

δx
TE + qAδx (15.34)

which, when comparing to (15.30), has the following coefficients:

aW aE aP Sp Su
kA
δx

kA
δx aW + aE − Sp 0 qAδx

Equation (15.34) have to be somewhat modified at the boundaries in order to include
the boundary conditions. A linear approximation is used for temperatures between the
boundary point and the nodal point. So for node 1, we have

keA
TE − TP

δx
− kAA

TP − TA
δx/2

+ qAδx = 0

which have, using kA = k, the following table of coefficients:

aW aE aP Sp Su
0 kA

δx aW + aE − Sp -2kAδx qAδx+ 2kA
δx TA

Similar for node 5, we get

aW aE aP Sp Su
kA
δx 0 aW + aE − Sp - 2kAδx qAδx + 2kA

δx TB
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Using numerical values, we get the following coefficients for all the nodes:

Node aW aE Su Sp aP

1 0 125 4000 + 250TA −250 375
2 125 125 4000 0 250
3 125 125 4000 0 250
4 125 125 4000 0 250
5 125 0 4000 + 250TB −250 375

This set of equations can be written in matrix form:
375 −125 0 0 0
−125 250 −125 0 0

0 −125 250 −125 0
0 0 −125 250 −125
0 0 0 −125 375




T1
T2
T3
T4
T5

 =


29000
4000
4000
4000
54000


The matrix of coefficients is seen to be tridiagonal, which is generally the case in problems
like this. The system can be found to have the solution

T1
T2
T3
T4
T5

 =


150
218
254
258
230


which can be found by using an appropriate technique for solving systems of ordinary
algebraic equations. Particularly well suited is the TDMA (tridiagonal matrix algorithm)
or Thomas algorithm, which can be applied iteratively.

15.6 Stability issues
Before we proceed to study more complicated flow phenomena, we need some concepts
regarding stability of the numerical solutions. Convergence is the property of a numer-
ical method to produce a solution which approaches the exact solution of the original
problem as the grid spacing tends to zero. Consistent numerical schemes produce sys-
tems of algebraic equations which can be demonstrated to be equivalent to the original
governing equation as the grid spacing tends to zero. Stability means that all solutions
of the numerical scheme are uniformly bounded functions of the initial conditions for
sufficiently small grid spacing. Convergence is usually very difficult to establish theoret-
ically. However, for linear problems, convergence can be established using the following
theorem.

Theorem 2 (Lax’s equivalence theorem) If a differential approximation to a initial and
boundary value problem is consistent, stability is a necessary and sufficient condition for
the scheme to be convergent.

For CFD problems this is of limited value as the governing equations often are nonlin-
ear, and in that case stability and consistency are necessary, but not sufficient conditions
for convergence. (Patankar 1980) presented rules which yields robust finite volume cal-
culations schemes. Robust schemes has three properties: conservativeness, boundedness
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and transportiveness. As we shall see, these concepts are designed into finite volume
schemes, and they are according to (Versteeg and Malalasekera 1995) commonly ac-
cepted as alternatives for the more mathematically rigorous concepts of convergence,
consistency and stability. Stability will be studied in some more detail in section 15.10.

• Conservativeness: Any discretization scheme for diffusion convection problems
must ensure that the flux through a common face is represented in a consistent
manner in adjacent control volumes. Ideally, when calculating the overall flux
balance, the fluxes between the control volumes should cancel out, leaving only the
fluxes at the boundaries,

• Boundedness: The discretized equations at each node give rise to a set of alge-
braic equations that need to be solved. This set might be quite large, and iterative
solution methods are often used. The Scarborough criterion (Scarborough 1966)
states that a sufficient condition for a convergent iterative method can be expressed
in terms of the values of the coefficients of the discretized equations. The criterion
is given by P |anb|

|a0P |
½ ≤ 1 at all nodes

< 1 at one node at last
(15.35)

where a0P is the net coefficient for the central node P , that is

a0P = aP − SP

and
P |anb| is the net coefficient for all the neighboring nodes. Another criterion

for boundedness is that all coefficients of the discretized equation have the same
sign. Physically, this implies that the increase of φ in one node should result in an
increase of φ in the neighboring nodes.

• Transportiveness: Define the Peclet number as

Pe =
F

D
=

ρu

Γ/δx

The Peclet number Pe is a measure of the relative strength of diffusion and con-
vection, and the terms F and D will be further treated in Section 15.8. For pure
diffusion we have Pe = 0, and for pure convection we have Pe =∞.

15.7 Finite volume method for diffusion dynamics
We now include a rate of change term in the governing equation in order to study time
dependent problems. Unsteady diffusion will be studied by looking at heat conduction,
which in one dimension, is described by

ρc
∂T

∂t
=

∂

∂x

µ
k
∂T

∂x

¶
+ S (15.36)

where ρ is the density (assumed constant), c is the specific heat of the material and k
is the thermal conductivity. As seen in Section 15.3.2 this problem is parabolic in time,
and we will solve it by marching in time from an initial distribution of temperature T .
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Given the nodal values of T at time t (denoted T 0P , T
0
W , T 0E and so on), we will find the

values of T at time t+∆t (denoted T 1P , T
1
W , T 1E and so on). Integrating over the control

volume using the same techniques as before, we getZ
∆V

ρc
∂T

∂t
dV =

Z
∆V

∂

∂x

µ
k
∂T

∂x

¶
dV +

Z
∆V

SdV (15.37)Z e

w

ρc
∂T

∂t
dV =

µ
kA

∂T

∂x

¶
e

−
µ
kA

∂T

∂x

¶
w

+ S∆V (15.38)

Assuming that the temperature is uniform within each control volume, we have

ρc
∂T

∂t
∆V =

µ
kA

∂T

∂x

¶
e

−
µ
kA

∂T

∂x

¶
w

+ S∆V

Using the theta method described in Section 14.5.6, we get.

ρc∆V Tn+1
P = ρc∆V Tn

P +∆t
£
θf (Tn

P , tn, x) + (1− θ) f
¡
Tn+1
P , tn+1, x

¢¤
(15.39)

where

f (Tn
P , tn, x) = ke

Tn
E − Tn

P

δxPE
− kw

Tn
P − Tn

W

δxWP
+ S∆V

and

f
¡
Tn+1
P , tn+1, x

¢
= ke

Tn+1
E − Tn+1

P

δxPE
− kw

Tn+1
P − Tn+1

W

δxWP
+ S∆V

As before, central differencing has been applied to the diffusion terms.
In (15.39), θ = 1 gives the Euler method, θ = 1

2 gives the trapezoidal rule (usually
referred to as the Crank-Nicolson method in the CFD literature) and θ = 0 gives the
implicit Euler method. Using ∆V = A∆x, equation (15.39) can also be written asµ
ρc
∆x

∆t
+ (1− θ)

µ
ke

δxPE
+

kw
δxWP

¶¶
Tn+1
P =

ke
δxPE

¡
(1− θ)Tn+1

E + θTn
E

¢
+

kw
δxWP

¡
(1− θ)Tn+1

W + θTn
W

¢
+

µ
ρc
∆x

∆t
− θ

µ
ke

δxPE
+

kw
δxWP

¶¶
Tn
P

+S∆x

or

aPT
n+1
P = aW

¡
(1− θ)Tn+1

W + θTn
W

¢
+ aE

¡
(1− θ)Tn+1

E + θTn
E

¢
(15.40)

+
¡
a0P − θaW − θaE

¢
Tn
P + S∆x

where

aP = (1− θ) (aW + aE) + a0P

a0P = ρc
∆x

∆t

aW =
kw

δxWP

aE =
ke

δxPE
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We have now arrived at a discretized version of (15.36), and we will review three different
schemes given by the theta method.

Euler (θ = 1)

In the Euler method, or explicit scheme, θ = 1, and the source term is linearized as

S∆x = Su + SPT
n
P

The discretized heat transfer equation is then given by

aPT
n+1
P = aWTn

W + aET
n
E +

¡
a0P − aW − aE + SP

¢
Tn
P + Su (15.41)

where

aP = a0P (15.42)

a0P = ρc
∆x

∆t

aW =
kw

δxWP

aE =
ke

δxPE

For this method to be stable, all coefficients in the discretized equation (15.41) need to
be positive. This is satisfied if a0P − aW − aE > 0. When assuming uniform grid spacing
δxPE = δxWP = ∆x and constant k = ke = kw, this can be written

∆t < ρc
(∆x)

2

2k
(15.43)

This sets a maximum limit on the time step size ∆t, and reduction of ∆x to improve
spatial accuracy forces us to chose a much smaller time step in order to ensure stability.

Crank-Nicolson (θ = 1
2)

In the Crank-Nicolson method, θ = 1
2 and the source term is linearized as

S∆x = Su + SP
Tn
P + Tn+1

P

2

The discretized heat transfer equation is

aPT
n+1
P = aW

Tn
W + Tn+1

W

2
+ aE

Tn
E + Tn+1

E

2
+

µ
a0P −

aW
2
− aE

2
+

SP
2

¶
Tn
P + Su
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where

aP =
1

2
(aW + aE) + a0P −

SP
2

a0P = ρc
∆x

∆t

aW =
kw

δxWP

aE =
ke

δxPE

Again, all coefficients in the discretized equation must be positive, which is satisfied if

∆t < ρc
(∆x)2

k

where δxPE = δxWP = ∆x and constant k = ke = kw. Again, we notice the restriction
on the time step ∆t, which is only slightly less restrictive than for the Euler scheme.

Implicit Euler (θ = 0)

In the implicit Euler scheme, θ = 0 and the source term is linearized as

S∆x = Su + SPT
n+1
P

and the discretized heat transfer equation is

aPT
n+1
P = aWTn+1

W + aET
n+1
E + a0PT

n
P + Su

where

aP = aW + aE + a0P − SP

a0P = ρc
∆x

∆t

aW =
kw

δxWP

aE =
ke

δxPE

As all coefficients in the discretized equation are positive, the method is unconditionally
stable. CFD computations for two- and three-dimensional transient diffusion can be done
using the same methods as in this section.

Example 240 Simulation of temperature control using the Finite Volume CFD
method
Consider an insulated rod equipped with a heating element at the east end as depicted in
Figure 15.8. The one dimensional transient heat conduction equation is

ρc
∂T

∂t
=

∂

∂x

µ
k
∂T

∂x

¶
+ S
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S  k pTref  Tmeas 
T
x t, 0  0

insulation

Tmeas

x  Lx  0

Figure 15.8: Temperature control of a rod. A heating element at the east end is controlled
with feedback from the temperature at the middle of the rod. The rest of the rod is
insulated.

where ρc = 107JK/m3, k = 10WK/m, and length L = 0.02m. Initially T (x, 0) = 300K.
The insulated west end implies the boundary condition ∂T

∂x (t, 0) = 0. We will use a P
controller to control the power S of the heating element which is located at the east end
(x = L). Temperature will be measured at the middle of the rod so that the source term
will be given by

S = kp (Tref − Tmeas)

where kp > 0 is the controller gain Tref is the temperature set point and Tmeas is the
temperature measurement. We use the Euler method for time discretization and divide
the spatial domain into five control volumes such that ∆x = 0.004m. The computational
grid will be similar to the one used in Section 15.5.1. By using equation (15.40), we find
for node 1

ρc

µ
Tn+1
P − Tn

P

∆t

¶
∆x =

k

∆x
(Tn

E − Tn
P )

The discretized equations for node 2,3 and 4 are given by (15.41) and (15.42), and for
node 5 we find

ρc

µ
Tn+1
P − Tn

P

∆t

¶
∆x = kp (Tref − Tn

3 )− k

∆x
(Tn

P − Tn
W )

where Tmeas = T3 has been used as the measurement is made at the middle. The time
step ∆t must satisfy (15.43), which leads to ∆t < 8.We chose ∆t = 2. Using numerical
values, it can be shown that the equation for each node is given by

Node 1: 200Tn+1
1 = 25Tn

2 + 175Tn
1

Node 2-4: 200Tn+1
P = 25Tn

W + 25Tn
E + 150Tn

P

Node 5: 200Tn+1
5 = 25Tn

4 + 175Tn
5 + k0p (Tref − T3)

(15.44)

Notice that due to measurement and control not being collocated, the introduction of T3 in
the equation for node 5 breaks the tridiagonal structure of the equations. The equation set
(15.44) was solved numerically using MATLAB. The result is plotted in Figure 15.9. As
can be seen, the desired temperature is reached throughout the rod, which is not surprising
due to the insulation.

The equation set in the example was evaluated with the following MATLAB script.

kp=50; % Controller gain
T_ref=400; % Desired temperature
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for i=1:5, % Initialization
T(1,i)=300;

end
for t=2:150; % 150 timesteps
T(t,1)=1/200*(25*T(t-1,2)+175*T(t-1,1)); %node 1
T(t,2)=1/200*(25*T(t-1,1)+150*T(t-1,2)+25*T(t-1,3)); %node 2
T(t,3)=1/200*(25*T(t-1,2)+150*T(t-1,3)+25*T(t-1,4)); %node 3
T(t,4)=1/200*(25*T(t-1,3)+150*T(t-1,4)+25*T(t-1,5)); %node 4
T(t,5)=1/200*(25*T(t-1,4)+175*T(t-1,5)+kp*(T_ref-T(t-1,3))); %node 5

end
figure(1)
surf(T’)
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Figure 15.9: Simulation of the equation set (15.44).

15.8 Finite volumes for Convection-Diffusion

15.8.1 Introduction

Convection is caused by fluid flow. In this section we will study methods to obtain a
solution for φ for a given flow field. The transport equation for convection-diffusion of a
general property φ is given by (15.1), and repeated here for convenience:

∂ (ρφ)

∂t| {z }
rate of change

of φ of
fluid element

+ ∇T (ρuφ)| {z }
Net rate of flow

of φ out of
fluid element

= ∇T (Γ∇φ)| {z }
rate of change

of φ due to
diffusion

+ Sφ|{z}
rate of change

of φ due to
sources

(15.45)

where ρ is the density, u is the flow velocity vector and Γ is the diffusion coefficient.
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PW Ee

∆ δx= xwe

δxPeδxwP

δxWP δxPE

ueuw

Figure 15.10: Control volume for 1D convection and diffusion. ue is the flow velocity
entering the CV, and uw is the flow velocity leaving the CV.

15.8.2 Finite volume method for 1D diffusion and convection dy-
namics

In one dimension, (15.45) is given by

∂

∂t
(ρφ) +

∂

∂x
(ρuφ) =

∂

∂x

µ
Γ
∂φ

∂x

¶
+ S, (15.46)

where u is the x component of the flow velocity vector.Using the same methodology as
in Section 15.7, integration of (15.46) over the control volume in Figure 15.10 givesZ

∆V

∂

∂t
(ρφ) dV + (ρAuφ)e − (ρAuφ)w =

µ
ΓA

dφ

dx

¶
e

−
µ
ΓA

dφ

dx

¶
w

(15.47)

ρ
∂φ

∂t
∆V + (ρAuφ)e − (ρAuφ)w =

µ
ΓA

dφ

dx

¶
e

−
µ
ΓA

dφ

dx

¶
w

(15.48)

We now define the convection and diffusion terms

F = ρu

D =
Γ

δx

so that

Fw = (ρu)w , Fe = (ρu)e

Dw =
Γw

δxWP
, D =

Γe
δxPE

We choose here to use the implicit Euler scheme of Section 15.7 for integration, but other
schemes might just as well be used. Linearizing the source term as

S∆V = Su + SPφ
n+1
P

the integrated version of (15.47) can be written

ρ∆V φn+1P = ρ∆V φnP +∆t
£−Feφn+1e + Fwφ

n+1
w +De

¡
φn+1E − φn+1P

¢
(15.49)

−Dw

¡
φn+1P − φn+1W

¢
+ Su + SPφ

n+1
P

¤
In (15.49), the diffusion terms are approximated by using the central difference. Calcula-
tion of the convection terms at the e and w surfaces can be done by a number of different
schemes, and some of them will now be reviewed.
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Central difference

One alternative is to use the central difference to approximate the convection terms. By
substituting

φe =
φP+φE

2

φw =
φW+φP

2

into (15.49) and rearranging, we getµ
ρ∆V

∆t
+

µ
Dw +

Fw
2

¶
+

µ
De − Fe

2

¶
+ (Fe − Fw)− SP

¶
φn+1P

=
ρ∆V

∆t
φnP +

µ
Dw +

Fw
2

¶
φn+1W +

µ
De − Fe

2

¶
φn+1E + Su

or
aPφ

n+1
P = a0Pφ

n
P + aWφn+1W + aEφ

n+1
E + Su

and we have the same type of discretized equation that we derived for the pure diffusion
problems. Regarding conservativeness, it can easily be shown that fluxes of the type
Γ
(φi+1−φi)
∆x will cancel out in pairs, leaving only the fluxes at the boundaries, and thus

the central differencing scheme is conservative. For a flow that is governed by (15.49)
and simultaneously satisfies continuity, that is

Fe − Fw = 0

it follows that, a0P = aW +aE +a0P . The Scarborough criterion can then be calculated asP |anb|
|a0P |

=
|aW |+ |aE |+

¯̄
a0P
¯̄

|aW + aE + a0P |

and it can be seen that the conditions of (15.35) are satisfied. As aE = De − Fe
2 ,

this coefficient can be negative if convection is sufficiently strong. Provided all other
coefficients are positive, this will violate the requirement for boundedness. Moreover

aE > 0 =⇒ De − Fe
2

> 0 =⇒ Fe
De

= Pee < 2

This means that the central differencing scheme in this case will produce bounded solu-
tions only if the Peclet number satisfies Pee < 2. Regarding transportiveness, the scheme
does not recognize the direction of the flow, and would not be useful for high Pe.The
central difference scheme is accurate to second-order.

The upwind scheme

To remedy this, the upwind scheme takes flow direction into account. If the flow direction
is positive (from west in Figure 15.10), that is uw > 0 and ue > 0, we chose

φw = φW and φe = φP .
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When inserted into (15.49) this gives the discretized equationµ
ρ∆V

∆t
+ (Dw + Fw) +De + (Fe − Fw)− SP

¶
φn+1P

=
ρ∆V

∆t
φnP + (Dw − Fw)φn+1W +Deφ

n+1
E + Su. (15.50a)

If the flow direction is negative (from east in Figure 15.10), that is uw < 0 and ue < 0,
we chose

φw = φP and φe = φE .

and consequentlyµ
ρ∆V

∆t
+Dw + (De − Fe) + (Fe − Fw)− SP

¶
φn+1P

=
ρ∆V

∆t
φnP +Dwφ

n+1
W + (De − Fe)φ

n+1
E + Su (15.51)

By combining (15.50a) and (15.51), the upwind scheme can be written

aPφ
n+1
P = a0Pφ

n
P + aWφn+1W + aEφ

n+1
E

where

aP = a0P + aW + aE + (Fe − Fw)

a0P =
ρ∆V

∆t
aW = Dw + max(Fw, 0)

aE = De + max(0,−Fe)
The upwind scheme is conservative, the fact that aP = aW + aE implies that the Scar-
borough criterion is met. Also, all the coefficient are positive, and transportiveness is
built into the formulation. The upwind scheme is accurate to first order.

The hybrid scheme

The hybrid differencing is based on a combination of central and upwind differencing
schemes. For small Peclet numbers (Pe < 2), central differencing is used while the
upwind scheme is used for large Peclet numbers. The reason for this is to make use of
the second order accuracy of the central differencing scheme. It can be shown that the
hybrid scheme can be written

aPφ
n+1
P = a0Pφ

n
P + aWφn+1W + aEφ

n+1
E

with

aP = a0P + aW + aE + (Fe − Fw)

a0P =
ρ∆V

∆t

aw = max

µ
Fw,

µ
Dw +

Fw
2

¶
, 0

¶
aw = max

µ
−Fe,

µ
De − Fe

2

¶
, 0

¶
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Quadratic upwind scheme (QUICK)

The quadratic upstream interpolation for convective kinetics (QUICK) scheme (Leonard
1979) uses a three-point upstream-weighted quadratic interpolation for cell face values.
The value of φ at the cell face between two bracketing nodes i and i−1 and an upstream
node n.− 2 is given by

φface =
6

8
φi−1 +

3

8
φi −

1

8
φi−2

When uw > 0 and ue > 0, a quadratic fit throughWW , W , and P is used to evaluate φw
and a quadratic fit through W , P , and E is used to evaluate φe. If uw < 0 and ue < 0,
values at W , P , and E is used to evaluate φw and P , E, and EE is used to evaluate
φe. The diffusion terms are evaluated using central differencing. For one-dimensional
convection diffusion, the QUICK-scheme can be summarized as

aPφ
n+1
P = a0Pφ

n
P + aWφn+1W + aEφ

n+1
E + aWWφn+1WW + aEEφ

n+1
EE

where

aP = a0P + aW + aE + (Fe − Fw) + aWW + aEE

aW = Dw +
6

8
αwFw +

1

8
αeFe +

3

8
(1− αw)Fw

aWW = −1

8
αwFw

aE = De − 3

8
αeFe − 6

8
(1− αe)Fe − 1

8
(1− αw)Fw

aEE =
1

8
(1− αe)Fe

where αw = 1 for Fw > 0, αw = 0 for Fw < 0, αe = 1 for Fe > 0 and αe = 1 for Fw < 0.
The QUICK algorithm is accurate to third order. Notice that the QUICK algorithm will
yield a penta-diagonal system of equations.

15.9 Pressure-velocity coupling

15.9.1 Introduction

Viscous incompressible flow is governed by the incompressible Navier-Stokes equations.
These equations exhibit a mixed elliptic-parabolic behavioral, and therefore, as discussed
in Section 15.3, the problem can not be solved by time marching techniques. The velocity
components are governed by the momentum equations, which are particular cases of the
general differential equation for φ. The momentum equations, e.g. in 2D, are given by

∂ (ρu)

∂t
+

∂

∂x

¡
ρu2

¢
+

∂

∂y
(ρuv) =

∂

∂x

µ
µ
∂u

∂x

¶
+

∂

∂y

µ
µ
∂u

∂y

¶
− ∂p

∂x
+ Su(15.52)

∂ (ρv)

∂t
+

∂

∂x
(ρuv) +

∂

∂y

¡
ρv2
¢

=
∂

∂x

µ
µ
∂v

∂x

¶
+

∂

∂y

µ
µ
∂v

∂y

¶
− ∂p

∂y
+ Sv (15.53)

These equations can be shown to be parabolic. The velocity also satisfy the continuity
equation
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∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (15.54)

which is elliptic. The incompressible Navier-Stokes equations can be obtained from the
compressible form simply by setting constant density ρ, which would lead us to believe
that the equations can be solved numerically by using one of the previous mentioned
techniques. This is unfortunately not the case. (Anderson 1995) cites a result where an
approximate stability criterion for an explicit Navier-Stokes solution is shown to be

∆t ≤ 1

|u| /∆x + |v| /∆y + a

q
1/ (∆x)

2
+ 1/ (∆y)

2

where α is the sonic velocity. For a compressible flow a is finite, and it is possible to
find a finite ∆t to guarantee stability of the solution. However, for an incompressible
flow, the sonic velocity is theoretically infinite, and we would get ∆t = 0. Consequently,
another method has to be found. In addition to the equations (15.52), (15.53) and (15.54)
being nonlinear, another difficulty in solving this problem is the presence of the pressure
gradient terms ∂p

∂x and
∂p
∂y . As can be seen we have no differential equation for

∂p
∂t . We

also recognize that a consequence of the system (15.52)-(15.54) being a parabolic-elliptic,
we have no transient term in (15.54). It is interesting to compare this to a system of
differential-algebraic equations (DAE).

Remark 9 If the flow is compressible, the continuity equation

∂

∂t
(ρ) +

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (15.55)

may be used as a transport equation for density, and the energy equation is a transport
equation for temperature. The pressure may then be obtained using the equation of state
p = p(T, ρ), and the the problem can be solved by using techniques described previously
in this Chapter.

For incompressible flow, there is by definition no connection between pressure and
density. In this case, coupling between pressure and density introduces a constraint on the
solution of the flow field: if the correct pressure field is applied in the momentum equa-
tions (15.52) and (15.53), the resulting velocity field should satisfy continuity (15.54).For
these reasons, solution techniques for incompressible Navier-Stokes equations are differ-
ent than for compressible Navier-Stokes equations. The pressure correction model, which
will be presented next, are one such technique.

15.9.2 The staggered grid

When including the pressure gradient in the calculations, another problem arises. This
is usually illustrated by an example.

Example 241 The, checkerboard pressure field of Figure 15.11 is highly irregular. Let us
examine how this is represented in the discretized momentum equations. If the pressure
drop across the CV is obtained by linear interpolation, we have in the x direction:

pw − pe =
pW + pP

2
− pP + pE

2
=

pW − pE
2
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Figure 15.11: Discrete checkerboard pressure field

which implies
∂p

∂x
=

pw − pe
δx

=
pW − pE

2δx
=

100− 100

2δx
= 0 (15.56)

and similarly in the y direction

∂p

∂y
=

pN − pS
2δy

=
100− 100

2δy
= 0 (15.57)

We see that the value at the node P is cancelled out and not used in either of the cal-
culations (15.56) or (15.57). This means that the pressure differences are calculated for
alternate nodes, and not for adjacent ones. This might reduce the accuracy of the solu-
tion. However this is not the main problem: far more serious is the fact that a pressure
field like the one in Figure 15.11 results in all the discretized gradients being zero at the
nodal point. As a result, this pressure field would give the same momentum source as a
uniform field.

Remark 10 The problem described in Example 241 does not occur if the flow is com-
pressible. The term ∂ρ

∂t in the continuity equation (15.55) would damp out the checker-
board pattern.

It is clear from the Example 241 that if velocities are defined at the scalar grid
nodes, the pressure gradients are not properly represented in the discretized momentum
equations. A remedy for this is the staggered grid. The idea is to evaluate velocities
on another grid than all the other variables. Pressure, temperature etc. are calculated
at the ordinary nodal points, but velocities are calculated at the CV faces between the
nodal points. A 2D staggered grid is shown in Figure 15.12. The x direction velocity u is
calculated at the faces that are normal to the x direction, and the y direction velocity v is
calculated at the faces that are normal to the y direction. The staggered grid arrangement
solves the problem of the checkerboard pressure field. Alternatively, (Anderson 1995),
suggest to use another approximation when calculating the pressure differences in (15.56)
and (15.57). The upwind scheme might be one such scheme.

Remark 11 Although example 241 illustrates that the staggered grid solves the problem
of the checkerboard pressure field, it is rather unrealistic because it contains a nonphysical



15.9. PRESSURE-VELOCITY COUPLING 617

pressure field. The main advantage of the staggered grid is in fact that it allows for the
pressure difference between two adjacent grid points to be the driving force for the velocity
component located between these grid points.

ew
n

s

P

Figure 15.12: A staggered two dimensional grid. The u’s are stored at the −→, the v’s
at the ↑ and other variables φ at the •.

15.9.3 The momentum equations

P Ee

Figure 15.13: Control volume for u.

A staggered control volume for the momentum equation (15.52) is shown in Figure
15.13. As can be seen, the pressure difference pP−pE can be used to calculate the pressure
force acting on the control volume for the velocity u. Using similar techniques as in the
previous sections, the discretized transient momentum equation in the x direction on the
staggered grid can be written in the form

aeu
n+1
e =

X
anbu

n
nb + a0eu

n
e + b+ (pnP − pnE)Ae (15.58)

where

Au =
∆Vu
∆x

and b is a collection of other source terms than the pressure gradient. In (15.58), inte-
gration with respect to time has been carried out by an explicit scheme such as the Euler
method. The values of the coefficients a0e, ae and anb may be calculated by any of the
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previous presented methods suitable for convection-diffusion problems (hybrid, upwind,
QUICK).
Similarly, the discretized momentum equation in the y direction on the staggered grid

can be written in the form

anv
n+1
n =

X
anbv

n
nb + a0nv

n
n + b+ (pnP − pnN)An (15.59)

where

An =
∆Vv
∆y

The extension to the z direction in a 3D problem is trivial.

Remark 12 Notice that the term (pP − pE)Au in (15.58) is the pressure force acting
on the u control volume. This is physically correct and would not be possible without the
staggered grid.

15.9.4 The transient SIMPLE algorithm

SIMPLE (Patankar and Spalding 1972) stands for Semi-Implicit Method for Pressure-
Linked Equations. The complete algorithm will be described below. Solving the mo-
mentum equations requires knowledge of the pressure field, and using an incorrect field
results in a velocity field not satisfying continuity. We will make an initial guess p∗ of the
pressure field, and an imperfect velocity field based on this guessed pressure field will be
denoted by u∗, v∗, w∗. Using (15.58), the u∗ component will result from the solution of

ae (u∗)n+1e =
X

anb (u∗)nnb + a0e (u∗)ne + b + ((p∗)nP − (p∗)nE)Ae (15.60)

where the notation (u∗)n+1e is used for expressing the velocity u∗ at position e and
time n+1. Similar equations is solved for v∗ and w∗. Now we define the correction p0 as

p = p∗ + p0

and similarly for the velocities

u = u∗ + u0, v = v∗ + v0, w = w∗ + w0

Subtracting (15.60) from (15.58) gives

ae (u0)n+1e =
X

anb (u0)nnb + a0e (u0)ne +
¡
(p0)nP − (p0)nE

¢
Ae

At this time we set X
anb (u0)nnb = 0 (15.61)

(u0)ne = 0

This is the main approximation of the SIMPLE algorithm and it results in the velocity-
correction formula

(u0)n+1e = de
¡
(p0)nP − (p0)nE

¢
un+1e = (u∗)n+1e + de

¡
(p0)nP − (p0)nE

¢
(15.62)
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where

de =
Ae

ae
,

and ae = f(∆t;∆x) depending on the numerical scheme used. The reason behind the
approximation (15.61) is that we want to derive a equation for pressure correction p0.
We construct a formula for p0 that ensures convergence of the velocity field to a solution
that satisfies continuity. As p0 is a numerical artifice, and there is no reason to expect
that the formula for predicting p0 from one step to the next is physical correct. The
approximation is analyzed in (Patankar 1980) and (Anderson 1995).
The above procedure can also be carried out in the y direction, which would lead to

the velocity-correction formula

vn+1n = (v∗)n+1n + dn
¡
(p0)nP − (p0)nN

¢
(15.63)

We will now use the continuity equation (15.54) as a pressure correction equation. In-
tegrating the continuity equation over the control volume centered at P and using the
central difference for discretizing in x and y directions, we get

ρ
un+1e − un+1w

∆x
+ ρ

un+1n − un+1s

∆y
= 0 (15.64)

when evaluating the time invariant equation at time t+∆t. Inserting (15.62) and (15.63)
into (15.64) it follows that

aP (p0)nP = aE (p0)nE + aW (p0)nW + aN (p0)nN + aS (p0)nS + b0 (15.65)

where the term

b0 =
(u∗)n+1e − (u∗)n+1w

∆x
+

(u∗)n+1n − (u∗)n+1s

∆y

is the continuity imbalance arising from the incorrect velocity field, and

aP =
dw + de
∆x

+
dn + ds
∆y

, aW = − dw
∆x

, aE = − de
∆x

, aS = − ds
∆y

, aN = − dn
∆y

The complete SIMPLE algorithm will now be stated for all three dimension.

1. Guess the pressure field p∗

2. Solve the momentum equations for u∗, v∗, w∗

3. Solve the pressure correction equation for p0

4. Calculate p and u, v, w from p∗ and u∗, v∗, w∗

5. Solve the discretized equations for all other φ.(If a φ does not influence the flow
field it is better to calculate it after the flow field calculations have converged)

6. If the solutions has converged: end, otherwise set p∗ = p, and start over from step
2.

Remark 13 The term semi-implicit in the name of the algorithm stems from the approx-
imation (15.61). Without the approximation, the complete pressure correction field would
have been coupled in one equation, giving a fully implicit equation. The approximation
allows the pressure correction equation (15.65) to include terms only from the neighbor
nodes, and it was termed only as semi-implicit by (Patankar and Spalding 1972).

Refinements to the SIMPLE algorithm in terms of computations effort and stability
have produced algorithms such as SIMPLER, SIMPLEC and PISO. For an overview
consult (Versteeg and Malalasekera 1995).
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15.10 Von Neuman stability method
Although convergence might be difficult to establish, there exist a quite simple method
to establish the stability of partial difference equations. Named after its inventor, the
von Neuman method will be presented here. First the general idea will be presented, and
then the detail will be made clear through a couple of examples.
Let D be the exact solution of the difference equation in question, and N be the

corresponding numerical solution. The round off error, or hereafter the error, is then
defined as

ε = N −D⇒ N = D + ε (15.66)

By showing that ε also satisfy the difference equation, it follows that the numerical
solution N is stable if εi shrinks as the solution progresses from step n to step n + 1.
That is, the solution will be stable if ¯̄̄̄

εn+1P

εnP

¯̄̄̄
≤ 1 (15.67)

and unstable otherwise. How to represent the error ε is shown in the example below.

Example 242 Consider the one dimensional heat conduction equation

∂T

∂t
= α

∂2T

∂x2

By representing ∂T
∂t with a forward difference, and

∂2T
∂x2 with a central difference we get

Tn+1
P − Tn

P

∆t
=

α (Tn
W − 2Tn

P + Tn
E)

(∆x)2
(15.68)

Let D be the exact solution of the difference equation (15.68), and N be the numerical
solution. The error, is defined as

ε = N −D⇒ N = D + ε.

The numerical solution N must satisfy the difference equation:

Dn+1
P + εn+1P −Dn

P − εnP
α∆t

=
Dn
W + εnW − 2Dn

P − 2εnP +Dn
E + εnE

(∆x)2

and as D also satisfy (15.68), so must the error ε :

εn+1P − εnP
α∆t

=
εnW − 2εnP + εnE

(∆x)2
(15.69)

Equation (15.69) is stable if ¯̄̄̄
εn+1P

εnP

¯̄̄̄
≤ 1 (15.70)

The error ε can be written as a Fourier series:

ε(x, t) =
X
m

Am(t)eikmx =
X
m

Am(t) (cos kmx + i sin kmx) (15.71)
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where i =
√−1,

km =
2π

λ

is the wave number and m is to be determined. It is assumed that the length of the
domain on which the equation is solved is L. By using N + 1 grid points, we have that

∆x =
L

N

The smallest allowable wavelength in the Fourier series (15.71) is

λmin =
2L

N

which is the wavelength of a sine (or cosine) function having all three zeros in adjacent
gridpoints. Thus the highest wave number in the series is

km,max =
2π

λmin
=

2π

L

N

2

which gives us the summation limits for (15.71):

ε(x, t) =

N/2X
m=1

Am(t)eikmx =

N/2X
m=1

Am(t) (cos kmx + i sin kmx)

where

km =

µ
2π

L

¶
m

It is further assumed that the amplitude Am varies with time as Am(t) = eat,where a is
a constant. This implies

ε(x, t) =

N/2X
m=1

eateikmx

By substituting one term
εm(x, t) = eateikmx (15.72)

into (15.69), we get

ea(t+∆t)eikmx − eateikmx

α∆t
=

eateikm(x+∆x) − 2eateikmx + eateikm(x−∆x)

(∆x)
2

which is simplified to

ea∆t = 1 +
α∆t

(∆x)2
¡
eikm∆x + e−ikm∆x − 2

¢
= 1 +

2α∆t

(∆x)2
(cos (km∆x)− 1)

= 1− 4α∆t

(∆x)
2 sin2

µ
km∆x

2

¶
(15.73)
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By combining (15.70), (15.72) and (15.73) we get¯̄̄̄
εn+1P

εnP

¯̄̄̄
=

¯̄̄̄
ea(t+∆t)eikmx

eateikmx

¯̄̄̄
=
¯̄
ea∆t

¯̄
=

¯̄̄̄
¯1− 4α∆t

(∆x)2
sin2

µ
km∆x

2

¶¯̄̄̄
¯ ≤ 1

which is the stability criterion. The factor

G ,
¯̄̄̄
¯1− 4α∆t

(∆x)
2 sin2

µ
km∆x

2

¶¯̄̄̄
¯

is known as the amplification factor. The condition G ≤ 1 has two solutions, where the
first is trivial, and the other leads to

1− 4α∆t

(∆x)
2 sin2

µ
km∆x

2

¶
≥ −1

which is simplified to
α∆t

(∆x)
2 ≤

1

2

which is the stability requirement for the difference equation (15.68) to be stable.

The exact form of the stability criterion G ≤ 1 depends on the form of the difference
equation, that is both the original PDE and the discretization methods used. This is
illustrated in the next example.

Example 243 Given the partial differential equation for one dimensional convection (or
the one dimensional wave equation)

∂φ

∂t
+ c

∂φ

∂x
= 0

Using a forward difference for ∂φ
∂t and Upwind difference for

∂φ
∂x :

φn+1P − φnP
∆t

+ c
(φnP − φnE)

∆x
= 0

which can be simplified to
φn+1P = (1− C)φnP + CφnE (15.74)

where

C = c
∆t

∆x

is called the Courant number. The von Neuman stability analysis applied to (15.74),
using

εm(x, t) = eateikmx

gives
ea(t+∆t)eikmx = (1− C) eateikmx + Ceateikm(x−∆x)
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and the amplification factor is given by

G =
εn+1P

εnP
= eat

= (1− C) + Ceateikm∆x

= 1− C (1− cos km∆x)− iC sin km∆x

We now demand that

|G| =
q

(1− C (1− cos km∆x))2 + (C sin km∆x)2 ≤ 1

which after some elementary trigonometric manipulations givesq
C2 + (C.− 1)2 ≤ 1⇒ C ≤ 1

The above is an example of a more general stability result known as the Courant-
Friedrichs-Lewy (CFL) condition. This condition, that is

C = c
∆t

∆x
≤ 1 (15.75)

applies generally to explicit schemes for hyperbolic equations. Physically, the CFL condi-
tion indicates that for stability, a particle of fluid should not travel more than one spatial
step-size ∆x in one time step ∆t.
The CFL condition is also the stability condition for the second order wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= 0 (15.76)

studied in Example 237. There is a connection between the characteristic lines of a
hyperbolic equation and the CFL condition. The following presentation is based on
(Anderson 1995). The characteristic lines

x =

½
ct (right-running)
−ct (left-running)

for (15.76) are plotted in Figure 15.14. In both figures 15.14 a) and b) point b is the
intersection of the right-running characteristic through grid-pointW and the left-running
characteristic through grid point E. This point also has a connection to the CFL condi-
tion. Let ∆tC=1 denote the value of ∆t given by (15.75) when C = 1, that is

∆tC=1 =
∆x

c

In Figure 15.14 a) and b)∆tC=1 is exactly the distance between point P and point b given
by the intersection of the characteristics. Now, study Figure 15.14 a) and assume C < 1.
Then, ∆tC<1 < ∆tC=1. Let point d correspond to the grid point directly above point P
existing at time t+∆tC<1. Since properties at point d are calculated numerically from the
difference equation using information at grid points E and W , the numerical domain for
point d is the triangle adc. The numerical domain is denoted Dn. The analytical domain
for d is the shaded area defined by the characteristics through d. The analytical domain
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is denoted Da. Note that in this case, the numerical domain contains the analytical
domain.
Now, consider Figure 15.14 b). Then C > 1 and ∆tC>1 > ∆tC=1. Let point d

correspond to the grid point directly above point P existing at time t+∆tC>1. As before,
the numerical domain in this case is the triangle adc, and the analytical domain is defined
by the characteristics through d. Note that in this case, the numerical domain does not
contain all of the analytical domain. The case in 15.14 b) considered an unstable solution
as C > 1, and we can now state the following interpretation of the CFL condition: For
stability, the numerical domain must include all of the analytical domain, that is

Da ⊂ Dn

Figure 15.14 a) can also illustrate accuracy. The analytical domain for point d is the
shaded triangle. Note however, that the numerical grid points E and W are outside the
domain of dependence of d and should therefore theoretically not influence the properties
at d. On the other hand, the numerical calculation of the properties at d takes information
from E and W into account. This leads to inaccurate results as there is a mismatch
between the domain of dependence and the actual numerical data used. In view of
accuracy it is therefore desirable to have the Courant number as close as possible to
unity.
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Dilation, 406
Direction cosines, 219

635



636 INDEX

Dirichlet condition, 597
Discharge coefficient, 432
Divergence, 406
Divergence thorem, 403
Dormand-Prince 5(4), 562
Driving-point impedance, 26
Dyadic, 215

Identity, 216
Inertia, 214

Elasticity
Distributed parameter, 361
Lumped parameter, 361

Electrical time constant, 88
Elliptic equations, 594
Embedded solution, 561
Energy balance

Isentropic processes, 474
Pressure form, 471
Temperature form, 470

Energy function, 349
Enthalpy, 443

Stagnation, 474
Entropy

Material derivative, 468
Specific, 467

Entropy equation, 468
Euler angles, 225

Classical, 226
Roll-Pitch-Yaw, 225

Euler Bernolli beam, 373
Euler parameters, 231, 571

From rotation matrix, 236
Euler rotation vector, 237
Euler’s equation of motion, 424
Euler’s method, 521, 528, 570, 574, 578
Euler-angle singularity, 247
Euler-Bernoulli beam, 390, 551
Euler-Rodrigues parameters, 238
Event detection, 566
Explicit Adams methods, 576
Explicit midpoint rule, 525

Fehlberg 4(5), 561
Field weakening, 119
Field-oriented control, 130
Flow coefficient, 497
Flux linkage, 102
Forces of constraints, 290
Fourier’s law, 446, 470

FSAL method, 534, 562

Gain margin, 44
Gauss method, 537, 539, 547, 551, 560,

570
Gear, 80
Gear ratio, 80
Generalized coordinates, 289, 314, 340
Generalized force, 315
Global error, 517
Greitzer surge model, 487, 498

Linearization, 499
Normalized, 497

Greitzer’s B-parameter, 498

Helmholtz frequency, 499
Helmholtz resonator, 476
Hessian matrix, 450
Heun’s method, 528
Homogeneous transformation matrix, 223
Hydraulic gear, 185
Hydraulic motor

Pump controlled, 185
Valve controlled, 157

Hydrodynamic motor, 141
Hydrostatic motor, 141
Hyperbolic equations, 594
Hyrostatic gear, 185

Ideal gas, 466
Identity dyadic, 216
Implicit Adams methods, 578
Implicit Euler method, 535
Implicit methods

Numerical solution, 563
Implicit mid-point rule, 538, 539, 550
Improved Euler method, 523, 528, 533
Impulse response, 12
Inertia dyadic, 214, 270
Inertia matrix, 274
Inertia tensor, 274
Inertial frame, 259
Infinite dimensional systems, 18
Internal energy, 465
Inverteed pendulum, 281
Inviscid fluid, 424
Irrational transfer function, 17
Isentropic process, 472
Isentropic relations, 473

Jacobi identity, 213
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Jacobian, 519, 565

Kane’s equation of motion, 297, 340
Kinematic differential equations

Attitude deviation, 245
Euler angles, 247
Euler parameters, 248
Euler rotation, 250
Euler-Rodrigues parameters, 250
Rotation matrix, 240

Kronecker tensor product, 564

L-stability, 546, 547, 550
Lame coefficients, 456
Laplacian, 450
Lie bracket

Rotations, 332
Line of action, 263
Linear invariant, 568
Linear test system, 520
Linearization, 5, 519
Lobatta IIIC, 551
Lobatto IIIA, 536, 539, 547, 550, 556,

560, 570, 574
Lobatto IIIB, 540, 550, 556, 560, 570,

574
Lobatto IIIC, 540, 550, 555, 560, 570,

574
Local error, 517
Local extrapolation, 561
Local solution, 517
Loop transfer function, 14

Mach number, 480
Magnetomotive force (mmf), 101, 122
Material control volume, 407
Material coordinates, 406
Material derivative, 402
Material volume, 414
Matrix exponential, 230
Mechanical time constant, 88
mmf, 101, 122
Modified Euler method, 525, 528
Momentum balance, 423
Momentum vector, 347
Multiport, 21

Nabla operator, 402
Navier-Stokes equation, 459
NDF methods, 581

Neumann condition, 597
Newton search, 564
Newtonian fluid, 456, 458
Newtonian frame, 259
Noncollocation, 361
Nonconsistent mass matrix, 371
Normal plane, 254
Nozzle flow, 480
Numerical dissipation, 540

O(.) notation, 518
One-step method, 517
Order, 518
Osculating plane, 254

Pade approximation, 18
Pade approximations, 548
Parabolic equations, 594
Parallel axes theorem, 275
Passive electrical one-port, 67
Passivity, 361

Energy formulation, 63
PID controller, 65

PD controller
Mechanical analog, 31

PECE, 580
Peclet number, 605
Permutation symbol, 211
Phase margin, 44
Piezoelectric actuator, 114
Piezoelectricity, 114
Pole at infinity, 11
Positive real, 56
Pre-whirl, 440
Predictor-Corrector method, 580
Pressure

Stagnation, 474
Static, 474

Pressure coefficient, 497
Principle of virtual work, 290
Proper transfer function, 11
Pump controlled motor, 185

Quaternion, 232
Quaternions, 231

Identity quaternion, 234
Inverse quaternion, 234
Quaternion product, 232

Radau IA, 539, 560, 570, 574
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Radau IIA, 539, 560, 570, 574
Radau methods, 550
Rate of production, 422
Rate of strain tensor, 451, 456
Rational transfer function, 11
Rectifying plane, 254
Reduction gear, 80
Restriction

Gas flow, 480
Liquid flow, 431
Sonic gas flow, 482

Reynolds number, 459
Reynolds’ transport theorem, 413
Rigid body, 259
RK4, 528, 535, 570, 574
Rosenbrock method, 574

Stability function, 575
Rotation dyadic, 229
Rotation matrix, 219

Basic, 221
Classical Euler angles, 226
Composite rotations, 221
Euler angles, 225
Euler parameters, 231
Euler rotation vector, 237
Euler-Rodrigues parameters, 239
Simple rotation, 221

Rothalpy, 495
Runge-Kutta method

Continuous, 565
Differential-Algebraic, 587
Dormand-Prince 5(4), 562
Explicit, 526, 560
Fehlberg 4(5), 561
Implicit, 535, 563
Inertia matrix, 566
Stability function, 531
Step size selection, 560
Symplectic, 571

Runge-Kutta methods
Property table, 560

Sensitivity function, 14
Serret-Frenet frame, 253
Shock, 484
Singularity of transfer function, 18
Skew-symmetric form, 211
SO(3), 220
Sonic flow

Restriction, 482

Space marching, 595
Spatial coordinates, 406
Specific energy, 465
Specific entropy, 467
Specific force, 258
Specific internal energy, 465
Specific kinetic energy, 465
Specific volume, 408, 466
Speed of sound, 475
Stability

A-stability, 546
Algebraic stability, 558
AN-stability, 555
B-stability, 557
BDF methods, 583
Explicit Adams methods, 582
Implicit Adams methods, 582
L-stability, 546
Multistep methods, 581
Nonlinear analysis, 557
Pade approximations, 550

Stability function, 518, 519, 531
Stage computations, 526
Stages, 526
Staggered grid, 616
Stagnation state, 474
State space model, 4
Static pressure, 474
Step size selection, 560
Stick-slip friction, 192
Stiff systems, 535
Stiffly accurate, 546, 588
Stoke’s assumption, 457
Stokes’ Theorem, 405
Storage function, 63
Stress tensor, 453
Stribeck curve, 192
Stribeck effect, 195
Strictly proper transfer function, 11
Summation convention, 449

Telemanipulation, 70
Theta method, 538
Time marching, 595
Torque, 265
Torsion, 254
Transfer function

Proper, 11
Strictly proper, 11

Transmission line, 18
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Electric, 33
Hydraulic, 73
Lossless, 38

Transportiveness, 605
Trapezoidal rule, 537, 539, 547, 550, 556
Twist vector, 246

Undamped natural frequency, 42
Unit quaternion, 233
Unit step function, 12

Valve controlled motor, 157
Variable displacement pump, 185
Variations, 325
Vector, 209
Vectors

Differentiation, 242
Virtual change, 325
Virtual displacement, 290
Viscous stress tensor, 454

Wave equation, 475
d’Alembert’s solution, 475

Wave variables, 37

Zero at infinity, 11
Zero crossing, 566


